1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
// Start of backends/hip.h.
// Forward declarations.
// Invoked by setup_opencl() after the platform and device has been
// found, but before the program is loaded. Its intended use is to
// tune constants based on the selected platform and device.
static void set_tuning_params(struct futhark_context* ctx);
static char* get_failure_msg(int failure_idx, int64_t args[]);
#define HIP_SUCCEED_FATAL(x) hip_api_succeed_fatal(x, #x, __FILE__, __LINE__)
#define HIP_SUCCEED_NONFATAL(x) hip_api_succeed_nonfatal(x, #x, __FILE__, __LINE__)
#define HIPRTC_SUCCEED_FATAL(x) hiprtc_api_succeed_fatal(x, #x, __FILE__, __LINE__)
#define HIPRTC_SUCCEED_NONFATAL(x) hiprtc_api_succeed_nonfatal(x, #x, __FILE__, __LINE__)
// Take care not to override an existing error.
#define HIP_SUCCEED_OR_RETURN(e) { \
char *serror = HIP_SUCCEED_NONFATAL(e); \
if (serror) { \
if (!ctx->error) { \
ctx->error = serror; \
} else { \
free(serror); \
} \
return bad; \
} \
}
// HIP_SUCCEED_OR_RETURN returns the value of the variable 'bad' in
// scope. By default, it will be this one. Create a local variable
// of some other type if needed. This is a bit of a hack, but it
// saves effort in the code generator.
static const int bad = 1;
static inline void hip_api_succeed_fatal(hipError_t res, const char *call,
const char *file, int line) {
if (res != hipSuccess) {
const char *err_str = hipGetErrorString(res);
if (err_str == NULL) { err_str = "Unknown"; }
futhark_panic(-1, "%s:%d: HIP call\n %s\nfailed with error code %d (%s)\n",
file, line, call, res, err_str);
}
}
static char* hip_api_succeed_nonfatal(hipError_t res, const char *call,
const char *file, int line) {
if (res != hipSuccess) {
const char *err_str = hipGetErrorString(res);
if (err_str == NULL) { err_str = "Unknown"; }
return msgprintf("%s:%d: HIP call\n %s\nfailed with error code %d (%s)\n",
file, line, call, res, err_str);
} else {
return NULL;
}
}
static inline void hiprtc_api_succeed_fatal(hiprtcResult res, const char *call,
const char *file, int line) {
if (res != HIPRTC_SUCCESS) {
const char *err_str = hiprtcGetErrorString(res);
futhark_panic(-1, "%s:%d: HIPRTC call\n %s\nfailed with error code %d (%s)\n",
file, line, call, res, err_str);
}
}
static char* hiprtc_api_succeed_nonfatal(hiprtcResult res, const char *call,
const char *file, int line) {
if (res != HIPRTC_SUCCESS) {
const char *err_str = hiprtcGetErrorString(res);
return msgprintf("%s:%d: HIPRTC call\n %s\nfailed with error code %d (%s)\n",
file, line, call, res, err_str);
} else {
return NULL;
}
}
struct futhark_context_config {
int in_use;
int debugging;
int profiling;
int logging;
char* cache_fname;
int num_tuning_params;
int64_t *tuning_params;
const char** tuning_param_names;
const char** tuning_param_vars;
const char** tuning_param_classes;
// Uniform fields above.
char* program;
int num_build_opts;
char* *build_opts;
int unified_memory;
char* preferred_device;
int preferred_device_num;
struct gpu_config gpu;
};
static void backend_context_config_setup(struct futhark_context_config *cfg) {
cfg->num_build_opts = 0;
cfg->build_opts = (char**) malloc(sizeof(char*));
cfg->build_opts[0] = NULL;
cfg->preferred_device_num = 0;
cfg->preferred_device = strdup("");
cfg->program = strconcat(gpu_program);
cfg->unified_memory = 0;
cfg->gpu = gpu_config_initial;
cfg->gpu.default_block_size = 256;
cfg->gpu.default_tile_size = 32;
cfg->gpu.default_reg_tile_size = 2;
cfg->gpu.default_threshold = 32*1024;
}
static void backend_context_config_teardown(struct futhark_context_config* cfg) {
for (int i = 0; i < cfg->num_build_opts; i++) {
free(cfg->build_opts[i]);
}
free(cfg->build_opts);
free(cfg->preferred_device);
free(cfg->program);
}
void futhark_context_config_add_build_option(struct futhark_context_config *cfg, const char *opt) {
cfg->build_opts[cfg->num_build_opts] = strdup(opt);
cfg->num_build_opts++;
cfg->build_opts = (char **) realloc(cfg->build_opts, (cfg->num_build_opts + 1) * sizeof(char *));
cfg->build_opts[cfg->num_build_opts] = NULL;
}
void futhark_context_config_set_device(struct futhark_context_config *cfg, const char *s) {
int x = 0;
if (*s == '#') {
s++;
while (isdigit(*s)) {
x = x * 10 + (*s++)-'0';
}
// Skip trailing spaces.
while (isspace(*s)) {
s++;
}
}
free(cfg->preferred_device);
cfg->preferred_device = strdup(s);
cfg->preferred_device_num = x;
}
const char* futhark_context_config_get_program(struct futhark_context_config *cfg) {
return cfg->program;
}
void futhark_context_config_set_program(struct futhark_context_config *cfg, const char *s) {
free(cfg->program);
cfg->program = strdup(s);
}
void futhark_context_config_set_unified_memory(struct futhark_context_config* cfg, int flag) {
cfg->unified_memory = flag;
}
struct futhark_context {
struct futhark_context_config* cfg;
int detail_memory;
int debugging;
int profiling;
int profiling_paused;
int logging;
lock_t lock;
char *error;
lock_t error_lock;
FILE *log;
struct constants *constants;
struct free_list free_list;
struct event_list event_list;
int64_t peak_mem_usage_default;
int64_t cur_mem_usage_default;
bool program_initialised;
// Uniform fields above.
void* global_failure;
void* global_failure_args;
struct tuning_params tuning_params;
// True if a potentially failing kernel has been enqueued.
int32_t failure_is_an_option;
int total_runs;
long int total_runtime;
int64_t peak_mem_usage_device;
int64_t cur_mem_usage_device;
struct program* program;
hipDevice_t dev;
int dev_id;
hipModule_t module;
hipStream_t stream;
struct free_list gpu_free_list;
size_t max_thread_block_size;
size_t max_grid_size;
size_t max_tile_size;
size_t max_threshold;
size_t max_shared_memory;
size_t max_bespoke;
size_t max_registers;
size_t max_cache;
size_t lockstep_width;
struct builtin_kernels* kernels;
};
static int device_query(int dev_id, hipDeviceAttribute_t attr) {
int val;
HIP_SUCCEED_FATAL(hipDeviceGetAttribute(&val, attr, dev_id));
return val;
}
static int function_query(hipFunction_t f, hipFunction_attribute attr) {
int val;
HIP_SUCCEED_FATAL(hipFuncGetAttribute(&val, attr, f));
return val;
}
static int hip_device_setup(struct futhark_context *ctx) {
struct futhark_context_config *cfg = ctx->cfg;
int count, chosen = -1;
hipDevice_t dev;
HIP_SUCCEED_FATAL(hipGetDeviceCount(&count));
if (count == 0) { return 1; }
int num_device_matches = 0;
for (int i = 0; i < count; i++) {
hipDeviceProp_t prop;
hipGetDeviceProperties(&prop, i);
if (cfg->logging) {
fprintf(ctx->log, "Device #%d: name=\"%s\"\n", i, prop.name);
}
if (strstr(prop.name, cfg->preferred_device) != NULL &&
num_device_matches++ == cfg->preferred_device_num) {
chosen = i;
break;
}
}
if (chosen == -1) { return 1; }
if (cfg->logging) {
fprintf(ctx->log, "Using device #%d\n", chosen);
}
ctx->dev_id = chosen;
HIP_SUCCEED_FATAL(hipDeviceGet(&ctx->dev, ctx->dev_id));
return 0;
}
static void hip_load_code_from_cache(struct futhark_context_config *cfg,
const char *src,
const char *opts[], size_t n_opts,
struct cache_hash *h, const char *cache_fname,
char **code, size_t *code_size) {
if (cfg->logging) {
fprintf(stderr, "Restoring cache from from %s...\n", cache_fname);
}
cache_hash_init(h);
for (size_t i = 0; i < n_opts; i++) {
cache_hash(h, opts[i], strlen(opts[i]));
}
cache_hash(h, src, strlen(src));
errno = 0;
if (cache_restore(cache_fname, h, (unsigned char**)code, code_size) != 0) {
if (cfg->logging) {
fprintf(stderr, "Failed to restore cache (errno: %s)\n", strerror(errno));
}
}
}
static void hip_size_setup(struct futhark_context *ctx) {
struct futhark_context_config *cfg = ctx->cfg;
if (cfg->gpu.default_block_size > ctx->max_thread_block_size) {
if (cfg->gpu.default_block_size_changed) {
fprintf(stderr,
"Note: Device limits default block size to %zu (down from %zu).\n",
ctx->max_thread_block_size, cfg->gpu.default_block_size);
}
cfg->gpu.default_block_size = ctx->max_thread_block_size;
}
if (cfg->gpu.default_grid_size > ctx->max_grid_size) {
if (cfg->gpu.default_grid_size_changed) {
fprintf(stderr,
"Note: Device limits default grid size to %zu (down from %zu).\n",
ctx->max_grid_size, cfg->gpu.default_grid_size);
}
cfg->gpu.default_grid_size = ctx->max_grid_size;
}
if (cfg->gpu.default_tile_size > ctx->max_tile_size) {
if (cfg->gpu.default_tile_size_changed) {
fprintf(stderr,
"Note: Device limits default tile size to %zu (down from %zu).\n",
ctx->max_tile_size, cfg->gpu.default_tile_size);
}
cfg->gpu.default_tile_size = ctx->max_tile_size;
}
if (!cfg->gpu.default_grid_size_changed) {
cfg->gpu.default_grid_size =
(device_query(ctx->dev, hipDeviceAttributePhysicalMultiProcessorCount) *
device_query(ctx->dev, hipDeviceAttributeMaxThreadsPerMultiProcessor))
/ cfg->gpu.default_block_size;
}
for (int i = 0; i < cfg->num_tuning_params; i++) {
const char *size_class = cfg->tuning_param_classes[i];
int64_t *size_value = &cfg->tuning_params[i];
const char* size_name = cfg->tuning_param_names[i];
int64_t max_value = 0, default_value = 0;
if (strstr(size_class, "thread_block_size") == size_class) {
max_value = ctx->max_thread_block_size;
default_value = cfg->gpu.default_block_size;
} else if (strstr(size_class, "grid_size") == size_class) {
max_value = ctx->max_grid_size;
default_value = cfg->gpu.default_grid_size;
// XXX: as a quick and dirty hack, use twice as many threads for
// histograms by default. We really should just be smarter
// about sizes somehow.
if (strstr(size_name, ".seghist_") != NULL) {
default_value *= 2;
}
} else if (strstr(size_class, "tile_size") == size_class) {
max_value = ctx->max_tile_size;
default_value = cfg->gpu.default_tile_size;
} else if (strstr(size_class, "reg_tile_size") == size_class) {
max_value = 0; // No limit.
default_value = cfg->gpu.default_reg_tile_size;
} else if (strstr(size_class, "shared_memory") == size_class) {
max_value = ctx->max_shared_memory;
default_value = ctx->max_shared_memory;
} else if (strstr(size_class, "cache") == size_class) {
max_value = ctx->max_cache;
default_value = ctx->max_cache;
} else if (strstr(size_class, "threshold") == size_class) {
// Threshold can be as large as it takes.
default_value = cfg->gpu.default_threshold;
} else {
// Bespoke sizes have no limit or default.
}
if (*size_value == 0) {
*size_value = default_value;
} else if (max_value > 0 && *size_value > max_value) {
fprintf(stderr, "Note: Device limits %s to %zu (down from %zu)\n",
size_name, max_value, *size_value);
*size_value = max_value;
}
}
}
static char* hiprtc_build(const char *src, const char *opts[], size_t n_opts,
char **code, size_t *code_size) {
hiprtcProgram prog;
char *problem = NULL;
problem = HIPRTC_SUCCEED_NONFATAL(hiprtcCreateProgram(&prog, src, "futhark-hip", 0, NULL, NULL));
if (problem) {
return problem;
}
hiprtcResult res = hiprtcCompileProgram(prog, n_opts, opts);
if (res != HIPRTC_SUCCESS) {
size_t log_size;
if (hiprtcGetProgramLogSize(prog, &log_size) == HIPRTC_SUCCESS) {
char *log = (char*) malloc(log_size+1);
log[log_size] = 0; // HIPRTC does not zero-terminate.
if (hiprtcGetProgramLog(prog, log) == HIPRTC_SUCCESS) {
problem = msgprintf("HIPRTC compilation failed.\n\n%s\n", log);
} else {
problem = msgprintf("Could not retrieve compilation log\n");
}
free(log);
}
return problem;
}
HIPRTC_SUCCEED_FATAL(hiprtcGetCodeSize(prog, code_size));
*code = (char*) malloc(*code_size);
HIPRTC_SUCCEED_FATAL(hiprtcGetCode(prog, *code));
HIPRTC_SUCCEED_FATAL(hiprtcDestroyProgram(&prog));
return NULL;
}
static void hiprtc_mk_build_options(struct futhark_context *ctx, const char *extra_opts[],
char*** opts_out, size_t *n_opts) {
int arch_set = 0, num_extra_opts;
struct futhark_context_config *cfg = ctx->cfg;
char** macro_names;
int64_t* macro_vals;
int num_macros = gpu_macros(ctx, ¯o_names, ¯o_vals);
for (num_extra_opts = 0; extra_opts[num_extra_opts] != NULL; num_extra_opts++) {
if (strstr(extra_opts[num_extra_opts], "--gpu-architecture")
== extra_opts[num_extra_opts]) {
arch_set = 1;
}
}
size_t i = 0, n_opts_alloc = 20 + num_macros + num_extra_opts + cfg->num_tuning_params;
char **opts = (char**) malloc(n_opts_alloc * sizeof(char *));
if (!arch_set) {
hipDeviceProp_t props;
HIP_SUCCEED_FATAL(hipGetDeviceProperties(&props, ctx->dev_id));
opts[i++] = msgprintf("--gpu-architecture=%s", props.gcnArchName);
}
if (cfg->debugging) {
opts[i++] = strdup("-G");
opts[i++] = strdup("-lineinfo");
}
opts[i++] = msgprintf("-D%s=%d",
"max_thread_block_size",
(int)ctx->max_thread_block_size);
opts[i++] = msgprintf("-D%s=%d",
"max_shared_memory",
(int)ctx->max_shared_memory);
opts[i++] = msgprintf("-D%s=%d",
"max_registers",
(int)ctx->max_registers);
for (int j = 0; j < num_macros; j++) {
opts[i++] = msgprintf("-D%s=%zu", macro_names[j], macro_vals[j]);
}
for (int j = 0; j < cfg->num_tuning_params; j++) {
opts[i++] = msgprintf("-D%s=%zu", cfg->tuning_param_vars[j],
cfg->tuning_params[j]);
}
opts[i++] = msgprintf("-DLOCKSTEP_WIDTH=%zu", ctx->lockstep_width);
opts[i++] = msgprintf("-DMAX_THREADS_PER_BLOCK=%zu", ctx->max_thread_block_size);
for (int j = 0; extra_opts[j] != NULL; j++) {
opts[i++] = strdup(extra_opts[j]);
}
opts[i++] = msgprintf("-DTR_BLOCK_DIM=%d", TR_BLOCK_DIM);
opts[i++] = msgprintf("-DTR_TILE_DIM=%d", TR_TILE_DIM);
opts[i++] = msgprintf("-DTR_ELEMS_PER_THREAD=%d", TR_ELEMS_PER_THREAD);
free(macro_names);
free(macro_vals);
*n_opts = i;
*opts_out = opts;
}
static char* hip_module_setup(struct futhark_context *ctx,
const char *src,
const char *extra_opts[],
const char* cache_fname) {
char *code = NULL;
size_t code_size = 0;
struct futhark_context_config *cfg = ctx->cfg;
char **opts;
size_t n_opts;
hiprtc_mk_build_options(ctx, extra_opts, &opts, &n_opts);
if (cfg->logging) {
fprintf(stderr, "HIPRTC build options:\n");
for (size_t j = 0; j < n_opts; j++) {
fprintf(stderr, "\t%s\n", opts[j]);
}
fprintf(stderr, "\n");
}
struct cache_hash h;
int loaded_code_from_cache = 0;
if (cache_fname != NULL) {
hip_load_code_from_cache(cfg, src, (const char**)opts, n_opts, &h, cache_fname, &code, &code_size);
if (code != NULL) {
if (cfg->logging) {
fprintf(stderr, "Restored compiled code from cache; now loading module...\n");
}
if (hipModuleLoadData(&ctx->module, code) == hipSuccess) {
if (cfg->logging) {
fprintf(stderr, "Success!\n");
}
loaded_code_from_cache = 1;
} else {
if (cfg->logging) {
fprintf(stderr, "Failed!\n");
}
free(code);
code = NULL;
}
}
}
if (code == NULL) {
char* problem = hiprtc_build(src, (const char**)opts, n_opts, &code, &code_size);
if (problem != NULL) {
return problem;
}
}
if (!loaded_code_from_cache) {
HIP_SUCCEED_FATAL(hipModuleLoadData(&ctx->module, code));
}
if (cache_fname != NULL && !loaded_code_from_cache) {
if (cfg->logging) {
fprintf(stderr, "Caching compiled code in %s...\n", cache_fname);
}
errno = 0;
if (cache_store(cache_fname, &h, (const unsigned char*)code, code_size) != 0) {
fprintf(stderr, "Failed to cache compiled code: %s\n", strerror(errno));
}
}
for (size_t i = 0; i < n_opts; i++) {
free((char *)opts[i]);
}
free(opts);
free(code);
return NULL;
}
struct hip_event {
hipEvent_t start;
hipEvent_t end;
};
static struct hip_event* hip_event_new(struct futhark_context* ctx) {
if (ctx->profiling && !ctx->profiling_paused) {
struct hip_event* e = malloc(sizeof(struct hip_event));
hipEventCreate(&e->start);
hipEventCreate(&e->end);
return e;
} else {
return NULL;
}
}
static int hip_event_report(struct str_builder* sb, struct hip_event* e) {
float ms;
hipError_t err;
if ((err = hipEventElapsedTime(&ms, e->start, e->end)) != hipSuccess) {
return err;
}
// HIP provides milisecond resolution, but we want microseconds.
str_builder(sb, ",\"duration\":%f", ms*1000);
if ((err = hipEventDestroy(e->start)) != hipSuccess) {
return 1;
}
if ((err = hipEventDestroy(e->end)) != hipSuccess) {
return 1;
}
free(e);
return 0;
}
int futhark_context_sync(struct futhark_context* ctx) {
HIP_SUCCEED_OR_RETURN(hipStreamSynchronize(ctx->stream));
if (ctx->failure_is_an_option) {
// Check for any delayed error.
int32_t failure_idx;
HIP_SUCCEED_OR_RETURN(hipMemcpyDtoH(&failure_idx,
ctx->global_failure,
sizeof(int32_t)));
ctx->failure_is_an_option = 0;
if (failure_idx >= 0) {
// We have to clear global_failure so that the next entry point
// is not considered a failure from the start.
int32_t no_failure = -1;
HIP_SUCCEED_OR_RETURN(hipMemcpyHtoD(ctx->global_failure,
&no_failure,
sizeof(int32_t)));
int64_t args[max_failure_args+1];
HIP_SUCCEED_OR_RETURN(hipMemcpyDtoH(&args,
ctx->global_failure_args,
sizeof(args)));
ctx->error = get_failure_msg(failure_idx, args);
return FUTHARK_PROGRAM_ERROR;
}
}
return 0;
}
struct builtin_kernels* init_builtin_kernels(struct futhark_context* ctx);
void free_builtin_kernels(struct futhark_context* ctx, struct builtin_kernels* kernels);
int backend_context_setup(struct futhark_context* ctx) {
ctx->failure_is_an_option = 0;
ctx->total_runs = 0;
ctx->total_runtime = 0;
ctx->peak_mem_usage_device = 0;
ctx->cur_mem_usage_device = 0;
ctx->kernels = NULL;
HIP_SUCCEED_FATAL(hipInit(0));
if (hip_device_setup(ctx) != 0) {
futhark_panic(-1, "No suitable HIP device found.\n");
}
free_list_init(&ctx->gpu_free_list);
if (ctx->cfg->unified_memory == 2) {
ctx->cfg->unified_memory = device_query(ctx->dev, hipDeviceAttributeManagedMemory);
}
if (ctx->cfg->logging) {
if (ctx->cfg->unified_memory) {
fprintf(ctx->log, "Using managed memory\n");
} else {
fprintf(ctx->log, "Using unmanaged memory\n");
}
}
ctx->max_thread_block_size = device_query(ctx->dev, hipDeviceAttributeMaxThreadsPerBlock);
ctx->max_grid_size = device_query(ctx->dev, hipDeviceAttributeMaxGridDimX);
ctx->max_tile_size = sqrt(ctx->max_thread_block_size);
ctx->max_threshold = 1U<<31; // No limit.
ctx->max_bespoke = 0;
ctx->max_registers = device_query(ctx->dev, hipDeviceAttributeMaxRegistersPerBlock);
if (ctx->cfg->gpu.default_shared_memory != 0) {
ctx->max_shared_memory = ctx->cfg->gpu.default_shared_memory;
} else {
ctx->max_shared_memory = device_query(ctx->dev, hipDeviceAttributeMaxSharedMemoryPerBlock);
}
if (ctx->cfg->gpu.default_cache != 0) {
ctx->max_cache = ctx->cfg->gpu.default_cache;
} else {
ctx->max_cache = device_query(ctx->dev, hipDeviceAttributeL2CacheSize);
}
// FIXME: in principle we should query hipDeviceAttributeWarpSize
// from the device, which will provide 64 on AMD GPUs.
// Unfortunately, we currently do nasty implicit intra-warp
// synchronisation in codegen, which does not work when this is 64.
// Once our codegen properly synchronises intra-warp operations, we
// can use the actual hardware lockstep width instead.
ctx->lockstep_width = 32;
HIP_SUCCEED_FATAL(hipStreamCreate(&ctx->stream));
hip_size_setup(ctx);
gpu_init_log(ctx);
ctx->error = hip_module_setup(ctx,
ctx->cfg->program,
(const char**)ctx->cfg->build_opts,
ctx->cfg->cache_fname);
if (ctx->error != NULL) {
futhark_panic(1, "During HIP initialisation:\n%s\n", ctx->error);
}
int32_t no_error = -1;
HIP_SUCCEED_FATAL(hipMalloc(&ctx->global_failure, sizeof(no_error)));
HIP_SUCCEED_FATAL(hipMemcpyHtoD(ctx->global_failure, &no_error, sizeof(no_error)));
// The +1 is to avoid zero-byte allocations.
HIP_SUCCEED_FATAL(hipMalloc(&ctx->global_failure_args, sizeof(int64_t)*(max_failure_args+1)));
if ((ctx->kernels = init_builtin_kernels(ctx)) == NULL) {
return 1;
}
return 0;
}
void backend_context_teardown(struct futhark_context* ctx) {
if (ctx->kernels != NULL) {
free_builtin_kernels(ctx, ctx->kernels);
hipFree(ctx->global_failure);
hipFree(ctx->global_failure_args);
HIP_SUCCEED_FATAL(gpu_free_all(ctx));
HIP_SUCCEED_FATAL(hipStreamDestroy(ctx->stream));
HIP_SUCCEED_FATAL(hipModuleUnload(ctx->module));
}
free_list_destroy(&ctx->gpu_free_list);
}
// GPU ABSTRACTION LAYER
typedef hipFunction_t gpu_kernel;
typedef hipDeviceptr_t gpu_mem;
static void gpu_create_kernel(struct futhark_context *ctx,
gpu_kernel* kernel,
const char* name) {
if (ctx->debugging) {
fprintf(ctx->log, "Creating kernel %s.\n", name);
}
HIP_SUCCEED_FATAL(hipModuleGetFunction(kernel, ctx->module, name));
}
static void gpu_free_kernel(struct futhark_context *ctx,
gpu_kernel kernel) {
(void)ctx;
(void)kernel;
}
static int gpu_scalar_to_device(struct futhark_context* ctx,
const char *provenance,
gpu_mem dst, size_t offset, size_t size,
void *src) {
struct hip_event *event = hip_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_scalar_to_dev",
provenance,
NULL,
event,
(event_report_fn)hip_event_report);
HIP_SUCCEED_FATAL(hipEventRecord(event->start, ctx->stream));
}
HIP_SUCCEED_OR_RETURN(hipMemcpyHtoD((unsigned char*)dst + offset, src, size));
if (event != NULL) {
HIP_SUCCEED_FATAL(hipEventRecord(event->end, ctx->stream));
}
return FUTHARK_SUCCESS;
}
static int gpu_scalar_from_device(struct futhark_context* ctx,
const char *provenance,
void *dst,
gpu_mem src, size_t offset, size_t size) {
struct hip_event *event = hip_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_scalar_from_dev",
provenance,
NULL,
event,
(event_report_fn)hip_event_report);
HIP_SUCCEED_FATAL(hipEventRecord(event->start, ctx->stream));
}
HIP_SUCCEED_OR_RETURN(hipMemcpyDtoH(dst, (unsigned char*)src + offset, size));
if (event != NULL) {
HIP_SUCCEED_FATAL(hipEventRecord(event->end, ctx->stream));
}
return FUTHARK_SUCCESS;
}
static int gpu_memcpy(struct futhark_context* ctx,
const char *provenance,
gpu_mem dst, int64_t dst_offset,
gpu_mem src, int64_t src_offset,
int64_t nbytes) {
struct hip_event *event = hip_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_dev_to_dev",
provenance,
NULL,
event,
(event_report_fn)hip_event_report);
HIP_SUCCEED_FATAL(hipEventRecord(event->start, ctx->stream));
}
HIP_SUCCEED_OR_RETURN(hipMemcpyWithStream((unsigned char*)dst+dst_offset, (unsigned char*)src+src_offset,
nbytes, hipMemcpyDeviceToDevice, ctx->stream));
if (event != NULL) {
HIP_SUCCEED_FATAL(hipEventRecord(event->end, ctx->stream));
}
return FUTHARK_SUCCESS;
}
static int memcpy_host2gpu(struct futhark_context* ctx,
const char *provenance,
bool sync,
gpu_mem dst, int64_t dst_offset,
const unsigned char* src, int64_t src_offset,
int64_t nbytes) {
if (nbytes > 0) {
struct hip_event *event = hip_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_host_to_dev",
provenance,
NULL,
event,
(event_report_fn)hip_event_report);
HIP_SUCCEED_FATAL(hipEventRecord(event->start, ctx->stream));
}
if (sync) {
HIP_SUCCEED_OR_RETURN
(hipMemcpyHtoD((unsigned char*)dst + dst_offset,
(unsigned char*)src + src_offset, nbytes));
} else {
HIP_SUCCEED_OR_RETURN
(hipMemcpyHtoDAsync((unsigned char*)dst + dst_offset,
(unsigned char*)src + src_offset,
nbytes, ctx->stream));
}
if (event != NULL) {
HIP_SUCCEED_FATAL(hipEventRecord(event->end, ctx->stream));
}
}
return FUTHARK_SUCCESS;
}
static int memcpy_gpu2host(struct futhark_context* ctx,
const char *provenance,
bool sync,
unsigned char* dst, int64_t dst_offset,
gpu_mem src, int64_t src_offset,
int64_t nbytes) {
if (nbytes > 0) {
struct hip_event *event = hip_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_dev_to_host",
provenance,
NULL,
event,
(event_report_fn)hip_event_report);
HIP_SUCCEED_FATAL(hipEventRecord(event->start, ctx->stream));
}
if (sync) {
HIP_SUCCEED_OR_RETURN
(hipMemcpyDtoH(dst + dst_offset,
(unsigned char*)src + src_offset,
nbytes));
} else {
HIP_SUCCEED_OR_RETURN
(hipMemcpyDtoHAsync(dst + dst_offset,
(unsigned char*)src + src_offset,
nbytes, ctx->stream));
}
if (event != NULL) {
HIP_SUCCEED_FATAL(hipEventRecord(event->end, ctx->stream));
}
if (sync &&
ctx->failure_is_an_option &&
futhark_context_sync(ctx) != 0) {
return 1;
}
}
return FUTHARK_SUCCESS;
}
static int gpu_launch_kernel(struct futhark_context* ctx,
gpu_kernel kernel,
const char *name, const char *provenance,
const int32_t grid[3],
const int32_t block[3],
unsigned int shared_mem_bytes,
int num_args,
void* args[num_args],
size_t args_sizes[num_args]) {
(void) args_sizes;
if (shared_mem_bytes > ctx->max_shared_memory) {
set_error(ctx, msgprintf("Kernel %s with %d bytes of memory exceeds device limit of %d\n",
name, shared_mem_bytes, (int)ctx->max_shared_memory));
return 1;
}
int64_t time_start = 0, time_end = 0;
if (ctx->debugging) {
time_start = get_wall_time();
}
struct hip_event *event = hip_event_new(ctx);
if (event != NULL) {
HIP_SUCCEED_FATAL(hipEventRecord(event->start, ctx->stream));
struct kvs *kvs = kvs_new();
kvs_printf(kvs, "kernel", "\"%s\"", name);
kvs_printf(kvs, "grid", "[%d,%d,%d]", grid[0], grid[1], grid[2]);
kvs_printf(kvs, "block", "[%d,%d,%d]", block[0], block[1], block[2]);
kvs_printf(kvs, "shared memory", "%d", shared_mem_bytes);
add_event(ctx,
name,
provenance,
kvs,
event,
(event_report_fn)hip_event_report);
}
HIP_SUCCEED_OR_RETURN
(hipModuleLaunchKernel(kernel,
grid[0], grid[1], grid[2],
block[0], block[1], block[2],
shared_mem_bytes, ctx->stream,
args, NULL));
if (event != NULL) {
HIP_SUCCEED_FATAL(hipEventRecord(event->end, ctx->stream));
}
if (ctx->debugging) {
HIP_SUCCEED_FATAL(hipStreamSynchronize(ctx->stream));
time_end = get_wall_time();
long int time_diff = time_end - time_start;
fprintf(ctx->log, " runtime: %ldus\n", time_diff);
}
if (ctx->logging) {
fprintf(ctx->log, "\n");
}
return FUTHARK_SUCCESS;
}
static int gpu_alloc_actual(struct futhark_context *ctx, size_t size, gpu_mem *mem_out) {
hipError_t res;
if (ctx->cfg->unified_memory) {
res = hipMallocManaged(mem_out, size, hipMemAttachGlobal);
} else {
res = hipMalloc(mem_out, size);
}
if (res == hipErrorOutOfMemory) {
return FUTHARK_OUT_OF_MEMORY;
}
HIP_SUCCEED_OR_RETURN(res);
return FUTHARK_SUCCESS;
}
static int gpu_free_actual(struct futhark_context *ctx, gpu_mem mem) {
(void)ctx;
HIP_SUCCEED_OR_RETURN(hipFree(mem));
return FUTHARK_SUCCESS;
}
// End of backends/hip.h.
|