1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
-- | Utility functions for arrays.
import "math"
import "soacs"
import "functional"
open import "zip"
-- | The size of the outer dimension of an array.
--
-- **Complexity:** O(1).
def length [n] 't (_: [n]t) = n
-- | Is the array empty?
--
-- **Complexity:** O(1).
def null [n] 't (_: [n]t) = n == 0
-- | The first element of the array.
--
-- **Complexity:** O(1).
#[inline]
def head [n] 't (x: [n]t) = x[0]
-- | The last element of the array.
--
-- **Complexity:** O(1).
#[inline]
def last [n] 't (x: [n]t) = x[n - 1]
-- | Everything but the first element of the array.
--
-- **Complexity:** O(1).
#[inline]
def tail [n] 't (x: [n]t) : [n - 1]t = x[1:]
-- | Everything but the last element of the array.
--
-- **Complexity:** O(1).
#[inline]
def init [n] 't (x: [n]t) : [n - 1]t = x[0:n - 1]
-- | Take some number of elements from the head of the array.
--
-- **Complexity:** O(1).
#[inline]
def take [n] 't (i: i64) (x: [n]t) : [i]t = x[0:i]
-- | Remove some number of elements from the head of the array.
--
-- **Complexity:** O(1).
#[inline]
def drop [n] 't (i: i64) (x: [n]t) : [n - i]t = x[i:]
-- | Statically change the size of an array. Fail at runtime if the
-- imposed size does not match the actual size. Essentially syntactic
-- sugar for a size coercion.
#[inline]
def sized [m] 't (n: i64) (xs: [m]t) : [n]t = xs :> [n]t
-- | Split an array at a given position.
--
-- **Complexity:** O(1).
#[inline]
def split [n] [m] 't (xs: [n + m]t) : ([n]t, [m]t) =
(xs[0:n], xs[n:n + m] :> [m]t)
-- | Return the elements of the array in reverse order.
--
-- **Complexity:** O(1).
#[inline]
def reverse [n] 't (x: [n]t) : [n]t = x[::-1]
-- | Concatenate two arrays. Warning: never try to perform a reduction
-- with this operator; it will not work.
--
-- **Work:** O(n).
--
-- **Span:** O(1).
#[inline]
def (++) [n] [m] 't (xs: [n]t) (ys: [m]t) : *[n + m]t = intrinsics.concat xs ys
-- | An old-fashioned way of saying `++`.
#[inline]
def concat [n] [m] 't (xs: [n]t) (ys: [m]t) : *[n + m]t = xs ++ ys
-- | Construct an array of consecutive integers of the given length,
-- starting at 0.
--
-- **Work:** O(n).
--
-- **Span:** O(1).
#[inline]
def iota (n: i64) : *[n]i64 =
0..1..<n
-- | Construct an array comprising valid indexes into some other
-- array, starting at 0.
--
-- **Work:** O(n).
--
-- **Span:** O(1).
#[inline]
def indices [n] 't (_: [n]t) : *[n]i64 =
iota n
-- | Rotate an array some number of elements to the left. A negative
-- rotation amount is also supported.
--
-- For example, if `b==rotate r a`, then `b[x] = a[x+r]`.
--
-- **Work:** O(n).
--
-- **Span:** O(1).
--
-- Note: In most cases, `rotate` will be fused with subsequent
-- operations such as `map`, in which case it is free.
#[inline]
def rotate [n] 't (r: i64) (a: [n]t) =
map (\i -> #[unsafe] a[(i + r) % n]) (iota n)
-- | Construct an array of the given length containing the given
-- value.
--
-- **Work:** O(n).
--
-- **Span:** O(1).
#[inline]
def replicate 't (n: i64) (x: t) : *[n]t =
map (const x) (iota n)
-- | Construct an array of an inferred length containing the given
-- value.
--
-- **Work:** O(n).
--
-- **Span:** O(1).
#[inline]
def rep 't [n] (x: t) : *[n]t =
replicate n x
-- | Copy a value. The result will not alias anything.
--
-- **Work:** O(n).
--
-- **Span:** O(1).
#[inline]
def copy 't (a: t) : *t =
([a])[0]
-- | Copy a value. The result will not alias anything. Additionally,
-- there is a guarantee that the result will be laid out in row-major
-- order in memory. This can be used for locality optimisations in
-- cases where the compiler does not otherwise do the right thing.
--
-- **Work:** O(n).
--
-- **Span:** O(1).
#[inline]
def manifest 't (a: t) : *t =
intrinsics.manifest a
-- | Combines the outer two dimensions of an array.
--
-- **Complexity:** O(1).
#[inline]
def flatten [n] [m] 't (xs: [n][m]t) : [n * m]t =
intrinsics.flatten xs
-- | Like `flatten`, but on the outer three dimensions of an array.
#[inline]
def flatten_3d [n] [m] [l] 't (xs: [n][m][l]t) : [n * m * l]t =
flatten (flatten xs)
-- | Like `flatten`, but on the outer four dimensions of an array.
#[inline]
def flatten_4d [n] [m] [l] [k] 't (xs: [n][m][l][k]t) : [n * m * l * k]t =
flatten (flatten_3d xs)
-- | Splits the outer dimension of an array in two.
--
-- **Complexity:** O(1).
#[inline]
def unflatten 't [n] [m] (xs: [n * m]t) : [n][m]t =
intrinsics.unflatten n m xs
-- | Like `unflatten`, but produces three dimensions.
#[inline]
def unflatten_3d 't [n] [m] [l] (xs: [n * m * l]t) : [n][m][l]t =
unflatten (unflatten xs)
-- | Like `unflatten`, but produces four dimensions.
#[inline]
def unflatten_4d 't [n] [m] [l] [k] (xs: [n * m * l * k]t) : [n][m][l][k]t =
unflatten (unflatten_3d xs)
-- | Transpose an array.
--
-- **Complexity:** O(1).
#[inline]
def transpose [n] [m] 't (a: [n][m]t) : [m][n]t =
intrinsics.transpose a
-- | True if all of the input elements are true. Produces true on an
-- empty array.
--
-- **Work:** O(n).
--
-- **Span:** O(log(n)).
def and [n] (xs: [n]bool) = all id xs
-- | True if any of the input elements are true. Produces false on an
-- empty array.
--
-- **Work:** O(n).
--
-- **Span:** O(log(n)).
def or [n] (xs: [n]bool) = any id xs
-- | Perform a *sequential* left-fold of an array.
--
-- **Work:** O(n ✕ W(f))).
--
-- **Span:** O(n ✕ S(f)).
def foldl [n] 'a 'b (f: a -> b -> a) (acc: a) (bs: [n]b) : a =
loop acc for b in bs do f acc b
-- | Perform a *sequential* right-fold of an array.
--
-- **Work:** O(n ✕ W(f))).
--
-- **Span:** O(n ✕ S(f)).
def foldr [n] 'a 'b (f: b -> a -> a) (acc: a) (bs: [n]b) : a =
foldl (flip f) acc (reverse bs)
-- | Create a value for each point in a one-dimensional index space.
--
-- **Work:** *O(n ✕ W(f))*
--
-- **Span:** *O(S(f))*
def tabulate 'a (n: i64) (f: i64 -> a) : *[n]a =
map1 f (iota n)
-- | Create a value for each point in a two-dimensional index space.
--
-- **Work:** *O(n ✕ m ✕ W(f))*
--
-- **Span:** *O(S(f))*
def tabulate_2d 'a (n: i64) (m: i64) (f: i64 -> i64 -> a) : *[n][m]a =
map1 (f >-> tabulate m) (iota n)
-- | Create a value for each point in a three-dimensional index space.
--
-- **Work:** *O(n ✕ m ✕ o ✕ W(f))*
--
-- **Span:** *O(S(f))*
def tabulate_3d 'a (n: i64) (m: i64) (o: i64) (f: i64 -> i64 -> i64 -> a) : *[n][m][o]a =
map1 (f >-> tabulate_2d m o) (iota n)
|