1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, FlexibleContexts #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
-- QuickCheck properties for Data.FingerTree
module Main where
import Data.FingerTree -- needs to be compiled with -DTESTING for use here
import Test.Framework
import Test.Framework.Providers.HUnit
import Test.Framework.Providers.QuickCheck2
import Test.HUnit (Assertion, (@?=))
import Test.QuickCheck hiding ((><))
import Test.QuickCheck.Poly
import Prelude hiding (null, reverse, foldl, foldl1, foldr, foldr1, all)
import qualified Prelude
import Control.Applicative (Applicative(..))
import Control.Monad (ap)
import Data.Foldable (Foldable(foldMap, foldl, foldr), toList, all)
import Data.Functor ((<$>))
import Data.Traversable (traverse)
import Data.List (inits)
import Data.Maybe (listToMaybe)
import Data.Monoid (Monoid(..))
main :: IO ()
main = defaultMainWithOpts
[ testProperty "foldr" prop_foldr
, testProperty "foldl" prop_foldl
, testProperty "(==)" prop_equals
, testProperty "compare" prop_compare
, testProperty "mappend" prop_mappend
, testCase "empty" test_empty
, testProperty "singleton" prop_singleton
, testProperty "(<|)" prop_cons
, testProperty "(|>)" prop_snoc
, testProperty "(><)" prop_append
, testProperty "fromList" prop_fromList
, testProperty "null" prop_null
, testProperty "viewl" prop_viewl
, testProperty "viewr" prop_viewr
, testCase "search" test_search
, testProperty "search" prop_search
, testProperty "split" prop_split
, testProperty "takeUntil" prop_takeUntil
, testProperty "dropUntil" prop_dropUntil
, testProperty "reverse" prop_reverse
, testProperty "fmap'" prop_fmap'
, testProperty "fmapWithPos" prop_fmapWithPos
, testProperty "fmapWithContext" prop_fmapWithContext
, testProperty "foldlWithPos" prop_foldlWithPos
, testProperty "foldlWithContext" prop_foldlWithContext
, testProperty "foldrWithPos" prop_foldrWithPos
, testProperty "foldrWithContext" prop_foldrWithContext
, testProperty "traverse'" prop_traverse'
, testProperty "traverseWithPos" prop_traverseWithPos
, testProperty "traverseWithContext" prop_traverseWithContext
] runner_opts
where
runner_opts = mempty { ropt_test_options = Just test_opts }
test_opts = mempty {
topt_maximum_generated_tests = Just 500
, topt_maximum_unsuitable_generated_tests = Just 500
}
{--------------------------------------------------------------------
The general plan is to compare each function with a list equivalent.
Each operation should produce a valid tree representing the same
sequence as produced by its list counterpart on corresponding inputs.
(The list versions are often lazier, but these properties ignore
strictness.)
--------------------------------------------------------------------}
-- utilities for partial conversions
infix 4 ~=
(~=) :: (Eq a, Eq v, Measured v a, Valid a) => FingerTree v a -> [a] -> Bool
s ~= xs = valid s && toList s == xs
-- Partial conversion of an output sequence to a list.
toList' :: (Eq a, Measured [a] a, Valid a) => Seq a -> Maybe [a]
toList' xs
| valid xs = Just (toList xs)
| otherwise = Nothing
-- instances
prop_foldr :: Seq A -> Bool
prop_foldr xs =
foldr f z xs == Prelude.foldr f z (toList xs)
where
f = (:)
z = []
prop_foldl :: Seq A -> Bool
prop_foldl xs =
foldl f z xs == Prelude.foldl f z (toList xs)
where
f = flip (:)
z = []
prop_equals :: Seq OrdA -> Seq OrdA -> Bool
prop_equals xs ys =
(xs == ys) == (toList xs == toList ys)
prop_compare :: Seq OrdA -> Seq OrdA -> Bool
prop_compare xs ys =
compare xs ys == compare (toList xs) (toList ys)
prop_mappend :: Seq A -> Seq A -> Bool
prop_mappend xs ys =
mappend xs ys ~= toList xs ++ toList ys
-- * Construction
test_empty :: Assertion
test_empty =
toList' (empty :: Seq A) @?= Just []
prop_singleton :: A -> Bool
prop_singleton x =
singleton x ~= [x]
prop_cons :: A -> Seq A -> Bool
prop_cons x xs =
x <| xs ~= x : toList xs
prop_snoc :: Seq A -> A -> Bool
prop_snoc xs x =
xs |> x ~= toList xs ++ [x]
prop_append :: Seq A -> Seq A -> Bool
prop_append xs ys =
xs >< ys ~= toList xs ++ toList ys
prop_fromList :: [A] -> Bool
prop_fromList xs =
fromList xs ~= xs
-- * Deconstruction
prop_null :: Seq A -> Bool
prop_null xs =
null xs == Prelude.null (toList xs)
-- ** Examining the ends
prop_viewl :: Seq A -> Bool
prop_viewl xs =
case viewl xs of
EmptyL -> Prelude.null (toList xs)
x :< xs' -> valid xs' && toList xs == x : toList xs'
prop_viewr :: Seq A -> Bool
prop_viewr xs =
case viewr xs of
EmptyR -> Prelude.null (toList xs)
xs' :> x -> valid xs' && toList xs == toList xs' ++ [x]
-- ** Search
prop_search :: Int -> Seq A -> Bool
prop_search n xs =
case search p xs of
Position _ b _ -> Just b == indexFromEnd n (toList xs)
OnLeft -> n >= len || null xs
OnRight -> n < 0
Nowhere -> error "impossible: the predicate is monotonic"
where
p vl vr = Prelude.length vl >= len - n && Prelude.length vr <= n
len = length xs
indexFromEnd :: Int -> [a] -> Maybe a
indexFromEnd i = listToMaybe . drop i . Prelude.reverse
test_search :: Assertion
test_search = do
lookupByIndexFromEnd xs1 1 @?= Just (A 4)
lookupByIndexFromEnd xs2 1 @?= Just (A 4)
where
xs1 = Deep (map A [1..5]) (Four (A 1) (A 2) (A 3) (A 4)) Empty (One (A 5))
xs2 = Deep (map A [1..5]) (One (A 1)) Empty (Four (A 2) (A 3) (A 4) (A 5))
lookupByIndexFromEnd xs n =
let len = length xs
p vl vr = Prelude.length vl >= len - n && Prelude.length vr <= n
in case search p xs of
Position _ x _ -> Just x
_ -> Nothing
-- ** Splitting
prop_split :: Int -> Seq A -> Bool
prop_split n xs =
s_front ~= l_front && s_back ~= l_back
where
p ys = Prelude.length ys > n
(s_front, s_back) = split p xs
(l_front, l_back) = Prelude.splitAt n (toList xs)
prop_takeUntil :: Int -> Seq A -> Bool
prop_takeUntil n xs =
takeUntil p xs ~= Prelude.take n (toList xs)
where
p ys = Prelude.length ys > n
prop_dropUntil :: Int -> Seq A -> Bool
prop_dropUntil n xs =
dropUntil p xs ~= Prelude.drop n (toList xs)
where
p ys = Prelude.length ys > n
-- * Transformation
prop_reverse :: Seq A -> Bool
prop_reverse xs =
reverse xs ~= Prelude.reverse (toList xs)
-- ** Maps
prop_fmap' :: Seq A -> Bool
prop_fmap' xs =
fmap' f xs ~= map f (toList xs)
where
f = Just
prop_fmapWithPos :: FingerTree MA VA -> Bool
prop_fmapWithPos xs =
fmapWithPos f xs ~= zipWith f (prefixes xs_list) xs_list
where
f = WithPos
xs_list = toList xs
prop_fmapWithContext :: FingerTree MA VA -> Bool
prop_fmapWithContext xs =
fmapWithContext f xs ~= zipWith3 f (prefixes xs_list) xs_list (suffixes xs_list)
where
f = WithContext
xs_list = toList xs
-- ** Folds
prop_foldlWithPos :: FingerTree MA VA -> Bool
prop_foldlWithPos xs =
foldlWithPos f z xs == foldl uncurry_f z (zip (prefixes xs_list) xs_list)
where
z = []
f vxs v x = WithPos v x:vxs
uncurry_f vxs (v, x) = f vxs v x
xs_list = toList xs
prop_foldlWithContext :: FingerTree MA VA -> Bool
prop_foldlWithContext xs =
foldlWithContext f z xs == foldl uncurry_f z (zip3 (prefixes xs_list) xs_list (suffixes xs_list))
where
z = []
f vxs vl x vr = WithContext vl x vr:vxs
uncurry_f vxs (vl, x, vr) = f vxs vl x vr
xs_list = toList xs
prop_foldrWithPos :: FingerTree MA VA -> Bool
prop_foldrWithPos xs =
foldrWithPos f z xs == foldr uncurry_f z (zip (prefixes xs_list) xs_list)
where
z = []
f v x vxs = WithPos v x:vxs
uncurry_f (v, x) vxs = f v x vxs
xs_list = toList xs
prop_foldrWithContext :: FingerTree MA VA -> Bool
prop_foldrWithContext xs =
foldrWithContext f z xs == foldr uncurry_f z (zip3 (prefixes xs_list) xs_list (suffixes xs_list))
where
z = []
f vl x vr vxs = WithContext vl x vr:vxs
uncurry_f (vl, x, vr) vxs = f vl x vr vxs
xs_list = toList xs
-- ** Traversals
prop_traverse' :: Seq A -> Bool
prop_traverse' xs =
evalM (traverse' f xs) ~= evalM (traverse f (toList xs))
where
f x = do
n <- step
return (n, x)
prop_traverseWithPos :: FingerTree MA VA -> Bool
prop_traverseWithPos xs =
evalM (traverseWithPos f xs) ~= evalM (traverse (uncurry f) (zip (prefixes xs_list) xs_list))
where
f v y = do
n <- step
return (WithPos v (n, y))
xs_list = toList xs
prop_traverseWithContext :: FingerTree MA VA -> Bool
prop_traverseWithContext xs =
evalM (traverseWithContext f xs) ~= evalM (traverse uncurry_f (zip3 (prefixes xs_list) xs_list (suffixes xs_list)))
where
uncurry_f (vl, y, vr) = f vl y vr
f vl y vr = do
n <- step
return (WithContext vl (n, y) vr)
xs_list = toList xs
-- measure to the left of each value
prefixes :: (Measured v a) => [a] -> [v]
prefixes = scanl (<>) mempty . map measure
-- measure to the right of each value
suffixes :: (Measured v a) => [a] -> [v]
suffixes = tail . scanr (<>) mempty . map measure
------------------------------------------------------------------------
-- QuickCheck
------------------------------------------------------------------------
instance (Arbitrary a, Measured v a) => Arbitrary (FingerTree v a) where
arbitrary = sized arb
where
arb :: (Arbitrary a, Measured v a) => Int -> Gen (FingerTree v a)
arb 0 = return Empty
arb 1 = Single <$> arbitrary
arb n = deep <$> arbitrary <*> arb (n `div` 2) <*> arbitrary
shrink (Deep _ (One a) Empty (One b)) = [Single a, Single b]
shrink (Deep _ pr m sf) =
[deep pr' m sf | pr' <- shrink pr] ++
[deep pr m' sf | m' <- shrink m] ++
[deep pr m sf' | sf' <- shrink sf]
shrink (Single x) = map Single (shrink x)
shrink Empty = []
instance (Arbitrary a, Measured v a) => Arbitrary (Node v a) where
arbitrary = oneof [
node2 <$> arbitrary <*> arbitrary,
node3 <$> arbitrary <*> arbitrary <*> arbitrary]
shrink (Node2 _ a b) =
[node2 a' b | a' <- shrink a] ++
[node2 a b' | b' <- shrink b]
shrink (Node3 _ a b c) =
[node2 a b, node2 a c, node2 b c] ++
[node3 a' b c | a' <- shrink a] ++
[node3 a b' c | b' <- shrink b] ++
[node3 a b c' | c' <- shrink c]
instance Arbitrary a => Arbitrary (Digit a) where
arbitrary = oneof [
One <$> arbitrary,
Two <$> arbitrary <*> arbitrary,
Three <$> arbitrary <*> arbitrary <*> arbitrary,
Four <$> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary]
shrink (One a) = map One (shrink a)
shrink (Two a b) = [One a, One b]
shrink (Three a b c) = [Two a b, Two a c, Two b c]
shrink (Four a b c d) = [Three a b c, Three a b d, Three a c d, Three b c d]
------------------------------------------------------------------------
-- Valid trees
------------------------------------------------------------------------
class Valid a where
valid :: a -> Bool
instance (Measured v a, Eq v, Valid a) => Valid (FingerTree v a) where
valid Empty = True
valid (Single x) = valid x
valid (Deep s pr m sf) =
s == measure pr `mappend` measure m `mappend` measure sf &&
valid pr && valid m && valid sf
instance (Measured v a, Eq v, Valid a) => Valid (Node v a) where
valid node = measure node == foldMap measure node && all valid node
instance Valid a => Valid (Digit a) where
valid = all valid
instance Valid A where
valid = const True
instance Valid (a,b) where
valid = const True
instance Valid (a,b,c) where
valid = const True
instance Valid (Maybe a) where
valid = const True
instance Valid [a] where
valid = const True
------------------------------------------------------------------------
-- Use list of elements as the measure
------------------------------------------------------------------------
type Seq a = FingerTree [a] a
instance Measured [A] A where
measure x = [x]
instance Measured [OrdA] OrdA where
measure x = [x]
instance Measured [Maybe a] (Maybe a) where
measure x = [x]
instance Measured [(a, b)] (a, b) where
measure x = [x]
instance Measured [(a, b, c)] (a, b, c) where
measure x = [x]
------------------------------------------------------------------------
-- A noncommutative monoid as a measure: semidirect product
------------------------------------------------------------------------
data MA = MA Int Int
deriving (Eq, Show)
instance Semigroup MA where
MA a x <> MA b y = MA (a*b) (x + a*y)
instance Monoid MA where
mempty = MA 1 0
instance Valid MA where
valid = const True
newtype VA = VA Int
deriving (Eq, Show)
instance Measured MA VA where
measure (VA x) = MA 3 x
instance Arbitrary VA where
arbitrary = VA <$> arbitrary
shrink (VA x) = map VA (shrink x)
instance Valid VA where
valid = const True
------------------------------------------------------------------------
-- Values with positions and contexts
------------------------------------------------------------------------
data WithPos v a = WithPos v a
deriving (Eq, Show)
instance Monoid v => Measured v (WithPos v a) where
measure (WithPos v _) = v
instance (Valid v, Valid a) => Valid (WithPos v a) where
valid (WithPos v x) = valid v && valid x
data WithContext v a = WithContext v a v
deriving (Eq, Show)
instance Monoid v => Measured v (WithContext v a) where
measure (WithContext vl _ vr) = vl
instance (Valid v, Valid a) => Valid (WithContext v a) where
valid (WithContext vl x vr) = valid vl && valid x && valid vr
------------------------------------------------------------------------
-- Simple counting monad
------------------------------------------------------------------------
newtype M a = M (Int -> (Int, a))
runM :: M a -> Int -> (Int, a)
runM (M m) = m
evalM :: M a -> a
evalM m = snd (runM m 0)
instance Monad M where
return x = M $ \ n -> (n, x)
M u >>= f = M $ \ m -> let (n, x) = u m in runM (f x) n
instance Functor M where
fmap f (M u) = M $ \ m -> let (n, x) = u m in (n, f x)
instance Applicative M where
pure = return
(<*>) = ap
step :: M Int
step = M $ \ n -> (n+1, n)
|