1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
-- |
-- Module : Foundation.Array.Bitmap
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : portable
--
-- A simple abstraction to a set of Bits (Bitmap)
--
-- Largely a placeholder for a more performant implementation,
-- most operation goes through the List representation (e.g. [Bool])
-- to conduct even the most trivial operation, leading to a lots of
-- unnecessary churn.
--
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
module Foundation.Array.Bitmap
( Bitmap
, MutableBitmap
, empty
, append
, concat
, unsafeIndex
, index
, read
, unsafeRead
, write
, unsafeWrite
, snoc
, cons
) where
import Basement.UArray (UArray)
import qualified Basement.UArray as A
import Basement.UArray.Mutable (MUArray)
import Basement.Compat.Bifunctor (first, second, bimap)
import Basement.Compat.Semigroup
import Basement.Exception
import Basement.Compat.Base
import Basement.Types.OffsetSize
import Basement.Monad
import qualified Foundation.Collection as C
import Foundation.Numerical
import Data.Bits hiding ((.<<.), (.>>.))
import Foundation.Bits
import GHC.ST
import qualified Data.List
data Bitmap = Bitmap (CountOf Bool) (UArray Word32)
deriving (Typeable)
data MutableBitmap st = MutableBitmap (CountOf Bool) (MUArray Word32 st)
bitsPerTy :: Int
bitsPerTy = 32
shiftPerTy :: Int
shiftPerTy = 5
maskPerTy :: Int
maskPerTy = 0x1f
instance Show Bitmap where
show v = show (toList v)
instance Eq Bitmap where
(==) = equal
instance Ord Bitmap where
compare = vCompare
instance Semigroup Bitmap where
(<>) = append
instance Monoid Bitmap where
mempty = empty
mconcat = concat
type instance C.Element Bitmap = Bool
instance IsList Bitmap where
type Item Bitmap = Bool
fromList = vFromList
toList = vToList
instance C.InnerFunctor Bitmap where
imap = map
instance C.Foldable Bitmap where
foldr = foldr
foldl' = foldl'
foldr' = foldr'
instance C.Collection Bitmap where
null = null
length = length
elem e = Data.List.elem e . toList
maximum = any id . C.getNonEmpty
minimum = all id . C.getNonEmpty
all = all
any = any
instance C.Sequential Bitmap where
take = take
drop = drop
splitAt = splitAt
revTake n = unoptimised (C.revTake n)
revDrop n = unoptimised (C.revDrop n)
splitOn = splitOn
break = break
breakEnd = breakEnd
span = span
filter = filter
reverse = reverse
snoc = snoc
cons = cons
unsnoc = unsnoc
uncons = uncons
intersperse = intersperse
find = find
sortBy = sortBy
singleton = fromList . (:[])
replicate n = fromList . C.replicate n
instance C.IndexedCollection Bitmap where
(!) l n
| isOutOfBound n (length l) = Nothing
| otherwise = Just $ index l n
findIndex predicate c = loop 0
where
!len = length c
loop i
| i .==# len = Nothing
| predicate (unsafeIndex c i) = Just i
| otherwise = Nothing
instance C.MutableCollection MutableBitmap where
type MutableFreezed MutableBitmap = Bitmap
type MutableKey MutableBitmap = Offset Bool
type MutableValue MutableBitmap = Bool
thaw = thaw
freeze = freeze
unsafeThaw = unsafeThaw
unsafeFreeze = unsafeFreeze
mutNew = new
mutUnsafeWrite = unsafeWrite
mutUnsafeRead = unsafeRead
mutWrite = write
mutRead = read
bitmapIndex :: Offset Bool -> (Offset Word32, Int)
bitmapIndex (Offset !i) = (Offset (i .>>. shiftPerTy), i .&. maskPerTy)
{-# INLINE bitmapIndex #-}
-- return the index in word32 quantity and mask to a bit in a bitmap
{-
bitmapAddr :: Int -> (# Int , Word #)
bitmapAddr !i = (# idx, mask #)
where (!idx, !bitIdx) = bitmapIndex i
!mask = case bitIdx of
0 -> 0x1
1 -> 0x2
2 -> 0x4
3 -> 0x8
4 -> 0x10
5 -> 0x20
6 -> 0x40
7 -> 0x80
8 -> 0x100
9 -> 0x200
10 -> 0x400
11 -> 0x800
12 -> 0x1000
13 -> 0x2000
14 -> 0x4000
15 -> 0x8000
16 -> 0x10000
17 -> 0x20000
18 -> 0x40000
19 -> 0x80000
20 -> 0x100000
21 -> 0x200000
22 -> 0x400000
23 -> 0x800000
24 -> 0x1000000
25 -> 0x2000000
26 -> 0x4000000
27 -> 0x8000000
28 -> 0x10000000
29 -> 0x20000000
30 -> 0x40000000
_ -> 0x80000000
-}
thaw :: PrimMonad prim => Bitmap -> prim (MutableBitmap (PrimState prim))
thaw (Bitmap len ba) = MutableBitmap len `fmap` C.thaw ba
freeze :: PrimMonad prim => MutableBitmap (PrimState prim) -> prim Bitmap
freeze (MutableBitmap len mba) = Bitmap len `fmap` C.freeze mba
unsafeThaw :: PrimMonad prim => Bitmap -> prim (MutableBitmap (PrimState prim))
unsafeThaw (Bitmap len ba) = MutableBitmap len `fmap` C.unsafeThaw ba
unsafeFreeze :: PrimMonad prim => MutableBitmap (PrimState prim) -> prim Bitmap
unsafeFreeze (MutableBitmap len mba) = Bitmap len `fmap` C.unsafeFreeze mba
unsafeWrite :: PrimMonad prim => MutableBitmap (PrimState prim) -> Offset Bool -> Bool -> prim ()
unsafeWrite (MutableBitmap _ ma) i v = do
let (idx, bitIdx) = bitmapIndex i
w <- A.unsafeRead ma idx
let w' = if v then setBit w bitIdx else clearBit w bitIdx
A.unsafeWrite ma idx w'
{-# INLINE unsafeWrite #-}
unsafeRead :: PrimMonad prim => MutableBitmap (PrimState prim) -> Offset Bool -> prim Bool
unsafeRead (MutableBitmap _ ma) i = do
let (idx, bitIdx) = bitmapIndex i
flip testBit bitIdx `fmap` A.unsafeRead ma idx
{-# INLINE unsafeRead #-}
write :: PrimMonad prim => MutableBitmap (PrimState prim) -> Offset Bool -> Bool -> prim ()
write mb n val
| isOutOfBound n len = primOutOfBound OOB_Write n len
| otherwise = unsafeWrite mb n val
where
len = mutableLength mb
{-# INLINE write #-}
read :: PrimMonad prim => MutableBitmap (PrimState prim) -> Offset Bool -> prim Bool
read mb n
| isOutOfBound n len = primOutOfBound OOB_Read n len
| otherwise = unsafeRead mb n
where len = mutableLength mb
{-# INLINE read #-}
-- | Return the element at a specific index from a Bitmap.
--
-- If the index @n is out of bounds, an error is raised.
index :: Bitmap -> Offset Bool -> Bool
index bits n
| isOutOfBound n len = outOfBound OOB_Index n len
| otherwise = unsafeIndex bits n
where len = length bits
{-# INLINE index #-}
-- | Return the element at a specific index from an array without bounds checking.
--
-- Reading from invalid memory can return unpredictable and invalid values.
-- use 'index' if unsure.
unsafeIndex :: Bitmap -> Offset Bool -> Bool
unsafeIndex (Bitmap _ ba) n =
let (idx, bitIdx) = bitmapIndex n
in testBit (A.unsafeIndex ba idx) bitIdx
{-# INLINE unsafeIndex #-}
-----------------------------------------------------------------------
-- higher level collection implementation
-----------------------------------------------------------------------
length :: Bitmap -> CountOf Bool
length (Bitmap sz _) = sz
mutableLength :: MutableBitmap st -> CountOf Bool
mutableLength (MutableBitmap sz _) = sz
empty :: Bitmap
empty = Bitmap 0 mempty
new :: PrimMonad prim => CountOf Bool -> prim (MutableBitmap (PrimState prim))
new sz@(CountOf len) =
MutableBitmap sz <$> A.new nbElements
where
nbElements :: CountOf Word32
nbElements = CountOf ((len `alignRoundUp` bitsPerTy) .>>. shiftPerTy)
-- | make an array from a list of elements.
vFromList :: [Bool] -> Bitmap
vFromList allBools = runST $ do
mbitmap <- new len
loop mbitmap 0 allBools
where
loop mb _ [] = unsafeFreeze mb
loop mb i (x:xs) = unsafeWrite mb i x >> loop mb (i+1) xs
{-
runST $ do
mba <- A.new nbElements
ba <- loop mba (0 :: Int) allBools
pure (Bitmap len ba)
where
loop mba _ [] = A.unsafeFreeze mba
loop mba i l = do
let (l1, l2) = C.splitAt bitsPerTy l
w = toPacked l1
A.unsafeWrite mba i w
loop mba (i+1) l2
toPacked :: [Bool] -> Word32
toPacked l =
C.foldl' (.|.) 0 $ Prelude.zipWith (\b w -> if b then (1 `shiftL` w) else 0) l (C.reverse [0..31])
-}
len = C.length allBools
-- | transform an array to a list.
vToList :: Bitmap -> [Bool]
vToList a = loop 0
where len = length a
loop i | i .==# len = []
| otherwise = unsafeIndex a i : loop (i+1)
-- | Check if two vectors are identical
equal :: Bitmap -> Bitmap -> Bool
equal a b
| la /= lb = False
| otherwise = loop 0
where
!la = length a
!lb = length b
loop n | n .==# la = True
| otherwise = (unsafeIndex a n == unsafeIndex b n) && loop (n+1)
-- | Compare 2 vectors
vCompare :: Bitmap -> Bitmap -> Ordering
vCompare a b = loop 0
where
!la = length a
!lb = length b
loop n
| n .==# la = if la == lb then EQ else LT
| n .==# lb = GT
| otherwise =
case unsafeIndex a n `compare` unsafeIndex b n of
EQ -> loop (n+1)
r -> r
-- | Append 2 arrays together by creating a new bigger array
--
-- TODO completely non optimized
append :: Bitmap -> Bitmap -> Bitmap
append a b = fromList $ toList a `mappend` toList b
-- TODO completely non optimized
concat :: [Bitmap] -> Bitmap
concat l = fromList $ mconcat $ fmap toList l
null :: Bitmap -> Bool
null (Bitmap nbBits _) = nbBits == 0
take :: CountOf Bool -> Bitmap -> Bitmap
take nbElems bits@(Bitmap nbBits ba)
| nbElems <= 0 = empty
| nbElems >= nbBits = bits
| otherwise = Bitmap nbElems ba -- TODO : although it work right now, take on the underlaying ba too
drop :: CountOf Bool -> Bitmap -> Bitmap
drop nbElems bits@(Bitmap nbBits _)
| nbElems <= 0 = bits
| nbElems >= nbBits = empty
| otherwise = unoptimised (C.drop nbElems) bits
-- TODO: decide if we have drop easy by having a bit offset in the data structure
-- or if we need to shift stuff around making all the indexing slighlty more complicated
splitAt :: CountOf Bool -> Bitmap -> (Bitmap, Bitmap)
splitAt n v = (take n v, drop n v)
-- unoptimised
splitOn :: (Bool -> Bool) -> Bitmap -> [Bitmap]
splitOn f bits = fmap fromList $ C.splitOn f $ toList bits
-- unoptimised
break :: (Bool -> Bool) -> Bitmap -> (Bitmap, Bitmap)
break predicate v = findBreak 0
where
len = length v
findBreak i
| i .==# len = (v, empty)
| otherwise =
if predicate (unsafeIndex v i)
then splitAt (offsetAsSize i) v
else findBreak (i+1)
breakEnd :: (Bool -> Bool) -> Bitmap -> (Bitmap, Bitmap)
breakEnd predicate = bimap fromList fromList . C.breakEnd predicate . toList
span :: (Bool -> Bool) -> Bitmap -> (Bitmap, Bitmap)
span p = break (not . p)
map :: (Bool -> Bool) -> Bitmap -> Bitmap
map f bits = unoptimised (fmap f) bits
--mapIndex :: (Int -> Bool -> Bool) -> Bitmap -> Bitmap
--mapIndex f Bitmap =
cons :: Bool -> Bitmap -> Bitmap
cons v l = unoptimised (C.cons v) l
snoc :: Bitmap -> Bool -> Bitmap
snoc l v = unoptimised (flip C.snoc v) l
-- unoptimised
uncons :: Bitmap -> Maybe (Bool, Bitmap)
uncons b = fmap (second fromList) $ C.uncons $ toList b
-- unoptimised
unsnoc :: Bitmap -> Maybe (Bitmap, Bool)
unsnoc b = fmap (first fromList) $ C.unsnoc $ toList b
intersperse :: Bool -> Bitmap -> Bitmap
intersperse b = unoptimised (C.intersperse b)
find :: (Bool -> Bool) -> Bitmap -> Maybe Bool
find predicate vec = loop 0
where
!len = length vec
loop i
| i .==# len = Nothing
| otherwise =
let e = unsafeIndex vec i
in if predicate e then Just e else loop (i+1)
sortBy :: (Bool -> Bool -> Ordering) -> Bitmap -> Bitmap
sortBy by bits = unoptimised (C.sortBy by) bits
filter :: (Bool -> Bool) -> Bitmap -> Bitmap
filter predicate vec = unoptimised (Data.List.filter predicate) vec
reverse :: Bitmap -> Bitmap
reverse bits = unoptimised C.reverse bits
foldr :: (Bool -> a -> a) -> a -> Bitmap -> a
foldr f initialAcc vec = loop 0
where
len = length vec
loop i
| i .==# len = initialAcc
| otherwise = unsafeIndex vec i `f` loop (i+1)
foldr' :: (Bool -> a -> a) -> a -> Bitmap -> a
foldr' = foldr
foldl' :: (a -> Bool -> a) -> a -> Bitmap -> a
foldl' f initialAcc vec = loop 0 initialAcc
where
len = length vec
loop i !acc
| i .==# len = acc
| otherwise = loop (i+1) (f acc (unsafeIndex vec i))
all :: (Bool -> Bool) -> Bitmap -> Bool
all p bm = loop 0
where
len = length bm
loop !i
| i .==# len = True
| not $ p (unsafeIndex bm i) = False
| otherwise = loop (i + 1)
any :: (Bool -> Bool) -> Bitmap -> Bool
any p bm = loop 0
where
len = length bm
loop !i
| i .==# len = False
| p (unsafeIndex bm i) = True
| otherwise = loop (i + 1)
unoptimised :: ([Bool] -> [Bool]) -> Bitmap -> Bitmap
unoptimised f = vFromList . f . vToList
|