File: opencl.py

package info (click to toggle)
haskell-futhark 0.25.32-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 18,236 kB
  • sloc: haskell: 100,484; ansic: 12,100; python: 3,440; yacc: 785; sh: 561; javascript: 558; lisp: 399; makefile: 277
file content (529 lines) | stat: -rw-r--r-- 15,769 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# Stub code for OpenCL setup.

import pyopencl as cl
import numpy as np
import sys

if cl.version.VERSION < (2015, 2):
    raise Exception(
        "Futhark requires at least PyOpenCL version 2015.2.  Installed version is %s."
        % cl.version.VERSION_TEXT
    )

TR_BLOCK_DIM = 16
TR_TILE_DIM = TR_BLOCK_DIM * 2
TR_ELEMS_PER_THREAD = 8


def parse_preferred_device(s):
    pref_num = 0
    if len(s) > 1 and s[0] == "#":
        i = 1
        while i < len(s):
            if not s[i].isdigit():
                break
            else:
                pref_num = pref_num * 10 + int(s[i])
            i += 1
        while i < len(s) and s[i].isspace():
            i += 1
        return (s[i:], pref_num)
    else:
        return (s, 0)


def get_prefered_context(
    interactive=False, platform_pref=None, device_pref=None
):
    if device_pref != None:
        (device_pref, device_num) = parse_preferred_device(device_pref)
    else:
        device_num = 0

    if interactive:
        return cl.create_some_context(interactive=True)

    def blacklisted(p, d):
        return (
            platform_pref == None
            and device_pref == None
            and p.name == "Apple"
            and d.name.find("Intel(R) Core(TM)") >= 0
        )

    def platform_ok(p):
        return not platform_pref or p.name.find(platform_pref) >= 0

    def device_ok(d):
        return not device_pref or d.name.find(device_pref) >= 0

    device_matches = 0

    for p in cl.get_platforms():
        if not platform_ok(p):
            continue
        for d in p.get_devices():
            if blacklisted(p, d) or not device_ok(d):
                continue
            if device_matches == device_num:
                return cl.Context(devices=[d])
            else:
                device_matches += 1
    raise Exception(
        "No OpenCL platform and device matching constraints found."
    )


def param_assignment(s):
    name, value = s.split("=")
    return (name, int(value))


def check_types(self, required_types):
    if "f64" in required_types:
        if (
            self.device.get_info(cl.device_info.PREFERRED_VECTOR_WIDTH_DOUBLE)
            == 0
        ):
            raise Exception(
                "Program uses double-precision floats, but this is not supported on chosen device: %s"
                % self.device.name
            )


def apply_size_heuristics(self, size_heuristics, sizes):
    for platform_name, device_type, size, valuef in size_heuristics:
        if (
            sizes[size] == None
            and self.platform.name.find(platform_name) >= 0
            and (self.device.type & device_type) == device_type
        ):
            sizes[size] = valuef(self.device)
    return sizes


def to_c_str_rep(x):
    if type(x) is bool or type(x) is np.bool_:
        if x:
            return "true"
        else:
            return "false"
    else:
        return str(x)


def initialise_opencl_object(
    self,
    program_src="",
    build_options=[],
    command_queue=None,
    interactive=False,
    platform_pref=None,
    device_pref=None,
    default_group_size=None,
    default_num_groups=None,
    default_tile_size=None,
    default_reg_tile_size=None,
    default_threshold=None,
    size_heuristics=[],
    required_types=[],
    all_sizes={},
    user_sizes={},
    constants=[],
):
    if command_queue is None:
        self.ctx = get_prefered_context(
            interactive, platform_pref, device_pref
        )
        self.queue = cl.CommandQueue(self.ctx)
    else:
        self.ctx = command_queue.context
        self.queue = command_queue
    self.device = self.queue.device
    self.platform = self.device.platform
    self.pool = cl.tools.MemoryPool(cl.tools.ImmediateAllocator(self.queue))
    device_type = self.device.type

    check_types(self, required_types)

    max_group_size = int(self.device.max_work_group_size)
    max_tile_size = int(np.sqrt(self.device.max_work_group_size))

    self.max_thread_block_size = max_group_size
    self.max_tile_size = max_tile_size
    self.max_threshold = 0
    self.max_grid_size = 0

    self.max_shared_memory = int(self.device.local_mem_size)

    # Futhark reserves 4 bytes of local memory for its own purposes.
    self.max_shared_memory -= 4

    # See comment in rts/c/opencl.h.
    if self.platform.name.find("NVIDIA CUDA") >= 0:
        self.max_shared_memory -= 12
    elif self.platform.name.find("AMD") >= 0:
        self.max_shared_memory -= 16

    self.max_registers = int(2**16)  # Not sure how to query for this.

    self.max_cache = self.device.get_info(cl.device_info.GLOBAL_MEM_CACHE_SIZE)

    if self.max_cache == 0:
        self.max_cache = 1024 * 1024

    self.free_list = {}

    self.global_failure = self.pool.allocate(np.int32().itemsize)
    cl.enqueue_fill_buffer(
        self.queue, self.global_failure, np.int32(-1), 0, np.int32().itemsize
    )
    self.global_failure_args = self.pool.allocate(
        np.int64().itemsize * (self.global_failure_args_max + 1)
    )
    self.failure_is_an_option = np.int32(0)

    if "default_group_size" in sizes:
        default_group_size = sizes["default_group_size"]
        del sizes["default_group_size"]

    if "default_num_groups" in sizes:
        default_num_groups = sizes["default_num_groups"]
        del sizes["default_num_groups"]

    if "default_tile_size" in sizes:
        default_tile_size = sizes["default_tile_size"]
        del sizes["default_tile_size"]

    if "default_reg_tile_size" in sizes:
        default_reg_tile_size = sizes["default_reg_tile_size"]
        del sizes["default_reg_tile_size"]

    if "default_threshold" in sizes:
        default_threshold = sizes["default_threshold"]
        del sizes["default_threshold"]

    default_group_size_set = default_group_size != None
    default_tile_size_set = default_tile_size != None
    default_sizes = apply_size_heuristics(
        self,
        size_heuristics,
        {
            "group_size": default_group_size,
            "tile_size": default_tile_size,
            "reg_tile_size": default_reg_tile_size,
            "num_groups": default_num_groups,
            "lockstep_width": None,
            "threshold": default_threshold,
        },
    )
    default_group_size = default_sizes["group_size"]
    default_num_groups = default_sizes["num_groups"]
    default_threshold = default_sizes["threshold"]
    default_tile_size = default_sizes["tile_size"]
    default_reg_tile_size = default_sizes["reg_tile_size"]
    lockstep_width = default_sizes["lockstep_width"]

    if default_group_size > max_group_size:
        if default_group_size_set:
            sys.stderr.write(
                "Note: Device limits group size to {} (down from {})\n".format(
                    max_tile_size, default_group_size
                )
            )
        default_group_size = max_group_size

    if default_tile_size > max_tile_size:
        if default_tile_size_set:
            sys.stderr.write(
                "Note: Device limits tile size to {} (down from {})\n".format(
                    max_tile_size, default_tile_size
                )
            )
        default_tile_size = max_tile_size

    for k, v in user_sizes.items():
        if k in all_sizes:
            all_sizes[k]["value"] = v
        else:
            raise Exception(
                "Unknown size: {}\nKnown sizes: {}".format(
                    k, " ".join(all_sizes.keys())
                )
            )

    self.sizes = {}
    for k, v in all_sizes.items():
        if v["class"] == "thread_block_size":
            max_value = max_group_size
            default_value = default_group_size
        elif v["class"] == "grid_size":
            max_value = max_group_size  # Intentional!
            default_value = default_num_groups
        elif v["class"] == "tile_size":
            max_value = max_tile_size
            default_value = default_tile_size
        elif v["class"] == "reg_tile_size":
            max_value = None
            default_value = default_reg_tile_size
        elif v["class"].startswith("shared_memory"):
            max_value = self.max_shared_memory
            default_value = self.max_shared_memory
        elif v["class"].startswith("cache"):
            max_value = self.max_cache
            default_value = self.max_cache
        elif v["class"].startswith("threshold"):
            max_value = None
            default_value = default_threshold
        else:
            # Bespoke sizes have no limit or default.
            max_value = None
        if v["value"] == None:
            self.sizes[k] = default_value
        elif max_value != None and v["value"] > max_value:
            sys.stderr.write(
                "Note: Device limits {} to {} (down from {}\n".format(
                    k, max_value, v["value"]
                )
            )
            self.sizes[k] = max_value
        else:
            self.sizes[k] = v["value"]

    # XXX: we perform only a subset of z-encoding here.  Really, the
    # compiler should provide us with the variables to which
    # parameters are mapped.
    if len(program_src) >= 0:
        build_options += ["-DLOCKSTEP_WIDTH={}".format(lockstep_width)]

        build_options += [
            "-D{}={}".format("max_thread_block_size", max_group_size)
        ]

        build_options += [
            "-D{}={}".format(
                s.replace("z", "zz")
                .replace(".", "zi")
                .replace("#", "zh")
                .replace("'", "zq"),
                v,
            )
            for (s, v) in self.sizes.items()
        ]

        build_options += [
            "-D{}={}".format(s, to_c_str_rep(f())) for (s, f) in constants
        ]

        if self.platform.name == "Oclgrind":
            build_options += ["-DEMULATE_F16"]

        build_options += [
            f"-DTR_BLOCK_DIM={TR_BLOCK_DIM}",
            f"-DTR_TILE_DIM={TR_TILE_DIM}",
            f"-DTR_ELEMS_PER_THREAD={TR_ELEMS_PER_THREAD}",
        ]

        program = cl.Program(self.ctx, program_src).build(build_options)

        self.transpose_kernels = {
            1: {
                "default": program.map_transpose_1b,
                "low_height": program.map_transpose_1b_low_height,
                "low_width": program.map_transpose_1b_low_width,
                "small": program.map_transpose_1b_small,
                "large": program.map_transpose_1b_large,
            },
            2: {
                "default": program.map_transpose_2b,
                "low_height": program.map_transpose_2b_low_height,
                "low_width": program.map_transpose_2b_low_width,
                "small": program.map_transpose_2b_small,
                "large": program.map_transpose_2b_large,
            },
            4: {
                "default": program.map_transpose_4b,
                "low_height": program.map_transpose_4b_low_height,
                "low_width": program.map_transpose_4b_low_width,
                "small": program.map_transpose_4b_small,
                "large": program.map_transpose_4b_large,
            },
            8: {
                "default": program.map_transpose_8b,
                "low_height": program.map_transpose_8b_low_height,
                "low_width": program.map_transpose_8b_low_width,
                "small": program.map_transpose_8b_small,
                "large": program.map_transpose_8b_large,
            },
        }

        self.copy_kernels = {
            1: program.lmad_copy_1b,
            2: program.lmad_copy_2b,
            4: program.lmad_copy_4b,
            8: program.lmad_copy_8b,
        }

        return program


def opencl_alloc(self, min_size, tag):
    min_size = 4 if min_size == 0 else min_size
    assert min_size > 0
    # Round up to a multiple of four.
    min_size = ((min_size + 3) // 4) * 4
    return self.pool.allocate(min_size)


def opencl_free_all(self):
    self.pool.free_held()


def sync(self):
    failure = np.empty(1, dtype=np.int32)
    cl.enqueue_copy(self.queue, failure, self.global_failure, is_blocking=True)
    self.failure_is_an_option = np.int32(0)
    if failure[0] >= 0:
        # Reset failure information.
        cl.enqueue_fill_buffer(
            self.queue,
            self.global_failure,
            np.int32(-1),
            0,
            np.int32().itemsize,
        )

        # Read failure args.
        failure_args = np.empty(
            self.global_failure_args_max + 1, dtype=np.int64
        )
        cl.enqueue_copy(
            self.queue,
            failure_args,
            self.global_failure_args,
            is_blocking=True,
        )

        raise Exception(self.failure_msgs[failure[0]].format(*failure_args))


def map_transpose_gpu2gpu(
    self, elem_size, dst, dst_offset, src, src_offset, k, n, m
):
    kernels = self.transpose_kernels[elem_size]
    kernel = kernels["default"]
    mulx = TR_BLOCK_DIM / n
    muly = TR_BLOCK_DIM / m

    group_dims = (TR_TILE_DIM, TR_TILE_DIM // TR_ELEMS_PER_THREAD, 1)
    dims = (
        (m + TR_TILE_DIM - 1) // TR_TILE_DIM * group_dims[0],
        (n + TR_TILE_DIM - 1) // TR_TILE_DIM * group_dims[1],
        k,
    )

    k32 = np.int32(k)
    n32 = np.int32(n)
    m32 = np.int32(m)
    mulx32 = np.int32(mulx)
    muly32 = np.int32(muly)

    kernel.set_args(
        cl.LocalMemory(TR_TILE_DIM * (TR_TILE_DIM + 1) * elem_size),
        dst,
        dst_offset,
        src,
        src_offset,
        k32,
        m32,
        n32,
        mulx32,
        muly32,
        np.int32(0),
        np.int32(0),
    )
    cl.enqueue_nd_range_kernel(self.queue, kernel, dims, group_dims)


def copy_elements_gpu2gpu(
    self,
    elem_size,
    dst,
    dst_offset,
    dst_strides,
    src,
    src_offset,
    src_strides,
    shape,
):
    r = len(shape)
    if r > 8:
        raise Exception(
            "Futhark runtime limitation:\nCannot copy array of greater than rank 8.\n"
        )

    n = np.prod(shape)
    zero = np.int64(0)
    layout_args = [None] * (8 * 3)
    for i in range(8):
        if i < r:
            layout_args[i * 3 + 0] = shape[i]
            layout_args[i * 3 + 1] = dst_strides[i]
            layout_args[i * 3 + 2] = src_strides[i]
        else:
            layout_args[i * 3 + 0] = zero
            layout_args[i * 3 + 1] = zero
            layout_args[i * 3 + 2] = zero

    kernel = self.copy_kernels[elem_size]
    kernel.set_args(
        cl.LocalMemory(1),
        dst,
        dst_offset,
        src,
        src_offset,
        n,
        np.int32(r),
        *layout_args,
    )
    w = 256
    dims = ((n + w - 1) // w * w,)
    group_dims = (w,)
    cl.enqueue_nd_range_kernel(self.queue, kernel, dims, group_dims)


def lmad_copy_gpu2gpu(
    self, pt, dst, dst_offset, dst_strides, src, src_offset, src_strides, shape
):
    elem_size = ct.sizeof(pt)
    nbytes = np.prod(shape) * elem_size
    if nbytes == 0:
        return None
    if lmad_memcpyable(dst_strides, src_strides, shape):
        cl.enqueue_copy(
            self.queue,
            dst,
            src,
            dst_offset=dst_offset * elem_size,
            src_offset=src_offset * elem_size,
            byte_count=nbytes,
        )
    else:
        tr = lmad_map_tr(dst_strides, src_strides, shape)
        if tr is not None:
            (k, n, m) = tr
            map_transpose_gpu2gpu(
                self, elem_size, dst, dst_offset, src, src_offset, k, m, n
            )
        else:
            copy_elements_gpu2gpu(
                self,
                elem_size,
                dst,
                dst_offset,
                dst_strides,
                src,
                src_offset,
                src_strides,
                shape,
            )