1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
|
// Start of backends/opencl.h
// Note [32-bit transpositions]
//
// Transposition kernels are much slower when they have to use 64-bit
// arithmetic. I observed about 0.67x slowdown on an A100 GPU when
// transposing four-byte elements (much less when transposing 8-byte
// elements). Unfortunately, 64-bit arithmetic is a requirement for
// large arrays (see #1953 for what happens otherwise). We generate
// both 32- and 64-bit index arithmetic versions of transpositions,
// and dynamically pick between them at runtime. This is an
// unfortunate code bloat, and it would be preferable if we could
// simply optimise the 64-bit version to make this distinction
// unnecessary. Fortunately these kernels are quite small.
// Forward declarations.
struct opencl_device_option;
// Invoked by setup_opencl() after the platform and device has been
// found, but before the program is loaded. Its intended use is to
// tune constants based on the selected platform and device.
static void post_opencl_setup(struct futhark_context*, struct opencl_device_option*);
static void set_tuning_params(struct futhark_context* ctx);
static char* get_failure_msg(int failure_idx, int64_t args[]);
#define OPENCL_SUCCEED_FATAL(e) opencl_succeed_fatal(e, #e, __FILE__, __LINE__)
#define OPENCL_SUCCEED_NONFATAL(e) opencl_succeed_nonfatal(e, #e, __FILE__, __LINE__)
// Take care not to override an existing error.
#define OPENCL_SUCCEED_OR_RETURN(e) { \
char *serror = OPENCL_SUCCEED_NONFATAL(e); \
if (serror) { \
if (!ctx->error) { \
ctx->error = serror; \
} else { \
free(serror); \
} \
return bad; \
} \
}
// OPENCL_SUCCEED_OR_RETURN returns the value of the variable 'bad' in
// scope. By default, it will be this one. Create a local variable
// of some other type if needed. This is a bit of a hack, but it
// saves effort in the code generator.
static const int bad = 1;
static const char* opencl_error_string(cl_int err) {
switch (err) {
case CL_SUCCESS: return "Success!";
case CL_DEVICE_NOT_FOUND: return "Device not found.";
case CL_DEVICE_NOT_AVAILABLE: return "Device not available";
case CL_COMPILER_NOT_AVAILABLE: return "Compiler not available";
case CL_MEM_OBJECT_ALLOCATION_FAILURE: return "Memory object allocation failure";
case CL_OUT_OF_RESOURCES: return "Out of resources";
case CL_OUT_OF_HOST_MEMORY: return "Out of host memory";
case CL_PROFILING_INFO_NOT_AVAILABLE: return "Profiling information not available";
case CL_MEM_COPY_OVERLAP: return "Memory copy overlap";
case CL_IMAGE_FORMAT_MISMATCH: return "Image format mismatch";
case CL_IMAGE_FORMAT_NOT_SUPPORTED: return "Image format not supported";
case CL_BUILD_PROGRAM_FAILURE: return "Program build failure";
case CL_MAP_FAILURE: return "Map failure";
case CL_INVALID_VALUE: return "Invalid value";
case CL_INVALID_DEVICE_TYPE: return "Invalid device type";
case CL_INVALID_PLATFORM: return "Invalid platform";
case CL_INVALID_DEVICE: return "Invalid device";
case CL_INVALID_CONTEXT: return "Invalid context";
case CL_INVALID_QUEUE_PROPERTIES: return "Invalid queue properties";
case CL_INVALID_COMMAND_QUEUE: return "Invalid command queue";
case CL_INVALID_HOST_PTR: return "Invalid host pointer";
case CL_INVALID_MEM_OBJECT: return "Invalid memory object";
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR: return "Invalid image format descriptor";
case CL_INVALID_IMAGE_SIZE: return "Invalid image size";
case CL_INVALID_SAMPLER: return "Invalid sampler";
case CL_INVALID_BINARY: return "Invalid binary";
case CL_INVALID_BUILD_OPTIONS: return "Invalid build options";
case CL_INVALID_PROGRAM: return "Invalid program";
case CL_INVALID_PROGRAM_EXECUTABLE: return "Invalid program executable";
case CL_INVALID_KERNEL_NAME: return "Invalid kernel name";
case CL_INVALID_KERNEL_DEFINITION: return "Invalid kernel definition";
case CL_INVALID_KERNEL: return "Invalid kernel";
case CL_INVALID_ARG_INDEX: return "Invalid argument index";
case CL_INVALID_ARG_VALUE: return "Invalid argument value";
case CL_INVALID_ARG_SIZE: return "Invalid argument size";
case CL_INVALID_KERNEL_ARGS: return "Invalid kernel arguments";
case CL_INVALID_WORK_DIMENSION: return "Invalid work dimension";
case CL_INVALID_WORK_GROUP_SIZE: return "Invalid work group size";
case CL_INVALID_WORK_ITEM_SIZE: return "Invalid work item size";
case CL_INVALID_GLOBAL_OFFSET: return "Invalid global offset";
case CL_INVALID_EVENT_WAIT_LIST: return "Invalid event wait list";
case CL_INVALID_EVENT: return "Invalid event";
case CL_INVALID_OPERATION: return "Invalid operation";
case CL_INVALID_GL_OBJECT: return "Invalid OpenGL object";
case CL_INVALID_BUFFER_SIZE: return "Invalid buffer size";
case CL_INVALID_MIP_LEVEL: return "Invalid mip-map level";
default: return "Unknown";
}
}
static void opencl_succeed_fatal(cl_int ret,
const char *call,
const char *file,
int line) {
if (ret != CL_SUCCESS) {
futhark_panic(-1, "%s:%d: OpenCL call\n %s\nfailed with error code %d (%s)\n",
file, line, call, ret, opencl_error_string(ret));
}
}
static char* opencl_succeed_nonfatal(cl_int ret,
const char *call,
const char *file,
int line) {
if (ret != CL_SUCCESS) {
return msgprintf("%s:%d: OpenCL call\n %s\nfailed with error code %d (%s)\n",
file, line, call, ret, opencl_error_string(ret));
} else {
return NULL;
}
}
struct futhark_context_config {
int in_use;
int debugging;
int profiling;
int logging;
char *cache_fname;
int num_tuning_params;
int64_t *tuning_params;
const char** tuning_param_names;
const char** tuning_param_vars;
const char** tuning_param_classes;
// Uniform fields above.
char* program;
int preferred_device_num;
char* preferred_platform;
char* preferred_device;
int ignore_blacklist;
int unified_memory;
char* dump_binary_to;
char* load_binary_from;
int num_build_opts;
char* *build_opts;
cl_command_queue queue;
int queue_set;
struct gpu_config gpu;
};
static void backend_context_config_setup(struct futhark_context_config* cfg) {
cfg->num_build_opts = 0;
cfg->build_opts = (char**) malloc(sizeof(const char*));
cfg->build_opts[0] = NULL;
cfg->preferred_device_num = 0;
cfg->preferred_platform = strdup("");
cfg->preferred_device = strdup("");
cfg->ignore_blacklist = 0;
cfg->dump_binary_to = NULL;
cfg->load_binary_from = NULL;
cfg->program = strconcat(gpu_program);
cfg->unified_memory = 2;
cfg->gpu = gpu_config_initial;
cfg->queue_set = 0;
}
static void backend_context_config_teardown(struct futhark_context_config* cfg) {
for (int i = 0; i < cfg->num_build_opts; i++) {
free(cfg->build_opts[i]);
}
free(cfg->build_opts);
free(cfg->dump_binary_to);
free(cfg->load_binary_from);
free(cfg->preferred_device);
free(cfg->preferred_platform);
free(cfg->program);
}
void futhark_context_config_add_build_option(struct futhark_context_config* cfg, const char *opt) {
cfg->build_opts[cfg->num_build_opts] = strdup(opt);
cfg->num_build_opts++;
cfg->build_opts = (char**) realloc(cfg->build_opts, (cfg->num_build_opts+1) * sizeof(char*));
cfg->build_opts[cfg->num_build_opts] = NULL;
}
void futhark_context_config_set_device(struct futhark_context_config *cfg, const char* s) {
int x = 0;
if (*s == '#') {
s++;
while (isdigit(*s)) {
x = x * 10 + (*s++)-'0';
}
// Skip trailing spaces.
while (isspace(*s)) {
s++;
}
}
free(cfg->preferred_device);
cfg->preferred_device = strdup(s);
cfg->preferred_device_num = x;
cfg->ignore_blacklist = 1;
}
void futhark_context_config_set_platform(struct futhark_context_config *cfg, const char *s) {
free(cfg->preferred_platform);
cfg->preferred_platform = strdup(s);
cfg->ignore_blacklist = 1;
}
void futhark_context_config_set_command_queue(struct futhark_context_config *cfg, cl_command_queue q) {
cfg->queue = q;
cfg->queue_set = 1;
}
struct opencl_device_option {
cl_platform_id platform;
cl_device_id device;
cl_device_type device_type;
char *platform_name;
char *device_name;
};
static char* opencl_platform_info(cl_platform_id platform,
cl_platform_info param) {
size_t req_bytes;
char *info;
OPENCL_SUCCEED_FATAL(clGetPlatformInfo(platform, param, 0, NULL, &req_bytes));
info = (char*) malloc(req_bytes);
OPENCL_SUCCEED_FATAL(clGetPlatformInfo(platform, param, req_bytes, info, NULL));
return info;
}
static char* opencl_device_info(cl_device_id device,
cl_device_info param) {
size_t req_bytes;
char *info;
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(device, param, 0, NULL, &req_bytes));
info = (char*) malloc(req_bytes);
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(device, param, req_bytes, info, NULL));
return info;
}
static int is_blacklisted(const char *platform_name, const char *device_name,
const struct futhark_context_config *cfg) {
if (strcmp(cfg->preferred_platform, "") != 0 ||
strcmp(cfg->preferred_device, "") != 0) {
return 0;
} else if (strstr(platform_name, "Apple") != NULL &&
strstr(device_name, "Intel(R) Core(TM)") != NULL) {
return 1;
} else {
return 0;
}
}
static void opencl_all_device_options(struct opencl_device_option **devices_out,
size_t *num_devices_out) {
size_t num_devices = 0, num_devices_added = 0;
cl_platform_id *all_platforms;
cl_uint *platform_num_devices;
cl_uint num_platforms;
// Find the number of platforms.
OPENCL_SUCCEED_FATAL(clGetPlatformIDs(0, NULL, &num_platforms));
// Make room for them.
all_platforms = calloc(num_platforms, sizeof(cl_platform_id));
platform_num_devices = calloc(num_platforms, sizeof(cl_uint));
// Fetch all the platforms.
OPENCL_SUCCEED_FATAL(clGetPlatformIDs(num_platforms, all_platforms, NULL));
// Count the number of devices for each platform, as well as the
// total number of devices.
for (cl_uint i = 0; i < num_platforms; i++) {
if (clGetDeviceIDs(all_platforms[i], CL_DEVICE_TYPE_ALL,
0, NULL, &platform_num_devices[i]) == CL_SUCCESS) {
num_devices += platform_num_devices[i];
} else {
platform_num_devices[i] = 0;
}
}
// Make room for all the device options.
struct opencl_device_option *devices =
calloc(num_devices, sizeof(struct opencl_device_option));
// Loop through the platforms, getting information about their devices.
for (cl_uint i = 0; i < num_platforms; i++) {
cl_platform_id platform = all_platforms[i];
cl_uint num_platform_devices = platform_num_devices[i];
if (num_platform_devices == 0) {
continue;
}
char *platform_name = opencl_platform_info(platform, CL_PLATFORM_NAME);
cl_device_id *platform_devices =
calloc(num_platform_devices, sizeof(cl_device_id));
// Fetch all the devices.
OPENCL_SUCCEED_FATAL(clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL,
num_platform_devices, platform_devices, NULL));
// Loop through the devices, adding them to the devices array.
for (cl_uint i = 0; i < num_platform_devices; i++) {
char *device_name = opencl_device_info(platform_devices[i], CL_DEVICE_NAME);
devices[num_devices_added].platform = platform;
devices[num_devices_added].device = platform_devices[i];
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(platform_devices[i], CL_DEVICE_TYPE,
sizeof(cl_device_type),
&devices[num_devices_added].device_type,
NULL));
// We don't want the structs to share memory, so copy the platform name.
// Each device name is already unique.
devices[num_devices_added].platform_name = strclone(platform_name);
devices[num_devices_added].device_name = device_name;
num_devices_added++;
}
free(platform_devices);
free(platform_name);
}
free(all_platforms);
free(platform_num_devices);
*devices_out = devices;
*num_devices_out = num_devices;
}
void futhark_context_config_select_device_interactively(struct futhark_context_config *cfg) {
struct opencl_device_option *devices;
size_t num_devices;
opencl_all_device_options(&devices, &num_devices);
printf("Choose OpenCL device:\n");
const char *cur_platform = "";
for (size_t i = 0; i < num_devices; i++) {
struct opencl_device_option device = devices[i];
if (strcmp(cur_platform, device.platform_name) != 0) {
printf("Platform: %s\n", device.platform_name);
cur_platform = device.platform_name;
}
printf("[%d] %s\n", (int)i, device.device_name);
}
int selection;
printf("Choice: ");
if (scanf("%d", &selection) == 1) {
cfg->preferred_platform = "";
cfg->preferred_device = "";
cfg->preferred_device_num = selection;
cfg->ignore_blacklist = 1;
}
// Free all the platform and device names.
for (size_t j = 0; j < num_devices; j++) {
free(devices[j].platform_name);
free(devices[j].device_name);
}
free(devices);
}
void futhark_context_config_list_devices(struct futhark_context_config *cfg) {
(void)cfg;
struct opencl_device_option *devices;
size_t num_devices;
opencl_all_device_options(&devices, &num_devices);
const char *cur_platform = "";
for (size_t i = 0; i < num_devices; i++) {
struct opencl_device_option device = devices[i];
if (strcmp(cur_platform, device.platform_name) != 0) {
printf("Platform: %s\n", device.platform_name);
cur_platform = device.platform_name;
}
printf("[%d]: %s\n", (int)i, device.device_name);
}
// Free all the platform and device names.
for (size_t j = 0; j < num_devices; j++) {
free(devices[j].platform_name);
free(devices[j].device_name);
}
free(devices);
}
const char* futhark_context_config_get_program(struct futhark_context_config *cfg) {
return cfg->program;
}
void futhark_context_config_set_program(struct futhark_context_config *cfg, const char *s) {
free(cfg->program);
cfg->program = strdup(s);
}
void futhark_context_config_dump_binary_to(struct futhark_context_config *cfg, const char *path) {
free(cfg->dump_binary_to);
cfg->dump_binary_to = strdup(path);
}
void futhark_context_config_load_binary_from(struct futhark_context_config *cfg, const char *path) {
free(cfg->load_binary_from);
cfg->load_binary_from = strdup(path);
}
void futhark_context_config_set_unified_memory(struct futhark_context_config* cfg, int flag) {
cfg->unified_memory = flag;
}
struct futhark_context {
struct futhark_context_config* cfg;
int detail_memory;
int debugging;
int profiling;
int profiling_paused;
int logging;
lock_t lock;
char *error;
lock_t error_lock;
FILE *log;
struct constants *constants;
struct free_list free_list;
struct event_list event_list;
int64_t peak_mem_usage_default;
int64_t cur_mem_usage_default;
struct program* program;
bool program_initialised;
// Uniform fields above.
cl_mem global_failure;
cl_mem global_failure_args;
struct tuning_params tuning_params;
// True if a potentially failing kernel has been enqueued.
cl_int failure_is_an_option;
int total_runs;
long int total_runtime;
int64_t peak_mem_usage_device;
int64_t cur_mem_usage_device;
cl_device_id device;
cl_context ctx;
cl_command_queue queue;
cl_program clprogram;
struct free_list gpu_free_list;
size_t max_thread_block_size;
size_t max_grid_size;
size_t max_tile_size;
size_t max_threshold;
size_t max_shared_memory;
size_t max_bespoke;
size_t max_registers;
size_t max_cache;
size_t lockstep_width;
struct builtin_kernels* kernels;
};
static cl_build_status build_gpu_program(cl_program program, cl_device_id device, const char* options, char** log) {
cl_int clBuildProgram_error = clBuildProgram(program, 1, &device, options, NULL, NULL);
// Avoid termination due to CL_BUILD_PROGRAM_FAILURE
if (clBuildProgram_error != CL_SUCCESS &&
clBuildProgram_error != CL_BUILD_PROGRAM_FAILURE) {
OPENCL_SUCCEED_FATAL(clBuildProgram_error);
}
cl_build_status build_status;
OPENCL_SUCCEED_FATAL(clGetProgramBuildInfo(program,
device,
CL_PROGRAM_BUILD_STATUS,
sizeof(cl_build_status),
&build_status,
NULL));
if (build_status != CL_BUILD_SUCCESS) {
char *build_log;
size_t ret_val_size;
OPENCL_SUCCEED_FATAL(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size));
build_log = (char*) malloc(ret_val_size+1);
OPENCL_SUCCEED_FATAL(clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, ret_val_size, build_log, NULL));
// The spec technically does not say whether the build log is
// zero-terminated, so let's be careful.
build_log[ret_val_size] = '\0';
*log = build_log;
}
return build_status;
}
static char* mk_compile_opts(struct futhark_context *ctx,
const char *extra_build_opts[],
struct opencl_device_option device_option) {
int compile_opts_size = 1024;
for (int i = 0; i < ctx->cfg->num_tuning_params; i++) {
compile_opts_size += strlen(ctx->cfg->tuning_param_names[i]) + 20;
}
char** macro_names;
int64_t* macro_vals;
int num_macros = gpu_macros(ctx, ¯o_names, ¯o_vals);
for (int i = 0; extra_build_opts[i] != NULL; i++) {
compile_opts_size += strlen(extra_build_opts[i] + 1);
}
for (int i = 0; i < num_macros; i++) {
compile_opts_size += strlen(macro_names[i]) + 1 + 20;
}
char *compile_opts = (char*) malloc(compile_opts_size);
int w = snprintf(compile_opts, compile_opts_size,
"-DLOCKSTEP_WIDTH=%d ",
(int)ctx->lockstep_width);
w += snprintf(compile_opts+w, compile_opts_size-w,
"-D%s=%d ",
"max_thread_block_size",
(int)ctx->max_thread_block_size);
w += snprintf(compile_opts+w, compile_opts_size-w,
"-D%s=%d ",
"max_shared_memory",
(int)ctx->max_shared_memory);
w += snprintf(compile_opts+w, compile_opts_size-w,
"-D%s=%d ",
"max_registers",
(int)ctx->max_registers);
for (int i = 0; i < ctx->cfg->num_tuning_params; i++) {
w += snprintf(compile_opts+w, compile_opts_size-w,
"-D%s=%d ",
ctx->cfg->tuning_param_vars[i],
(int)ctx->cfg->tuning_params[i]);
}
for (int i = 0; extra_build_opts[i] != NULL; i++) {
w += snprintf(compile_opts+w, compile_opts_size-w,
"%s ", extra_build_opts[i]);
}
for (int i = 0; i < num_macros; i++) {
w += snprintf(compile_opts+w, compile_opts_size-w,
"-D%s=%zu ", macro_names[i], macro_vals[i]);
}
w += snprintf(compile_opts+w, compile_opts_size-w,
"-DTR_BLOCK_DIM=%d -DTR_TILE_DIM=%d -DTR_ELEMS_PER_THREAD=%d ",
TR_BLOCK_DIM, TR_TILE_DIM, TR_ELEMS_PER_THREAD);
// Oclgrind claims to support cl_khr_fp16, but this is not actually
// the case.
if (strcmp(device_option.platform_name, "Oclgrind") == 0) {
w += snprintf(compile_opts+w, compile_opts_size-w, "-DEMULATE_F16 ");
}
// By default, OpenCL allows imprecise (but faster) division and
// square root operations. For equivalence with other backends, ask
// for correctly rounded ones here.
w += snprintf(compile_opts+w, compile_opts_size-w,
"-cl-fp32-correctly-rounded-divide-sqrt");
free(macro_names);
free(macro_vals);
return compile_opts;
}
static cl_event* opencl_event_new(struct futhark_context* ctx) {
if (ctx->profiling && !ctx->profiling_paused) {
return malloc(sizeof(cl_event));
} else {
return NULL;
}
}
static int opencl_event_report(struct str_builder* sb, cl_event* e) {
cl_int err;
cl_ulong start_t, end_t;
assert(e != NULL);
OPENCL_SUCCEED_FATAL(clGetEventProfilingInfo(*e,
CL_PROFILING_COMMAND_START,
sizeof(start_t),
&start_t,
NULL));
OPENCL_SUCCEED_FATAL(clGetEventProfilingInfo(*e,
CL_PROFILING_COMMAND_END,
sizeof(end_t),
&end_t,
NULL));
// OpenCL provides nanosecond resolution, but we want microseconds.
str_builder(sb, ",\"duration\":%f", (end_t - start_t)/1000.0);
OPENCL_SUCCEED_FATAL(clReleaseEvent(*e));
free(e);
return 0;
}
int futhark_context_sync(struct futhark_context* ctx) {
// Check for any delayed error.
cl_int failure_idx = -1;
if (ctx->failure_is_an_option) {
OPENCL_SUCCEED_OR_RETURN(
clEnqueueReadBuffer(ctx->queue,
ctx->global_failure,
CL_FALSE,
0, sizeof(cl_int), &failure_idx,
0, NULL, NULL));
ctx->failure_is_an_option = 0;
}
OPENCL_SUCCEED_OR_RETURN(clFinish(ctx->queue));
if (failure_idx >= 0) {
// We have to clear global_failure so that the next entry point
// is not considered a failure from the start.
cl_int no_failure = -1;
OPENCL_SUCCEED_OR_RETURN(
clEnqueueWriteBuffer(ctx->queue, ctx->global_failure, CL_TRUE,
0, sizeof(cl_int), &no_failure,
0, NULL, NULL));
int64_t args[max_failure_args+1];
OPENCL_SUCCEED_OR_RETURN(
clEnqueueReadBuffer(ctx->queue,
ctx->global_failure_args,
CL_TRUE,
0, sizeof(args), &args,
0, NULL, NULL));
ctx->error = get_failure_msg(failure_idx, args);
return FUTHARK_PROGRAM_ERROR;
}
return 0;
}
// We take as input several strings representing the program, because
// C does not guarantee that the compiler supports particularly large
// literals. Notably, Visual C has a limit of 2048 characters. The
// array must be NULL-terminated.
static void setup_opencl_with_command_queue(struct futhark_context *ctx,
cl_command_queue queue,
const char* extra_build_opts[],
const char* cache_fname) {
int error;
free_list_init(&ctx->gpu_free_list);
ctx->queue = queue;
OPENCL_SUCCEED_FATAL(clGetCommandQueueInfo(ctx->queue, CL_QUEUE_CONTEXT, sizeof(cl_context), &ctx->ctx, NULL));
// Fill out the device info. This is redundant work if we are
// called from setup_opencl() (which is the common case), but I
// doubt it matters much.
struct opencl_device_option device_option;
OPENCL_SUCCEED_FATAL(clGetCommandQueueInfo(ctx->queue, CL_QUEUE_DEVICE,
sizeof(cl_device_id),
&device_option.device,
NULL));
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(device_option.device, CL_DEVICE_PLATFORM,
sizeof(cl_platform_id),
&device_option.platform,
NULL));
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(device_option.device, CL_DEVICE_TYPE,
sizeof(cl_device_type),
&device_option.device_type,
NULL));
device_option.platform_name = opencl_platform_info(device_option.platform, CL_PLATFORM_NAME);
device_option.device_name = opencl_device_info(device_option.device, CL_DEVICE_NAME);
ctx->device = device_option.device;
if (f64_required) {
cl_uint supported;
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(device_option.device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE,
sizeof(cl_uint), &supported, NULL));
if (!supported) {
futhark_panic(1, "Program uses double-precision floats, but this is not supported on the chosen device: %s\n",
device_option.device_name);
}
}
bool is_amd = strstr(device_option.platform_name, "AMD") != NULL;
bool is_nvidia = strstr(device_option.platform_name, "NVIDIA CUDA") != NULL;
size_t max_thread_block_size;
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(device_option.device, CL_DEVICE_MAX_WORK_GROUP_SIZE,
sizeof(size_t), &max_thread_block_size, NULL));
size_t max_tile_size = sqrt(max_thread_block_size);
cl_ulong max_shared_memory;
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(device_option.device, CL_DEVICE_LOCAL_MEM_SIZE,
sizeof(size_t), &max_shared_memory, NULL));
// Futhark reserves 4 bytes for bookkeeping information.
max_shared_memory -= 4;
// The OpenCL implementation may reserve some local memory bytes for
// various purposes. In principle, we should use
// clGetKernelWorkGroupInfo() to figure out for each kernel how much
// is actually available, but our current code generator design
// makes this infeasible. Instead, we have this nasty hack where we
// arbitrarily subtract some bytes, based on empirical measurements
// (but which might be arbitrarily wrong). Fortunately, we rarely
// try to really push the local memory usage.
if (is_nvidia) {
max_shared_memory -= 12;
} else if (is_amd) {
max_shared_memory -= 16;
}
// Make sure this function is defined.
post_opencl_setup(ctx, &device_option);
if (max_thread_block_size < ctx->cfg->gpu.default_block_size) {
if (ctx->cfg->gpu.default_block_size_changed) {
fprintf(stderr, "Note: Device limits default group size to %zu (down from %zu).\n",
max_thread_block_size, ctx->cfg->gpu.default_block_size);
}
ctx->cfg->gpu.default_block_size = max_thread_block_size;
}
if (max_tile_size < ctx->cfg->gpu.default_tile_size) {
if (ctx->cfg->gpu.default_tile_size_changed) {
fprintf(stderr, "Note: Device limits default tile size to %zu (down from %zu).\n",
max_tile_size, ctx->cfg->gpu.default_tile_size);
}
ctx->cfg->gpu.default_tile_size = max_tile_size;
}
// Some of the code generated by Futhark will use the L2 cache size
// to make very precise decisions about execution. OpenCL does not
// specify whether CL_DEVICE_GLOBAL_MEM_CACHE_SIZE is L1 or L2 cache
// (or maybe something else entirely). NVIDIA's implementation
// reports L2, but AMDs reports L1 (and provides no way to query for
// the L2 size). That means it is time to hack.
cl_ulong l2_cache_size;
if (ctx->cfg->gpu.default_cache != 0) {
l2_cache_size = ctx->cfg->gpu.default_cache;
} else {
cl_ulong opencl_cache_size;
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(device_option.device, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE,
sizeof(opencl_cache_size), &opencl_cache_size, NULL));
if (is_amd) {
// We multiply the L1 cache size with the number of compute units
// times 4 (number of SIMD units with GCN). Empirically this
// doesn't get us the right result, but it gets us fairly close.
cl_ulong compute_units;
OPENCL_SUCCEED_FATAL(clGetDeviceInfo(device_option.device, CL_DEVICE_MAX_COMPUTE_UNITS,
sizeof(compute_units), &compute_units, NULL));
l2_cache_size = opencl_cache_size * compute_units * 4;
} else {
l2_cache_size = opencl_cache_size;
}
if (l2_cache_size == 0) {
// Some code assumes nonzero cache.
l2_cache_size = 1024*1024;
}
}
ctx->max_thread_block_size = max_thread_block_size;
ctx->max_tile_size = max_tile_size; // No limit.
ctx->max_threshold = ctx->max_grid_size = 1U<<31; // No limit.
if (ctx->cfg->gpu.default_cache != 0) {
ctx->max_cache = ctx->cfg->gpu.default_cache;
} else {
ctx->max_cache = l2_cache_size;
}
if (ctx->cfg->gpu.default_registers != 0) {
ctx->max_registers = ctx->cfg->gpu.default_registers;
} else {
ctx->max_registers = 1<<16; // I cannot find a way to query for this.
}
if (ctx->cfg->gpu.default_shared_memory != 0) {
ctx->max_shared_memory = ctx->cfg->gpu.default_shared_memory;
} else {
ctx->max_shared_memory = max_shared_memory;
}
// Now we go through all the sizes, clamp them to the valid range,
// or set them to the default.
for (int i = 0; i < ctx->cfg->num_tuning_params; i++) {
const char *size_class = ctx->cfg->tuning_param_classes[i];
int64_t *size_value = &ctx->cfg->tuning_params[i];
const char* size_name = ctx->cfg->tuning_param_names[i];
int64_t max_value = 0, default_value = 0;
if (strstr(size_class, "thread_block_size") == size_class) {
max_value = max_thread_block_size;
default_value = ctx->cfg->gpu.default_block_size;
} else if (strstr(size_class, "grid_size") == size_class) {
max_value = max_thread_block_size; // Futhark assumes this constraint.
default_value = ctx->cfg->gpu.default_grid_size;
// XXX: as a quick and dirty hack, use twice as many threads for
// histograms by default. We really should just be smarter
// about sizes somehow.
if (strstr(size_name, ".seghist_") != NULL) {
default_value *= 2;
}
} else if (strstr(size_class, "tile_size") == size_class) {
max_value = sqrt(max_thread_block_size);
default_value = ctx->cfg->gpu.default_tile_size;
} else if (strstr(size_class, "reg_tile_size") == size_class) {
max_value = 0; // No limit.
default_value = ctx->cfg->gpu.default_reg_tile_size;
} else if (strstr(size_class, "shared_memory") == size_class) {
max_value = ctx->max_shared_memory;
default_value = ctx->max_shared_memory;
} else if (strstr(size_class, "cache") == size_class) {
max_value = ctx->max_cache;
default_value = ctx->max_cache;
} else if (strstr(size_class, "threshold") == size_class) {
// Threshold can be as large as it takes.
default_value = ctx->cfg->gpu.default_threshold;
} else {
// Bespoke sizes have no limit or default.
}
if (*size_value == 0) {
*size_value = default_value;
} else if (max_value > 0 && *size_value > max_value) {
fprintf(stderr, "Note: Device limits %s to %d (down from %d)\n",
size_name, (int)max_value, (int)*size_value);
*size_value = max_value;
}
}
if (ctx->lockstep_width == 0) {
ctx->lockstep_width = 1;
}
gpu_init_log(ctx);
char *compile_opts = mk_compile_opts(ctx, extra_build_opts, device_option);
if (ctx->cfg->logging) {
fprintf(stderr, "OpenCL compiler options: %s\n", compile_opts);
}
const char* opencl_src = ctx->cfg->program;
cl_program prog;
error = CL_SUCCESS;
struct cache_hash h;
int loaded_from_cache = 0;
if (ctx->cfg->load_binary_from == NULL) {
size_t src_size = 0;
if (cache_fname != NULL) {
if (ctx->cfg->logging) {
fprintf(stderr, "Restoring cache from from %s...\n", cache_fname);
}
cache_hash_init(&h);
cache_hash(&h, opencl_src, strlen(opencl_src));
cache_hash(&h, compile_opts, strlen(compile_opts));
unsigned char *buf;
size_t bufsize;
errno = 0;
if (cache_restore(cache_fname, &h, &buf, &bufsize) != 0) {
if (ctx->cfg->logging) {
fprintf(stderr, "Failed to restore cache (errno: %s)\n", strerror(errno));
}
} else {
if (ctx->cfg->logging) {
fprintf(stderr, "Cache restored; loading OpenCL binary...\n");
}
cl_int status = 0;
prog = clCreateProgramWithBinary(ctx->ctx, 1, &device_option.device,
&bufsize, (const unsigned char**)&buf,
&status, &error);
if (status == CL_SUCCESS) {
loaded_from_cache = 1;
if (ctx->cfg->logging) {
fprintf(stderr, "Loading succeeded.\n");
}
} else {
if (ctx->cfg->logging) {
fprintf(stderr, "Loading failed.\n");
}
}
}
}
if (!loaded_from_cache) {
if (ctx->cfg->logging) {
fprintf(stderr, "Creating OpenCL program...\n");
}
const char* src_ptr[] = {opencl_src};
prog = clCreateProgramWithSource(ctx->ctx, 1, src_ptr, &src_size, &error);
OPENCL_SUCCEED_FATAL(error);
}
} else {
if (ctx->cfg->logging) {
fprintf(stderr, "Loading OpenCL binary from %s...\n", ctx->cfg->load_binary_from);
}
size_t binary_size;
unsigned char *fut_opencl_bin =
(unsigned char*) slurp_file(ctx->cfg->load_binary_from, &binary_size);
assert(fut_opencl_bin != NULL);
const unsigned char *binaries[1] = { fut_opencl_bin };
cl_int status = 0;
prog = clCreateProgramWithBinary(ctx->ctx, 1, &device_option.device,
&binary_size, binaries,
&status, &error);
OPENCL_SUCCEED_FATAL(status);
OPENCL_SUCCEED_FATAL(error);
}
if (ctx->cfg->logging) {
fprintf(stderr, "Building OpenCL program...\n");
}
char* build_log;
cl_build_status status =
build_gpu_program(prog, device_option.device, compile_opts, &build_log);
free(compile_opts);
if (status != CL_BUILD_SUCCESS) {
ctx->error = msgprintf("Compilation of OpenCL program failed.\nBuild log:\n%s",
build_log);
// We are giving up on initialising this OpenCL context. That also
// means we need to free all the OpenCL bits we have managed to
// allocate thus far, as futhark_context_free() will not touch
// these unless initialisation was completely successful.
(void)clReleaseProgram(prog);
(void)clReleaseCommandQueue(ctx->queue);
(void)clReleaseContext(ctx->ctx);
free(build_log);
return;
}
size_t binary_size = 0;
unsigned char *binary = NULL;
int store_in_cache = cache_fname != NULL && !loaded_from_cache;
if (store_in_cache || ctx->cfg->dump_binary_to != NULL) {
OPENCL_SUCCEED_FATAL(clGetProgramInfo(prog, CL_PROGRAM_BINARY_SIZES,
sizeof(size_t), &binary_size, NULL));
binary = (unsigned char*) malloc(binary_size);
OPENCL_SUCCEED_FATAL(clGetProgramInfo(prog, CL_PROGRAM_BINARIES,
sizeof(unsigned char*), &binary, NULL));
}
if (store_in_cache) {
if (ctx->cfg->logging) {
fprintf(stderr, "Caching OpenCL binary in %s...\n", cache_fname);
}
if (cache_store(cache_fname, &h, binary, binary_size) != 0) {
printf("Failed to cache binary: %s\n", strerror(errno));
}
}
if (ctx->cfg->dump_binary_to != NULL) {
if (ctx->cfg->logging) {
fprintf(stderr, "Dumping OpenCL binary to %s...\n", ctx->cfg->dump_binary_to);
}
dump_file(ctx->cfg->dump_binary_to, binary, binary_size);
}
ctx->clprogram = prog;
}
static struct opencl_device_option get_preferred_device(struct futhark_context *ctx,
const struct futhark_context_config *cfg) {
struct opencl_device_option *devices;
size_t num_devices;
opencl_all_device_options(&devices, &num_devices);
int num_device_matches = 0;
for (size_t i = 0; i < num_devices; i++) {
struct opencl_device_option device = devices[i];
if (strstr(device.platform_name, cfg->preferred_platform) != NULL &&
strstr(device.device_name, cfg->preferred_device) != NULL &&
(cfg->ignore_blacklist ||
!is_blacklisted(device.platform_name, device.device_name, cfg)) &&
num_device_matches++ == cfg->preferred_device_num) {
// Free all the platform and device names, except the ones we have chosen.
for (size_t j = 0; j < num_devices; j++) {
if (j != i) {
free(devices[j].platform_name);
free(devices[j].device_name);
}
}
free(devices);
return device;
}
}
ctx->error = strdup("Could not find acceptable OpenCL device.\n");
struct opencl_device_option device;
return device;
}
static void setup_opencl(struct futhark_context *ctx,
const char *extra_build_opts[],
const char* cache_fname) {
struct opencl_device_option device_option = get_preferred_device(ctx, ctx->cfg);
if (ctx->error != NULL) {
return;
}
if (ctx->cfg->logging) {
fprintf(stderr, "Using platform: %s\n", device_option.platform_name);
fprintf(stderr, "Using device: %s\n", device_option.device_name);
}
// Note that NVIDIA's OpenCL requires the platform property
cl_context_properties properties[] = {
CL_CONTEXT_PLATFORM,
(cl_context_properties)device_option.platform,
0
};
cl_int clCreateContext_error;
ctx->ctx = clCreateContext(properties, 1, &device_option.device, NULL, NULL, &clCreateContext_error);
OPENCL_SUCCEED_FATAL(clCreateContext_error);
cl_int clCreateCommandQueue_error;
cl_command_queue queue =
clCreateCommandQueue(ctx->ctx,
device_option.device,
ctx->cfg->profiling ? CL_QUEUE_PROFILING_ENABLE : 0,
&clCreateCommandQueue_error);
OPENCL_SUCCEED_FATAL(clCreateCommandQueue_error);
setup_opencl_with_command_queue(ctx, queue, extra_build_opts, cache_fname);
}
struct builtin_kernels* init_builtin_kernels(struct futhark_context* ctx);
void free_builtin_kernels(struct futhark_context* ctx, struct builtin_kernels* kernels);
int backend_context_setup(struct futhark_context* ctx) {
ctx->lockstep_width = 0; // Real value set later.
ctx->failure_is_an_option = 0;
ctx->total_runs = 0;
ctx->total_runtime = 0;
ctx->peak_mem_usage_device = 0;
ctx->cur_mem_usage_device = 0;
ctx->kernels = NULL;
if (ctx->cfg->queue_set) {
setup_opencl_with_command_queue(ctx, ctx->cfg->queue, (const char**)ctx->cfg->build_opts, ctx->cfg->cache_fname);
} else {
setup_opencl(ctx, (const char**)ctx->cfg->build_opts, ctx->cfg->cache_fname);
}
if (ctx->error != NULL) {
return 1;
}
cl_int error;
cl_int no_error = -1;
ctx->global_failure =
clCreateBuffer(ctx->ctx,
CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
sizeof(cl_int), &no_error, &error);
OPENCL_SUCCEED_OR_RETURN(error);
// The +1 is to avoid zero-byte allocations.
ctx->global_failure_args =
clCreateBuffer(ctx->ctx,
CL_MEM_READ_WRITE,
sizeof(int64_t)*(max_failure_args+1), NULL, &error);
OPENCL_SUCCEED_OR_RETURN(error);
if ((ctx->kernels = init_builtin_kernels(ctx)) == NULL) {
return 1;
}
return FUTHARK_SUCCESS;
}
static int gpu_free_all(struct futhark_context *ctx);
void backend_context_teardown(struct futhark_context* ctx) {
if (ctx->kernels != NULL) {
free_builtin_kernels(ctx, ctx->kernels);
OPENCL_SUCCEED_FATAL(clReleaseMemObject(ctx->global_failure));
OPENCL_SUCCEED_FATAL(clReleaseMemObject(ctx->global_failure_args));
(void)gpu_free_all(ctx);
(void)clReleaseProgram(ctx->clprogram);
(void)clReleaseCommandQueue(ctx->queue);
(void)clReleaseContext(ctx->ctx);
}
free_list_destroy(&ctx->gpu_free_list);
}
cl_command_queue futhark_context_get_command_queue(struct futhark_context* ctx) {
return ctx->queue;
}
// GPU ABSTRACTION LAYER
// Types.
typedef cl_kernel gpu_kernel;
typedef cl_mem gpu_mem;
static void gpu_create_kernel(struct futhark_context *ctx,
gpu_kernel* kernel,
const char* name) {
if (ctx->debugging) {
fprintf(ctx->log, "Creating kernel %s.\n", name);
}
cl_int error;
*kernel = clCreateKernel(ctx->clprogram, name, &error);
OPENCL_SUCCEED_FATAL(error);
}
static void gpu_free_kernel(struct futhark_context *ctx,
gpu_kernel kernel) {
(void)ctx;
clReleaseKernel(kernel);
}
static int gpu_scalar_to_device(struct futhark_context* ctx,
const char *provenance,
gpu_mem dst, size_t offset, size_t size,
void *src) {
cl_event* event = opencl_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_scalar_to_dev",
provenance,
NULL,
event,
(event_report_fn)opencl_event_report);
}
OPENCL_SUCCEED_OR_RETURN
(clEnqueueWriteBuffer
(ctx->queue, dst, CL_TRUE,
offset, size, src, 0, NULL, event));
return 0;
}
static int gpu_scalar_from_device(struct futhark_context* ctx,
const char *provenance,
void *dst,
gpu_mem src, size_t offset, size_t size) {
cl_event* event = opencl_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_scalar_from_dev",
provenance,
NULL,
event,
(event_report_fn)opencl_event_report);
}
OPENCL_SUCCEED_OR_RETURN
(clEnqueueReadBuffer
(ctx->queue, src, ctx->failure_is_an_option ? CL_FALSE : CL_TRUE,
offset, size, dst, 0, NULL, event));
return 0;
}
static int gpu_memcpy(struct futhark_context* ctx, const char *provenance,
gpu_mem dst, int64_t dst_offset,
gpu_mem src, int64_t src_offset,
int64_t nbytes) {
if (nbytes > 0) {
cl_event* event = opencl_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_dev_to_dev",
provenance,
NULL,
event,
(event_report_fn)opencl_event_report);
}
// OpenCL swaps the usual order of operands for memcpy()-like
// functions. The order below is not a typo.
OPENCL_SUCCEED_OR_RETURN
(clEnqueueCopyBuffer
(ctx->queue, src, dst, src_offset, dst_offset, nbytes,
0, NULL, event));
if (ctx->debugging) {
OPENCL_SUCCEED_FATAL(clFinish(ctx->queue));
}
}
return FUTHARK_SUCCESS;
}
static int memcpy_host2gpu(struct futhark_context* ctx, const char *provenance,
bool sync,
gpu_mem dst, int64_t dst_offset,
const unsigned char* src, int64_t src_offset,
int64_t nbytes) {
if (nbytes > 0) {
cl_event* event = opencl_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_host_to_dev",
provenance,
NULL,
event,
(event_report_fn)opencl_event_report);
}
OPENCL_SUCCEED_OR_RETURN
(clEnqueueWriteBuffer(ctx->queue,
dst,
sync ? CL_TRUE : CL_FALSE,
(size_t)dst_offset, (size_t)nbytes,
src + src_offset,
0, NULL, event));
if (ctx->debugging) {
OPENCL_SUCCEED_FATAL(clFinish(ctx->queue));
}
}
return FUTHARK_SUCCESS;
}
static int memcpy_gpu2host(struct futhark_context* ctx, const char *provenance,
bool sync,
unsigned char* dst, int64_t dst_offset,
gpu_mem src, int64_t src_offset,
int64_t nbytes) {
if (nbytes > 0) {
cl_event* event = opencl_event_new(ctx);
if (event != NULL) {
add_event(ctx,
"copy_dev_to_host",
provenance,
NULL,
event,
(event_report_fn)opencl_event_report);
}
OPENCL_SUCCEED_OR_RETURN
(clEnqueueReadBuffer(ctx->queue, src,
ctx->failure_is_an_option ? CL_FALSE
: sync ? CL_TRUE : CL_FALSE,
src_offset, nbytes,
dst + dst_offset,
0, NULL, event));
if (sync &&
ctx->failure_is_an_option &&
futhark_context_sync(ctx) != 0) {
return 1;
}
}
return FUTHARK_SUCCESS;
}
static int gpu_launch_kernel(struct futhark_context* ctx,
gpu_kernel kernel,
const char *name,
const char *provenance,
const int32_t grid[3],
const int32_t block[3],
unsigned int shared_mem_bytes,
int num_args,
void* args[num_args],
size_t args_sizes[num_args]) {
if (shared_mem_bytes > ctx->max_shared_memory) {
set_error(ctx, msgprintf("Kernel %s with %d bytes of memory exceeds device limit of %d\n",
name, shared_mem_bytes, (int)ctx->max_shared_memory));
return 1;
}
int64_t time_start = 0, time_end = 0;
cl_event* event = opencl_event_new(ctx);
if (event != NULL) {
struct kvs *kvs = kvs_new();
kvs_printf(kvs, "kernel", "\"%s\"", name);
kvs_printf(kvs, "grid", "[%d,%d,%d]", grid[0], grid[1], grid[2]);
kvs_printf(kvs, "block", "[%d,%d,%d]", block[0], block[1], block[2]);
kvs_printf(kvs, "shared memory", "%d", shared_mem_bytes);
add_event(ctx,
name,
provenance,
kvs,
event,
(event_report_fn)opencl_event_report);
}
if (ctx->debugging) {
time_start = get_wall_time();
}
// Some implementations do not work with 0-byte shared memory.
if (shared_mem_bytes == 0) {
shared_mem_bytes = 4;
}
OPENCL_SUCCEED_OR_RETURN
(clSetKernelArg(kernel, 0, shared_mem_bytes, NULL));
for (int i = 0; i < num_args; i++) {
OPENCL_SUCCEED_OR_RETURN
(clSetKernelArg(kernel, i+1, args_sizes[i], args[i]));
}
const size_t global_work_size[3] =
{(size_t)grid[0]*block[0],
(size_t)grid[1]*block[1],
(size_t)grid[2]*block[2]};
const size_t local_work_size[3] =
{block[0],
block[1],
block[2]};
OPENCL_SUCCEED_OR_RETURN
(clEnqueueNDRangeKernel(ctx->queue,
kernel,
3, NULL, global_work_size, local_work_size,
0, NULL, event));
if (ctx->debugging) {
OPENCL_SUCCEED_FATAL(clFinish(ctx->queue));
time_end = get_wall_time();
long int time_diff = time_end - time_start;
fprintf(ctx->log, " runtime: %ldus\n", time_diff);
}
if (ctx->logging) {
fprintf(ctx->log, "\n");
}
return FUTHARK_SUCCESS;
}
// Allocate memory from driver. The problem is that OpenCL may perform
// lazy allocation, so we cannot know whether an allocation succeeded
// until the first time we try to use it. Hence we immediately
// perform a write to see if the allocation succeeded. This is slow,
// but the assumption is that this operation will be rare (most things
// will go through the free list).
static int gpu_alloc_actual(struct futhark_context *ctx, size_t size, gpu_mem *mem_out) {
int error;
*mem_out = clCreateBuffer(ctx->ctx, CL_MEM_READ_WRITE, size, NULL, &error);
OPENCL_SUCCEED_OR_RETURN(error);
int x = 2;
error = clEnqueueWriteBuffer(ctx->queue, *mem_out,
CL_TRUE,
0, sizeof(x), &x,
0, NULL, NULL);
// No need to wait for completion here. clWaitForEvents() cannot
// return mem object allocation failures. This implies that the
// buffer is faulted onto the device on enqueue. (Observation by
// Andreas Kloeckner.)
if (error == CL_MEM_OBJECT_ALLOCATION_FAILURE) {
return FUTHARK_OUT_OF_MEMORY;
}
OPENCL_SUCCEED_OR_RETURN(error);
return FUTHARK_SUCCESS;
}
static int gpu_free_actual(struct futhark_context *ctx, gpu_mem mem) {
(void)ctx;
OPENCL_SUCCEED_OR_RETURN(clReleaseMemObject(mem));
return FUTHARK_SUCCESS;
}
// End of backends/opencl.h
|