1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
// Start of values.h.
//// Text I/O
typedef int (*writer)(FILE*, const void*);
typedef int (*bin_reader)(void*);
typedef int (*str_reader)(const char *, void*);
struct array_reader {
char* elems;
int64_t n_elems_space;
int64_t elem_size;
int64_t n_elems_used;
int64_t *shape;
str_reader elem_reader;
};
static void skipspaces(FILE *f) {
int c;
do {
c = getc(f);
} while (isspace(c));
if (c != EOF) {
ungetc(c, f);
}
}
static int constituent(char c) {
return isalnum(c) || c == '.' || c == '-' || c == '+' || c == '_';
}
// Produces an empty token only on EOF.
static void next_token(FILE *f, char *buf, int bufsize) {
start:
skipspaces(f);
int i = 0;
while (i < bufsize) {
int c = getc(f);
buf[i] = (char)c;
if (c == EOF) {
buf[i] = 0;
return;
} else if (c == '-' && i == 1 && buf[0] == '-') {
// Line comment, so skip to end of line and start over.
for (; c != '\n' && c != EOF; c = getc(f));
goto start;
} else if (!constituent((char)c)) {
if (i == 0) {
// We permit single-character tokens that are not
// constituents; this lets things like ']' and ',' be
// tokens.
buf[i+1] = 0;
return;
} else {
ungetc(c, f);
buf[i] = 0;
return;
}
}
i++;
}
buf[bufsize-1] = 0;
}
static int next_token_is(FILE *f, char *buf, int bufsize, const char* expected) {
next_token(f, buf, bufsize);
return strcmp(buf, expected) == 0;
}
static void remove_underscores(char *buf) {
char *w = buf;
for (char *r = buf; *r; r++) {
if (*r != '_') {
*w++ = *r;
}
}
*w++ = 0;
}
static int read_str_elem(char *buf, struct array_reader *reader) {
int ret;
if (reader->n_elems_used == reader->n_elems_space) {
reader->n_elems_space *= 2;
reader->elems = (char*) realloc(reader->elems,
(size_t)(reader->n_elems_space * reader->elem_size));
}
ret = reader->elem_reader(buf, reader->elems + reader->n_elems_used * reader->elem_size);
if (ret == 0) {
reader->n_elems_used++;
}
return ret;
}
static int read_str_array_elems(FILE *f,
char *buf, int bufsize,
struct array_reader *reader, int64_t dims) {
int ret = 1;
int expect_elem = 1;
char *knows_dimsize = (char*) calloc((size_t)dims, sizeof(char));
int cur_dim = (int)dims-1;
int64_t *elems_read_in_dim = (int64_t*) calloc((size_t)dims, sizeof(int64_t));
while (1) {
next_token(f, buf, bufsize);
if (strcmp(buf, "]") == 0) {
expect_elem = 0;
if (knows_dimsize[cur_dim]) {
if (reader->shape[cur_dim] != elems_read_in_dim[cur_dim]) {
ret = 1;
break;
}
} else {
knows_dimsize[cur_dim] = 1;
reader->shape[cur_dim] = elems_read_in_dim[cur_dim];
}
if (cur_dim == 0) {
ret = 0;
break;
} else {
cur_dim--;
elems_read_in_dim[cur_dim]++;
}
} else if (!expect_elem && strcmp(buf, ",") == 0) {
expect_elem = 1;
} else if (expect_elem) {
if (strcmp(buf, "[") == 0) {
if (cur_dim == dims - 1) {
ret = 1;
break;
}
cur_dim++;
elems_read_in_dim[cur_dim] = 0;
} else if (cur_dim == dims - 1) {
ret = read_str_elem(buf, reader);
if (ret != 0) {
break;
}
expect_elem = 0;
elems_read_in_dim[cur_dim]++;
} else {
ret = 1;
break;
}
} else {
ret = 1;
break;
}
}
free(knows_dimsize);
free(elems_read_in_dim);
return ret;
}
static int read_str_empty_array(FILE *f, char *buf, int bufsize,
const char *type_name, int64_t *shape, int64_t dims) {
if (strlen(buf) == 0) {
// EOF
return 1;
}
if (strcmp(buf, "empty") != 0) {
return 1;
}
if (!next_token_is(f, buf, bufsize, "(")) {
return 1;
}
for (int i = 0; i < dims; i++) {
if (!next_token_is(f, buf, bufsize, "[")) {
return 1;
}
next_token(f, buf, bufsize);
if (sscanf(buf, "%"SCNu64, (uint64_t*)&shape[i]) != 1) {
return 1;
}
if (!next_token_is(f, buf, bufsize, "]")) {
return 1;
}
}
if (!next_token_is(f, buf, bufsize, type_name)) {
return 1;
}
if (!next_token_is(f, buf, bufsize, ")")) {
return 1;
}
// Check whether the array really is empty.
for (int i = 0; i < dims; i++) {
if (shape[i] == 0) {
return 0;
}
}
// Not an empty array!
return 1;
}
static int read_str_array(FILE *f,
int64_t elem_size, str_reader elem_reader,
const char *type_name,
void **data, int64_t *shape, int64_t dims) {
int ret;
struct array_reader reader;
char buf[100];
int dims_seen;
for (dims_seen = 0; dims_seen < dims; dims_seen++) {
if (!next_token_is(f, buf, sizeof(buf), "[")) {
break;
}
}
if (dims_seen == 0) {
return read_str_empty_array(f, buf, sizeof(buf), type_name, shape, dims);
}
if (dims_seen != dims) {
return 1;
}
reader.shape = shape;
reader.n_elems_used = 0;
reader.elem_size = elem_size;
reader.n_elems_space = 16;
reader.elems = (char*) realloc(*data, (size_t)(elem_size*reader.n_elems_space));
reader.elem_reader = elem_reader;
ret = read_str_array_elems(f, buf, sizeof(buf), &reader, dims);
*data = reader.elems;
return ret;
}
#define READ_STR(MACRO, PTR, SUFFIX) \
remove_underscores(buf); \
int j; \
if (sscanf(buf, "%"MACRO"%n", (PTR*)dest, &j) == 1) { \
return !(strcmp(buf+j, "") == 0 || strcmp(buf+j, SUFFIX) == 0); \
} else { \
return 1; \
}
static int read_str_i8(char *buf, void* dest) {
// Some platforms (WINDOWS) does not support scanf %hhd or its
// cousin, %SCNi8. Read into int first to avoid corrupting
// memory.
//
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63417
remove_underscores(buf);
int j, x;
if (sscanf(buf, "%i%n", &x, &j) == 1) {
*(int8_t*)dest = (int8_t)x;
return !(strcmp(buf+j, "") == 0 || strcmp(buf+j, "i8") == 0);
} else {
return 1;
}
}
static int read_str_u8(char *buf, void* dest) {
// Some platforms (WINDOWS) does not support scanf %hhd or its
// cousin, %SCNu8. Read into int first to avoid corrupting
// memory.
//
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63417
remove_underscores(buf);
int j, x;
if (sscanf(buf, "%i%n", &x, &j) == 1) {
*(uint8_t*)dest = (uint8_t)x;
return !(strcmp(buf+j, "") == 0 || strcmp(buf+j, "u8") == 0);
} else {
return 1;
}
}
static int read_str_i16(char *buf, void* dest) {
READ_STR(SCNi16, int16_t, "i16");
}
static int read_str_u16(char *buf, void* dest) {
READ_STR(SCNi16, int16_t, "u16");
}
static int read_str_i32(char *buf, void* dest) {
READ_STR(SCNi32, int32_t, "i32");
}
static int read_str_u32(char *buf, void* dest) {
READ_STR(SCNi32, int32_t, "u32");
}
static int read_str_i64(char *buf, void* dest) {
READ_STR(SCNi64, int64_t, "i64");
}
static int read_str_u64(char *buf, void* dest) {
// FIXME: This is not correct, as SCNu64 only permits decimal
// literals. However, SCNi64 does not handle very large numbers
// correctly (it's really for signed numbers, so that's fair).
READ_STR(SCNu64, uint64_t, "u64");
}
static int read_str_f16(char *buf, void* dest) {
remove_underscores(buf);
if (strcmp(buf, "f16.nan") == 0) {
*(uint16_t*)dest = float2halfbits(NAN);
return 0;
} else if (strcmp(buf, "f16.inf") == 0) {
*(uint16_t*)dest = float2halfbits(INFINITY);
return 0;
} else if (strcmp(buf, "-f16.inf") == 0) {
*(uint16_t*)dest = float2halfbits(-INFINITY);
return 0;
} else {
int j;
float x;
if (sscanf(buf, "%f%n", &x, &j) == 1) {
if (strcmp(buf+j, "") == 0 || strcmp(buf+j, "f16") == 0) {
*(uint16_t*)dest = float2halfbits(x);
return 0;
}
}
return 1;
}
}
static int read_str_f32(char *buf, void* dest) {
remove_underscores(buf);
if (strcmp(buf, "f32.nan") == 0) {
*(float*)dest = (float)NAN;
return 0;
} else if (strcmp(buf, "f32.inf") == 0) {
*(float*)dest = (float)INFINITY;
return 0;
} else if (strcmp(buf, "-f32.inf") == 0) {
*(float*)dest = (float)-INFINITY;
return 0;
} else {
READ_STR("f", float, "f32");
}
}
static int read_str_f64(char *buf, void* dest) {
remove_underscores(buf);
if (strcmp(buf, "f64.nan") == 0) {
*(double*)dest = (double)NAN;
return 0;
} else if (strcmp(buf, "f64.inf") == 0) {
*(double*)dest = (double)INFINITY;
return 0;
} else if (strcmp(buf, "-f64.inf") == 0) {
*(double*)dest = (double)-INFINITY;
return 0;
} else {
READ_STR("lf", double, "f64");
}
}
static int read_str_bool(char *buf, void* dest) {
if (strcmp(buf, "true") == 0) {
*(char*)dest = 1;
return 0;
} else if (strcmp(buf, "false") == 0) {
*(char*)dest = 0;
return 0;
} else {
return 1;
}
}
static int write_str_i8(FILE *out, int8_t *src) {
return fprintf(out, "%hhdi8", *src);
}
static int write_str_u8(FILE *out, uint8_t *src) {
return fprintf(out, "%hhuu8", *src);
}
static int write_str_i16(FILE *out, int16_t *src) {
return fprintf(out, "%hdi16", *src);
}
static int write_str_u16(FILE *out, uint16_t *src) {
return fprintf(out, "%huu16", *src);
}
static int write_str_i32(FILE *out, int32_t *src) {
return fprintf(out, "%di32", *src);
}
static int write_str_u32(FILE *out, uint32_t *src) {
return fprintf(out, "%uu32", *src);
}
static int write_str_i64(FILE *out, int64_t *src) {
return fprintf(out, "%"PRIi64"i64", *src);
}
static int write_str_u64(FILE *out, uint64_t *src) {
return fprintf(out, "%"PRIu64"u64", *src);
}
static int write_str_f16(FILE *out, uint16_t *src) {
float x = halfbits2float(*src);
if (isnan(x)) {
return fprintf(out, "f16.nan");
} else if (isinf(x) && x >= 0) {
return fprintf(out, "f16.inf");
} else if (isinf(x)) {
return fprintf(out, "-f16.inf");
} else {
return fprintf(out, "%.*ff16", FLT_DIG, x);
}
}
static int write_str_f32(FILE *out, float *src) {
float x = *src;
if (isnan(x)) {
return fprintf(out, "f32.nan");
} else if (isinf(x) && x >= 0) {
return fprintf(out, "f32.inf");
} else if (isinf(x)) {
return fprintf(out, "-f32.inf");
} else {
return fprintf(out, "%.*ff32", FLT_DIG, x);
}
}
static int write_str_f64(FILE *out, double *src) {
double x = *src;
if (isnan(x)) {
return fprintf(out, "f64.nan");
} else if (isinf(x) && x >= 0) {
return fprintf(out, "f64.inf");
} else if (isinf(x)) {
return fprintf(out, "-f64.inf");
} else {
return fprintf(out, "%.*ff64", DBL_DIG, x);
}
}
static int write_str_bool(FILE *out, void *src) {
return fprintf(out, *(char*)src ? "true" : "false");
}
//// Binary I/O
#define BINARY_FORMAT_VERSION 2
#define IS_BIG_ENDIAN (!*(unsigned char *)&(uint16_t){1})
static void flip_bytes(size_t elem_size, unsigned char *elem) {
for (size_t j=0; j<elem_size/2; j++) {
unsigned char head = elem[j];
size_t tail_index = elem_size-1-j;
elem[j] = elem[tail_index];
elem[tail_index] = head;
}
}
// On Windows we need to explicitly set the file mode to not mangle
// newline characters. On *nix there is no difference.
#ifdef _WIN32
#include <io.h>
#include <fcntl.h>
static void set_binary_mode(FILE *f) {
setmode(fileno(f), O_BINARY);
}
#else
static void set_binary_mode(FILE *f) {
(void)f;
}
#endif
static int read_byte(FILE *f, void* dest) {
size_t num_elems_read = fread(dest, 1, 1, f);
return num_elems_read == 1 ? 0 : 1;
}
//// Types
struct primtype_info_t {
const char binname[4]; // Used for parsing binary data.
const char* type_name; // Same name as in Futhark.
const int64_t size; // in bytes
const writer write_str; // Write in text format.
const str_reader read_str; // Read in text format.
};
static const struct primtype_info_t i8_info =
{.binname = " i8", .type_name = "i8", .size = 1,
.write_str = (writer)write_str_i8, .read_str = (str_reader)read_str_i8};
static const struct primtype_info_t i16_info =
{.binname = " i16", .type_name = "i16", .size = 2,
.write_str = (writer)write_str_i16, .read_str = (str_reader)read_str_i16};
static const struct primtype_info_t i32_info =
{.binname = " i32", .type_name = "i32", .size = 4,
.write_str = (writer)write_str_i32, .read_str = (str_reader)read_str_i32};
static const struct primtype_info_t i64_info =
{.binname = " i64", .type_name = "i64", .size = 8,
.write_str = (writer)write_str_i64, .read_str = (str_reader)read_str_i64};
static const struct primtype_info_t u8_info =
{.binname = " u8", .type_name = "u8", .size = 1,
.write_str = (writer)write_str_u8, .read_str = (str_reader)read_str_u8};
static const struct primtype_info_t u16_info =
{.binname = " u16", .type_name = "u16", .size = 2,
.write_str = (writer)write_str_u16, .read_str = (str_reader)read_str_u16};
static const struct primtype_info_t u32_info =
{.binname = " u32", .type_name = "u32", .size = 4,
.write_str = (writer)write_str_u32, .read_str = (str_reader)read_str_u32};
static const struct primtype_info_t u64_info =
{.binname = " u64", .type_name = "u64", .size = 8,
.write_str = (writer)write_str_u64, .read_str = (str_reader)read_str_u64};
static const struct primtype_info_t f16_info =
{.binname = " f16", .type_name = "f16", .size = 2,
.write_str = (writer)write_str_f16, .read_str = (str_reader)read_str_f16};
static const struct primtype_info_t f32_info =
{.binname = " f32", .type_name = "f32", .size = 4,
.write_str = (writer)write_str_f32, .read_str = (str_reader)read_str_f32};
static const struct primtype_info_t f64_info =
{.binname = " f64", .type_name = "f64", .size = 8,
.write_str = (writer)write_str_f64, .read_str = (str_reader)read_str_f64};
static const struct primtype_info_t bool_info =
{.binname = "bool", .type_name = "bool", .size = 1,
.write_str = (writer)write_str_bool, .read_str = (str_reader)read_str_bool};
static const struct primtype_info_t* primtypes[] = {
&i8_info, &i16_info, &i32_info, &i64_info,
&u8_info, &u16_info, &u32_info, &u64_info,
&f16_info, &f32_info, &f64_info,
&bool_info,
NULL // NULL-terminated
};
// General value interface. All endian business taken care of at
// lower layers.
static int read_is_binary(FILE *f) {
skipspaces(f);
int c = getc(f);
if (c == 'b') {
int8_t bin_version;
int ret = read_byte(f, &bin_version);
if (ret != 0) { futhark_panic(1, "binary-input: could not read version.\n"); }
if (bin_version != BINARY_FORMAT_VERSION) {
futhark_panic(1, "binary-input: File uses version %i, but I only understand version %i.\n",
bin_version, BINARY_FORMAT_VERSION);
}
return 1;
}
ungetc(c, f);
return 0;
}
static const struct primtype_info_t* read_bin_read_type_enum(FILE *f) {
char read_binname[4];
int num_matched = fscanf(f, "%4c", read_binname);
if (num_matched != 1) { futhark_panic(1, "binary-input: Couldn't read element type.\n"); }
const struct primtype_info_t **type = primtypes;
for (; *type != NULL; type++) {
// I compare the 4 characters manually instead of using strncmp because
// this allows any value to be used, also NULL bytes
if (memcmp(read_binname, (*type)->binname, 4) == 0) {
return *type;
}
}
futhark_panic(1, "binary-input: Did not recognize the type '%s'.\n", read_binname);
return NULL;
}
static void read_bin_ensure_scalar(FILE *f, const struct primtype_info_t *expected_type) {
int8_t bin_dims;
int ret = read_byte(f, &bin_dims);
if (ret != 0) { futhark_panic(1, "binary-input: Couldn't get dims.\n"); }
if (bin_dims != 0) {
futhark_panic(1, "binary-input: Expected scalar (0 dimensions), but got array with %i dimensions.\n",
bin_dims);
}
const struct primtype_info_t *bin_type = read_bin_read_type_enum(f);
if (bin_type != expected_type) {
futhark_panic(1, "binary-input: Expected scalar of type %s but got scalar of type %s.\n",
expected_type->type_name,
bin_type->type_name);
}
}
//// High-level interface
static int read_bin_array(FILE *f,
const struct primtype_info_t *expected_type, void **data, int64_t *shape, int64_t dims) {
int ret;
int8_t bin_dims;
ret = read_byte(f, &bin_dims);
if (ret != 0) { futhark_panic(1, "binary-input: Couldn't get dims.\n"); }
if (bin_dims != dims) {
futhark_panic(1, "binary-input: Expected %i dimensions, but got array with %i dimensions.\n",
dims, bin_dims);
}
const struct primtype_info_t *bin_primtype = read_bin_read_type_enum(f);
if (expected_type != bin_primtype) {
futhark_panic(1, "binary-input: Expected %iD-array with element type '%s' but got %iD-array with element type '%s'.\n",
dims, expected_type->type_name, dims, bin_primtype->type_name);
}
int64_t elem_count = 1;
for (int i=0; i<dims; i++) {
int64_t bin_shape;
ret = (int)fread(&bin_shape, sizeof(bin_shape), 1, f);
if (ret != 1) {
futhark_panic(1, "binary-input: Couldn't read size for dimension %i of array.\n", i);
}
if (IS_BIG_ENDIAN) {
flip_bytes(sizeof(bin_shape), (unsigned char*) &bin_shape);
}
elem_count *= bin_shape;
shape[i] = bin_shape;
}
int64_t elem_size = expected_type->size;
void* tmp = realloc(*data, (size_t)(elem_count * elem_size));
if (tmp == NULL) {
futhark_panic(1, "binary-input: Failed to allocate array of size %i.\n",
elem_count * elem_size);
}
*data = tmp;
int64_t num_elems_read = (int64_t)fread(*data, (size_t)elem_size, (size_t)elem_count, f);
if (num_elems_read != elem_count) {
futhark_panic(1, "binary-input: tried to read %i elements of an array, but only got %i elements.\n",
elem_count, num_elems_read);
}
// If we're on big endian platform we must change all multibyte elements
// from using little endian to big endian
if (IS_BIG_ENDIAN && elem_size != 1) {
flip_bytes((size_t)elem_size, (unsigned char*) *data);
}
return 0;
}
static int read_array(FILE *f, const struct primtype_info_t *expected_type, void **data, int64_t *shape, int64_t dims) {
if (!read_is_binary(f)) {
return read_str_array(f, expected_type->size, (str_reader)expected_type->read_str, expected_type->type_name, data, shape, dims);
} else {
return read_bin_array(f, expected_type, data, shape, dims);
}
}
static int end_of_input(FILE *f) {
skipspaces(f);
char token[2];
next_token(f, token, sizeof(token));
if (strcmp(token, "") == 0) {
return 0;
} else {
return 1;
}
}
static int write_str_array(FILE *out,
const struct primtype_info_t *elem_type,
const unsigned char *data,
const int64_t *shape,
int8_t rank) {
if (rank==0) {
elem_type->write_str(out, (const void*)data);
} else {
int64_t len = (int64_t)shape[0];
int64_t slice_size = 1;
int64_t elem_size = elem_type->size;
for (int8_t i = 1; i < rank; i++) {
slice_size *= shape[i];
}
if (len*slice_size == 0) {
fprintf(out, "empty(");
for (int64_t i = 0; i < rank; i++) {
fprintf(out, "[%"PRIi64"]", shape[i]);
}
fprintf(out, "%s", elem_type->type_name);
fprintf(out, ")");
} else if (rank==1) {
fputc('[', out);
for (int64_t i = 0; i < len; i++) {
elem_type->write_str(out, (const void*) (data + i * elem_size));
if (i != len-1) {
fprintf(out, ", ");
}
}
fputc(']', out);
} else {
fputc('[', out);
for (int64_t i = 0; i < len; i++) {
write_str_array(out, elem_type, data + i * slice_size * elem_size, shape+1, rank-1);
if (i != len-1) {
fprintf(out, ", ");
}
}
fputc(']', out);
}
}
return 0;
}
static int write_bin_array(FILE *out,
const struct primtype_info_t *elem_type,
const unsigned char *data,
const int64_t *shape,
int8_t rank) {
int64_t num_elems = 1;
for (int64_t i = 0; i < rank; i++) {
num_elems *= shape[i];
}
fputc('b', out);
fputc((char)BINARY_FORMAT_VERSION, out);
fwrite(&rank, sizeof(int8_t), 1, out);
fwrite(elem_type->binname, 4, 1, out);
if (shape != NULL) {
fwrite(shape, sizeof(int64_t), (size_t)rank, out);
}
if (IS_BIG_ENDIAN) {
for (int64_t i = 0; i < num_elems; i++) {
const unsigned char *elem = data+i*elem_type->size;
for (int64_t j = 0; j < elem_type->size; j++) {
fwrite(&elem[elem_type->size-j], 1, 1, out);
}
}
} else {
fwrite(data, (size_t)elem_type->size, (size_t)num_elems, out);
}
return 0;
}
static int write_array(FILE *out, int write_binary,
const struct primtype_info_t *elem_type,
const void *data,
const int64_t *shape,
const int8_t rank) {
if (write_binary) {
return write_bin_array(out, elem_type, data, shape, rank);
} else {
return write_str_array(out, elem_type, data, shape, rank);
}
}
static int read_scalar(FILE *f,
const struct primtype_info_t *expected_type, void *dest) {
if (!read_is_binary(f)) {
char buf[100];
next_token(f, buf, sizeof(buf));
return expected_type->read_str(buf, dest);
} else {
read_bin_ensure_scalar(f, expected_type);
size_t elem_size = (size_t)expected_type->size;
size_t num_elems_read = fread(dest, elem_size, 1, f);
if (IS_BIG_ENDIAN) {
flip_bytes(elem_size, (unsigned char*) dest);
}
return num_elems_read == 1 ? 0 : 1;
}
}
static int write_scalar(FILE *out, int write_binary, const struct primtype_info_t *type, void *src) {
if (write_binary) {
return write_bin_array(out, type, src, NULL, 0);
} else {
return type->write_str(out, src);
}
}
// End of values.h.
|