File: Unboxed.hs

package info (click to toggle)
haskell-foundation 0.0.30-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 932 kB
  • sloc: haskell: 9,124; ansic: 570; makefile: 7
file content (340 lines) | stat: -rw-r--r-- 12,464 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
-- |
-- Module      : Foundation.Array.Chunked.Unboxed
-- License     : BSD-style -- Maintainer  : Alfredo Di Napoli <alfredo.dinapoli@gmail.com>
-- Stability   : experimental
-- Portability : portable
--
-- Simple array-of-arrays abstraction
--
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}
module Foundation.Array.Chunked.Unboxed
    ( ChunkedUArray
    ) where

import           Data.Typeable
import           Control.Arrow ((***))
import           Basement.BoxedArray (Array)
import qualified Basement.BoxedArray as A
import           Basement.Exception
import           Basement.UArray (UArray)
import qualified Basement.UArray as U
import           Basement.Compat.Bifunctor
import           Basement.Compat.Semigroup
import           Basement.Compat.Base
import           Basement.Types.OffsetSize
import           Basement.PrimType
import           GHC.ST

import           Foundation.Numerical
import           Foundation.Primitive
import qualified Foundation.Collection as C


newtype ChunkedUArray ty = ChunkedUArray (Array (UArray ty))
                      deriving (Show, Ord, Typeable)

instance PrimType ty => Eq (ChunkedUArray ty) where
  (==) = equal
instance NormalForm (ChunkedUArray ty) where
    toNormalForm (ChunkedUArray spine) = toNormalForm spine

instance Semigroup (ChunkedUArray a) where
    (<>) = append
instance Monoid (ChunkedUArray a) where
    mempty  = empty
    mconcat = concat

type instance C.Element (ChunkedUArray ty) = ty

instance PrimType ty => IsList (ChunkedUArray ty) where
    type Item (ChunkedUArray ty) = ty
    fromList = vFromList
    toList = vToList

instance PrimType ty => C.Foldable (ChunkedUArray ty) where
    foldl' = foldl'
    foldr = foldr
    -- Use the default foldr' instance

instance PrimType ty => C.Collection (ChunkedUArray ty) where
    null = null
    length = length
    elem   = elem
    minimum = minimum
    maximum = maximum
    all p (ChunkedUArray cua) = A.all (U.all p) cua
    any p (ChunkedUArray cua) = A.any (U.any p) cua

instance PrimType ty => C.Sequential (ChunkedUArray ty) where
    take = take
    drop = drop
    splitAt = splitAt
    revTake = revTake
    revDrop = revDrop
    splitOn = splitOn
    break = break
    breakEnd = breakEnd
    intersperse = intersperse
    filter = filter
    reverse = reverse
    unsnoc = unsnoc
    uncons = uncons
    snoc = snoc
    cons = cons
    find = find
    sortBy = sortBy
    singleton = fromList . (:[])
    replicate n = fromList . C.replicate n

instance PrimType ty => C.IndexedCollection (ChunkedUArray ty) where
    (!) l n
        | isOutOfBound n (length l) = Nothing
        | otherwise                     = Just $ index l n
    findIndex predicate c = loop 0
      where
        !len = length c
        loop i
            | i .==# len = Nothing
            | otherwise  =
                if predicate (unsafeIndex c i) then Just i else Nothing

empty :: ChunkedUArray ty
empty = ChunkedUArray A.empty

append :: ChunkedUArray ty -> ChunkedUArray ty -> ChunkedUArray ty
append (ChunkedUArray a1) (ChunkedUArray a2) = ChunkedUArray (mappend a1 a2)

concat :: [ChunkedUArray ty] -> ChunkedUArray ty
concat x = ChunkedUArray (mconcat $ fmap (\(ChunkedUArray spine) -> spine) x)

vFromList :: PrimType ty => [ty] -> ChunkedUArray ty
vFromList l = ChunkedUArray $ A.singleton $ fromList l

vToList :: PrimType ty => ChunkedUArray ty -> [ty]
vToList (ChunkedUArray a) = mconcat $ toList $ toList <$> a

null :: PrimType ty => ChunkedUArray ty -> Bool
null (ChunkedUArray array) =
    C.null array || allNulls 0
  where
    !len = A.length array
    allNulls !idx
      | idx .==# len = True
      | otherwise    = C.null (array `A.unsafeIndex` idx) && allNulls (idx + 1)

-- | Returns the length of this `ChunkedUArray`, by summing each inner length.
-- Complexity: O(n) where `n` is the number of chunks, as U.length u is O(1).
length :: PrimType ty => ChunkedUArray ty -> CountOf ty
length (ChunkedUArray array) = C.foldl' (\acc l -> acc + U.length l) 0 array

-- | Returns `True` if the given element is contained in the `ChunkedUArray`.
-- Complexity: O(n) where `n` is the number of chunks, as U.length u is O(1).
elem :: PrimType ty => ty -> ChunkedUArray ty -> Bool
elem el (ChunkedUArray array) = loop 0
  where
    !len = A.length array
    loop i
        | i .==# len = False
        | otherwise  =
            case C.elem el (A.unsafeIndex array i) of
                True  -> True
                False -> loop (i+1)

-- | Fold a `ChunkedUArray' leftwards strictly. Implemented internally using a double
-- fold on the nested Array structure. Other folds implemented analogously.
foldl' :: PrimType ty => (a -> ty -> a) -> a -> ChunkedUArray ty -> a
foldl' f initialAcc (ChunkedUArray cua) = A.foldl' (U.foldl' f) initialAcc cua

foldr :: PrimType ty => (ty -> a -> a) -> a -> ChunkedUArray ty -> a
foldr f initialAcc (ChunkedUArray cua) = A.foldr (flip $ U.foldr f) initialAcc cua

minimum :: (Ord ty, PrimType ty) => C.NonEmpty (ChunkedUArray ty) -> ty
minimum cua = foldl' min (unsafeIndex cua' 0) (drop 1 cua')
  where
    cua' = C.getNonEmpty cua

maximum :: (Ord ty, PrimType ty) => C.NonEmpty (ChunkedUArray ty) -> ty
maximum cua = foldl' max (unsafeIndex cua' 0) (drop 1 cua')
  where
    cua' = C.getNonEmpty cua

-- | Equality between `ChunkedUArray`.
-- This function is fiddly to write as is not enough to compare for
-- equality the inner `UArray`(s), we need an element-by-element
-- comparison.
equal :: PrimType ty => ChunkedUArray ty -> ChunkedUArray ty -> Bool
equal ca1 ca2 =
    len1 == len2 && go 0
  where
    len1 = length ca1
    len2 = length ca2

    go !x
      | x .==# len1 = True
      | otherwise   = (ca1 `unsafeIndex` x == ca2 `unsafeIndex` x) && go (x + 1)

-- given an offset express in element of ty, return the offset in array in the spine,
-- plus the relative offset in element on this array
findPos :: PrimType ty => Offset ty -> ChunkedUArray ty -> Maybe (Offset (UArray ty), Offset ty)
findPos absOfs (ChunkedUArray array)
    | A.null array = Nothing
    | otherwise    = loop absOfs 0
  where
    !len = A.length array
    loop relOfs outerI
        | outerI .==# len = Nothing -- haven't found what to do
        | relOfs == 0     = Just (outerI, 0)
        | otherwise       =
            let !innera   = A.unsafeIndex array outerI
                !innerLen = U.length innera
             in case removeArraySize relOfs innerLen of
                        Nothing      -> Just (outerI, relOfs)
                        Just relOfs' -> loop relOfs' (outerI + 1)

splitChunk :: Offset (UArray ty) -> ChunkedUArray ty -> (ChunkedUArray ty, ChunkedUArray ty)
splitChunk ofs (ChunkedUArray c) = (ChunkedUArray *** ChunkedUArray) $ A.splitAt (offsetAsSize ofs) c

take :: PrimType ty => CountOf ty -> ChunkedUArray ty -> ChunkedUArray ty
take n c@(ChunkedUArray spine)
    | n <= 0    = empty
    | otherwise =
        case findPos (sizeAsOffset n) c of
            Nothing       -> c
            Just (ofs, 0) -> ChunkedUArray (A.take (offsetAsSize ofs) spine)
            Just (ofs, r) ->
                let uarr = A.unsafeIndex spine ofs
                 in ChunkedUArray (A.take (offsetAsSize ofs) spine `A.snoc` U.take (offsetAsSize r) uarr)

drop :: PrimType ty => CountOf ty -> ChunkedUArray ty -> ChunkedUArray ty
drop n c@(ChunkedUArray spine)
    | n <= 0    = c
    | otherwise =
        case findPos (sizeAsOffset n) c of
            Nothing       -> empty
            Just (ofs, 0) -> ChunkedUArray (A.drop (offsetAsSize ofs) spine)
            Just (ofs, r) ->
                let uarr = A.unsafeIndex spine ofs
                 in ChunkedUArray (U.drop (offsetAsSize r) uarr `A.cons` A.drop (offsetAsSize ofs+1) spine)

splitAt :: PrimType ty => CountOf ty -> ChunkedUArray ty -> (ChunkedUArray ty, ChunkedUArray ty)
splitAt n c@(ChunkedUArray spine)
    | n <= 0    = (empty, c)
    | otherwise =
        case findPos (sizeAsOffset n) c of
            Nothing       -> (c, empty)
            Just (ofs, 0) -> splitChunk ofs c
            Just (ofs, offsetAsSize -> r) ->
                let uarr = A.unsafeIndex spine ofs
                 in ( ChunkedUArray (A.take (offsetAsSize ofs) spine `A.snoc` U.take r uarr)
                    , ChunkedUArray (U.drop r uarr `A.cons` A.drop (offsetAsSize ofs+1) spine)
                    )

revTake :: PrimType ty => CountOf ty -> ChunkedUArray ty -> ChunkedUArray ty
revTake n c = case length c - n of
    Nothing -> c
    Just elems -> drop elems c

revDrop :: PrimType ty => CountOf ty -> ChunkedUArray ty -> ChunkedUArray ty
revDrop n c = case length c - n of
    Nothing -> empty
    Just keepElems -> take keepElems c

-- TODO: Improve implementation.
splitOn :: PrimType ty => (ty -> Bool) -> ChunkedUArray ty -> [ChunkedUArray ty]
splitOn p = fmap fromList . C.splitOn p . toList

-- TODO: Improve implementation.
break :: PrimType ty => (ty -> Bool) -> ChunkedUArray ty -> (ChunkedUArray ty, ChunkedUArray ty)
break p = bimap fromList fromList . C.break p . toList

-- TODO: Improve implementation.
breakEnd :: PrimType ty => (ty -> Bool) -> ChunkedUArray ty -> (ChunkedUArray ty, ChunkedUArray ty)
breakEnd p = bimap fromList fromList . C.breakEnd p . toList

-- TODO: Improve implementation.
intersperse :: PrimType ty => ty -> ChunkedUArray ty -> ChunkedUArray ty
intersperse el = fromList . C.intersperse el . toList

-- TODO: Improve implementation.
reverse :: PrimType ty => ChunkedUArray ty -> ChunkedUArray ty
reverse = fromList . C.reverse . toList

-- TODO: Improve implementation.
filter :: PrimType ty => (ty -> Bool) -> ChunkedUArray ty -> ChunkedUArray ty
filter p = fromList . C.filter p . toList

-- TODO: Improve implementation.
unsnoc :: PrimType ty => ChunkedUArray ty -> Maybe (ChunkedUArray ty, ty)
unsnoc v = first fromList <$> (C.unsnoc $ toList v)

-- TODO: Improve implementation.
uncons :: PrimType ty => ChunkedUArray ty -> Maybe (ty, ChunkedUArray ty)
uncons v = second fromList <$> (C.uncons $ toList v)

cons :: PrimType ty => ty -> ChunkedUArray ty -> ChunkedUArray ty
cons el (ChunkedUArray inner) = ChunkedUArray $ runST $ do
  let newLen = C.length inner + 1
  newArray   <- A.new newLen
  let single = fromList [el]
  A.unsafeWrite newArray 0 single
  A.unsafeCopyAtRO newArray (Offset 1) inner (Offset 0) (C.length inner)
  A.unsafeFreeze newArray

snoc :: PrimType ty => ChunkedUArray ty -> ty -> ChunkedUArray ty
snoc (ChunkedUArray spine) el = ChunkedUArray $ runST $ do
  newArray  <- A.new (A.length spine + 1)
  let single = U.singleton el
  A.unsafeCopyAtRO newArray (Offset 0) spine (Offset 0) (C.length spine)
  A.unsafeWrite newArray (sizeAsOffset $ A.length spine) single
  A.unsafeFreeze newArray

-- TODO optimise
find :: PrimType ty => (ty -> Bool) -> ChunkedUArray ty -> Maybe ty
find fn v = loop 0
  where
    len = length v
    loop !idx
      | idx .==# len = Nothing
      | otherwise    =
        let currentElem = v `unsafeIndex` idx
        in case fn currentElem of
          True  -> Just currentElem
          False -> loop (idx + 1)

-- TODO: Improve implementation.
sortBy :: PrimType ty => (ty -> ty -> Ordering) -> ChunkedUArray ty -> ChunkedUArray ty
sortBy p = fromList . C.sortBy p . toList

index :: PrimType ty => ChunkedUArray ty -> Offset ty -> ty
index array n
    | isOutOfBound n len = outOfBound OOB_Index n len
    | otherwise          = unsafeIndex array n
  where len = length array
{-# INLINE index #-}

unsafeIndex :: PrimType ty => ChunkedUArray ty -> Offset ty -> ty
unsafeIndex (ChunkedUArray array) idx = go (A.unsafeIndex array 0) 0 idx
  where
    go u globalIndex 0 = case C.null u of
      -- Skip empty chunks.
      True  -> go (A.unsafeIndex array (globalIndex + 1)) (globalIndex + 1) 0
      False -> U.unsafeIndex u 0
    go u !globalIndex !i
      -- Skip empty chunks.
      | C.null u  = go (A.unsafeIndex array (globalIndex + 1)) (globalIndex + 1) i
      | otherwise =
          case removeArraySize i (U.length u) of
              Just i' -> go (A.unsafeIndex array (globalIndex + 1)) (globalIndex + 1) i'
              Nothing -> U.unsafeIndex u i

{-# INLINE unsafeIndex #-}

removeArraySize :: Offset ty -> CountOf ty -> Maybe (Offset ty)
removeArraySize (Offset ty) (CountOf s)
    | ty >= s   = Just (Offset (ty - s))
    | otherwise = Nothing