File: TestPrimeField.hs

package info (click to toggle)
haskell-finite-field 0.10.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 100 kB
  • sloc: haskell: 309; makefile: 6
file content (276 lines) | stat: -rw-r--r-- 7,542 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
{-# LANGUAGE TemplateHaskell, ScopedTypeVariables, GADTs, DataKinds, CPP, TypeOperators #-}
{-# OPTIONS_GHC -fcontext-stack=32 #-}

import Prelude hiding (toInteger)

import Test.Tasty
import Test.Tasty.QuickCheck
import Test.Tasty.HUnit
import Test.Tasty.TH
import qualified Test.QuickCheck.Monadic as QM

import Control.DeepSeq
import Control.Exception
import Control.Monad
import Data.Either
import Data.Hashable
import Data.List (genericLength)
import Data.Numbers.Primes (primes)
import Data.Proxy
import Data.Ratio

import Data.FiniteField
#ifdef UseGHCTypeLits
import Data.Maybe
import GHC.TypeLits
#else
import TypeLevel.Number.Nat
#endif

-- ----------------------------------------------------------------------
-- addition

prop_add_comm =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
    forAll arbitrary $ \b ->
      a + b == b + a

prop_add_assoc =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
    forAll arbitrary $ \b ->
    forAll arbitrary $ \c ->
      (a + b) + c == a + (b + c)

prop_add_unitl =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      0 + a == a

prop_add_unitr =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      a + 0 == a

prop_negate =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      a + negate a == 0

prop_sub_negate =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
    forAll arbitrary $ \(b :: PrimeField p) ->
      a - b == a + negate b

-- ----------------------------------------------------------------------
-- multiplication

prop_mult_comm =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
    forAll arbitrary $ \b ->
      a * b == b * a

prop_mult_assoc =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
    forAll arbitrary $ \b ->
    forAll arbitrary $ \c ->
      (a * b) * c == a * (b * c)

prop_mult_unitl =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      1 * a == a

prop_mult_unitr =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      a * 1 == a

prop_mult_zero_l =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      0*a == 0

prop_mult_zero_r =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
        forAll arbitrary $ \(a :: PrimeField p) ->
          a*0 == 0

-- ----------------------------------------------------------------------
-- distributivity

prop_distl =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
    forAll arbitrary $ \b ->
    forAll arbitrary $ \c ->
      a * (b + c) == a*b + a*c

prop_distr =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
    forAll arbitrary $ \b ->
    forAll arbitrary $ \c ->
      (b + c) * a == b*a + c*a

-- ----------------------------------------------------------------------
-- misc Num methods

prop_abs =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      abs a == a

prop_signum =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      signum a == 1

-- ----------------------------------------------------------------------
-- Fractional

prop_fromRational =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(r :: Rational) ->
      (fromRational r :: PrimeField p) == fromInteger (numerator r) / fromInteger (denominator r)

prop_recip =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      a /= 0 ==> a * (recip a) == 1

-- ----------------------------------------------------------------------
-- FiniteField

prop_pthRoot =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      pthRoot a ^ char a == a

prop_allValues = do
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    genericLength (allValues :: [PrimeField p]) == order (undefined :: PrimeField p)

-- ----------------------------------------------------------------------
-- Show / Read

prop_read_show =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      read (show a) == a  

-- ----------------------------------------------------------------------
-- Ord

prop_zero_minimum =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      0 <= a

-- ----------------------------------------------------------------------
-- NFData

prop_rnf =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      rnf a == ()

-- ----------------------------------------------------------------------
-- Enum

prop_toEnum_fromEnum =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      toEnum (fromEnum a) == a

prop_toEnum_negative = QM.monadicIO $ do
  SomeNat' (_ :: Proxy p) <- QM.pick smallPrimes
  let a :: PrimeField p
      a = toEnum (-1)
  (ret :: Either SomeException (PrimeField p)) <- QM.run $ try $ evaluate $ a
  QM.assert $ isLeft ret

-- https://github.com/msakai/finite-field/issues/2
case_toEnum_big_integer =
  (toEnum 7 :: $(primeField (2^127 - 1))) @?= 7  

-- ----------------------------------------------------------------------

prop_hash =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      hash a `seq` () == ()

-- ----------------------------------------------------------------------
-- misc

prop_fromInteger_toInteger =
  forAll smallPrimes $ \(SomeNat' (_ :: Proxy p)) ->
    forAll arbitrary $ \(a :: PrimeField p) ->
      fromInteger (toInteger a) == a

case_primeFieldT = a @?= 1
  where
    a :: $(primeField 15485867)
    a = 15485867 + 1

------------------------------------------------------------------------

#ifdef UseGHCTypeLits

data SomeNat' where
  SomeNat' :: KnownNat p => Proxy p -> SomeNat'

instance Show SomeNat' where
  showsPrec p (SomeNat' x) = showsPrec p (natVal x)

#else

data SomeNat' where
  SomeNat' :: Nat p => Proxy p -> SomeNat'

instance Show SomeNat' where
  showsPrec p (SomeNat' (x :: Proxy p)) = showsPrec p (toInt (undefined :: p))

#endif

smallPrimes :: Gen SomeNat'
smallPrimes = do
  i <- choose (0, 2^(16::Int))
#ifdef UseGHCTypeLits
  case fromJust $ someNatVal $ primes !! i of
    SomeNat proxy -> return $ SomeNat' proxy
#else
  let f :: forall p. Nat p => p -> SomeNat'
      f _ = SomeNat' (Proxy :: Proxy p)
  return $ withNat f (primes !! i)
#endif

#ifdef UseGHCTypeLits
instance KnownNat p => Arbitrary (PrimeField p) where
#else
instance Nat p => Arbitrary (PrimeField p) where
#endif
  arbitrary = liftM fromInteger arbitrary

------------------------------------------------------------------------
-- Test harness

main :: IO ()
main = $(defaultMainGenerator)

#if !MIN_VERSION_base(4,7,0)

isLeft :: Either a b -> Bool
isLeft (Left  _) = True
isLeft (Right _) = False

isRight :: Either a b -> Bool
isRight (Left  _) = False
isRight (Right _) = True

#endif