1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
// Start of copy.h
// Cache-oblivious map-transpose function.
#define GEN_MAP_TRANSPOSE(NAME, ELEM_TYPE) \
static void map_transpose_##NAME \
(ELEM_TYPE* dst, ELEM_TYPE* src, \
int64_t k, int64_t m, int64_t n, \
int64_t cb, int64_t ce, int64_t rb, int64_t re) \
{ \
int32_t r = re - rb; \
int32_t c = ce - cb; \
if (k == 1) { \
if (r <= 64 && c <= 64) { \
for (int64_t j = 0; j < c; j++) { \
for (int64_t i = 0; i < r; i++) { \
dst[(j + cb) * n + (i + rb)] = src[(i + rb) * m + (j + cb)]; \
} \
} \
} else if (c <= r) { \
map_transpose_##NAME(dst, src, k, m, n, cb, ce, rb, rb + r/2); \
map_transpose_##NAME(dst, src, k, m, n, cb, ce, rb + r/2, re); \
} else { \
map_transpose_##NAME(dst, src, k, m, n, cb, cb + c/2, rb, re); \
map_transpose_##NAME(dst, src, k, m, n, cb + c/2, ce, rb, re); \
} \
} else { \
for (int64_t i = 0; i < k; i++) { \
map_transpose_##NAME(dst + i * m * n, src + i * m * n, 1, m, n, cb, ce, rb, re); \
}\
} \
}
// Straightforward LMAD copy function.
#define GEN_LMAD_COPY_ELEMENTS(NAME, ELEM_TYPE) \
static void lmad_copy_elements_##NAME(int r, \
ELEM_TYPE* dst, int64_t dst_strides[r], \
ELEM_TYPE *src, int64_t src_strides[r], \
int64_t shape[r]) { \
if (r == 1) { \
for (int i = 0; i < shape[0]; i++) { \
dst[i*dst_strides[0]] = src[i*src_strides[0]]; \
} \
} else if (r > 1) { \
for (int i = 0; i < shape[0]; i++) { \
lmad_copy_elements_##NAME(r-1, \
dst+i*dst_strides[0], dst_strides+1, \
src+i*src_strides[0], src_strides+1, \
shape+1); \
} \
} \
} \
// Check whether this LMAD can be seen as a transposed 2D array. This
// is done by checking every possible splitting point.
static bool lmad_is_tr(int64_t *n_out, int64_t *m_out,
int r,
const int64_t strides[r],
const int64_t shape[r]) {
for (int i = 1; i < r; i++) {
int n = 1, m = 1;
bool ok = true;
int64_t expected = 1;
// Check strides before 'i'.
for (int j = i-1; j >= 0; j--) {
ok = ok && strides[j] == expected;
expected *= shape[j];
n *= shape[j];
}
// Check strides after 'i'.
for (int j = r-1; j >= i; j--) {
ok = ok && strides[j] == expected;
expected *= shape[j];
m *= shape[j];
}
if (ok) {
*n_out = n;
*m_out = m;
return true;
}
}
return false;
}
// This function determines whether the a 'dst' LMAD is row-major and
// 'src' LMAD is column-major. Both LMADs are for arrays of the same
// shape. Both LMADs are allowed to have additional dimensions "on
// top". Essentially, this function determines whether a copy from
// 'src' to 'dst' is a "map(transpose)" that we know how to implement
// efficiently. The LMADs can have arbitrary rank, and the main
// challenge here is checking whether the src LMAD actually
// corresponds to a 2D column-major layout by morally collapsing
// dimensions. There is a lot of looping here, but the actual trip
// count is going to be very low in practice.
//
// Returns true if this is indeed a map(transpose), and writes the
// number of arrays, and moral array size to appropriate output
// parameters.
static bool lmad_map_tr(int64_t *num_arrays_out, int64_t *n_out, int64_t *m_out,
int r,
const int64_t dst_strides[r],
const int64_t src_strides[r],
const int64_t shape[r]) {
int64_t rowmajor_strides[r];
rowmajor_strides[r-1] = 1;
for (int i = r-2; i >= 0; i--) {
rowmajor_strides[i] = rowmajor_strides[i+1] * shape[i+1];
}
// map_r will be the number of mapped dimensions on top.
int map_r = 0;
int64_t num_arrays = 1;
for (int i = 0; i < r; i++) {
if (dst_strides[i] != rowmajor_strides[i] ||
src_strides[i] != rowmajor_strides[i]) {
break;
} else {
num_arrays *= shape[i];
map_r++;
}
}
*num_arrays_out = num_arrays;
if (r==map_r) {
return false;
}
if (memcmp(&rowmajor_strides[map_r],
&dst_strides[map_r],
sizeof(int64_t)*(r-map_r)) == 0) {
return lmad_is_tr(n_out, m_out, r-map_r, src_strides+map_r, shape+map_r);
} else if (memcmp(&rowmajor_strides[map_r],
&src_strides[map_r],
sizeof(int64_t)*(r-map_r)) == 0) {
return lmad_is_tr(m_out, n_out, r-map_r, dst_strides+map_r, shape+map_r);
}
return false;
}
// Check if the strides correspond to row-major strides of *any*
// permutation of the shape. This is done by recursive search with
// backtracking. This is worst-case exponential, but hopefully the
// arrays we encounter do not have that many dimensions.
static bool lmad_contiguous_search(int checked, int64_t expected,
int r,
int64_t strides[r], int64_t shape[r], bool used[r]) {
for (int i = 0; i < r; i++) {
for (int j = 0; j < r; j++) {
if (!used[j] && strides[j] == expected && strides[j] >= 0) {
used[j] = true;
if (checked+1 == r ||
lmad_contiguous_search(checked+1, expected * shape[j], r, strides, shape, used)) {
return true;
}
used[j] = false;
}
}
}
return false;
}
// Does this LMAD correspond to an array with positive strides and no
// holes?
static bool lmad_contiguous(int r, int64_t strides[r], int64_t shape[r]) {
bool used[r];
for (int i = 0; i < r; i++) {
used[i] = false;
}
return lmad_contiguous_search(0, 1, r, strides, shape, used);
}
// Does this copy correspond to something that could be done with a
// memcpy()-like operation? I.e. do the LMADs actually represent the
// same in-memory layout and are they contiguous?
static bool lmad_memcpyable(int r,
int64_t dst_strides[r], int64_t src_strides[r], int64_t shape[r]) {
if (!lmad_contiguous(r, dst_strides, shape)) {
return false;
}
for (int i = 0; i < r; i++) {
if (dst_strides[i] != src_strides[i] && shape[i] != 1) {
return false;
}
}
return true;
}
static void log_copy(struct futhark_context* ctx,
const char *kind, const char *provenance,
int r,
int64_t dst_offset, int64_t dst_strides[r],
int64_t src_offset, int64_t src_strides[r],
int64_t shape[r]) {
if (ctx->logging) {
fprintf(ctx->log, "\n# Copy %s\n", kind);
if (provenance) { fprintf(ctx->log, "At: %s\n", provenance); }
fprintf(ctx->log, "Shape: ");
for (int i = 0; i < r; i++) { fprintf(ctx->log, "[%ld]", (long int)shape[i]); }
fprintf(ctx->log, "\n");
fprintf(ctx->log, "Dst offset: %ld\n", (long int)dst_offset);
fprintf(ctx->log, "Dst strides:");
for (int i = 0; i < r; i++) { fprintf(ctx->log, " %ld", (long int)dst_strides[i]); }
fprintf(ctx->log, "\n");
fprintf(ctx->log, "Src offset: %ld\n", (long int)src_offset);
fprintf(ctx->log, "Src strides:");
for (int i = 0; i < r; i++) { fprintf(ctx->log, " %ld", (long int)src_strides[i]); }
fprintf(ctx->log, "\n");
}
}
static void log_transpose(struct futhark_context* ctx,
int64_t k, int64_t n, int64_t m) {
if (ctx->logging) {
fprintf(ctx->log, "## Transpose\n");
fprintf(ctx->log, "Arrays : %ld\n", (long int)k);
fprintf(ctx->log, "X elements : %ld\n", (long int)m);
fprintf(ctx->log, "Y elements : %ld\n", (long int)n);
fprintf(ctx->log, "\n");
}
}
#define GEN_LMAD_COPY(NAME, ELEM_TYPE) \
static void lmad_copy_##NAME \
(struct futhark_context *ctx, int r, \
ELEM_TYPE* dst, int64_t dst_offset, int64_t dst_strides[r], \
ELEM_TYPE *src, int64_t src_offset, int64_t src_strides[r], \
int64_t shape[r]) { \
log_copy(ctx, "CPU to CPU", NULL, r, dst_offset, dst_strides, \
src_offset, src_strides, shape); \
int64_t size = 1; \
for (int i = 0; i < r; i++) { size *= shape[i]; } \
if (size == 0) { return; } \
int64_t k, n, m; \
if (lmad_map_tr(&k, &n, &m, \
r, dst_strides, src_strides, shape)) { \
log_transpose(ctx, k, n, m); \
map_transpose_##NAME \
(dst+dst_offset, src+src_offset, k, n, m, 0, n, 0, m); \
} else if (lmad_memcpyable(r, dst_strides, src_strides, shape)) { \
if (ctx->logging) {fprintf(ctx->log, "## Flat copy\n\n");} \
memcpy(dst+dst_offset, src+src_offset, size*sizeof(*dst)); \
} else { \
if (ctx->logging) {fprintf(ctx->log, "## General copy\n\n");} \
lmad_copy_elements_##NAME \
(r, \
dst+dst_offset, dst_strides, \
src+src_offset, src_strides, shape); \
} \
}
GEN_MAP_TRANSPOSE(1b, uint8_t)
GEN_MAP_TRANSPOSE(2b, uint16_t)
GEN_MAP_TRANSPOSE(4b, uint32_t)
GEN_MAP_TRANSPOSE(8b, uint64_t)
GEN_LMAD_COPY_ELEMENTS(1b, uint8_t)
GEN_LMAD_COPY_ELEMENTS(2b, uint16_t)
GEN_LMAD_COPY_ELEMENTS(4b, uint32_t)
GEN_LMAD_COPY_ELEMENTS(8b, uint64_t)
GEN_LMAD_COPY(1b, uint8_t)
GEN_LMAD_COPY(2b, uint16_t)
GEN_LMAD_COPY(4b, uint32_t)
GEN_LMAD_COPY(8b, uint64_t)
// End of copy.h
|