1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
# Stub code for OpenCL setup.
import pyopencl as cl
import numpy as np
import sys
if cl.version.VERSION < (2015, 2):
raise Exception(
"Futhark requires at least PyOpenCL version 2015.2. Installed version is %s."
% cl.version.VERSION_TEXT
)
TR_BLOCK_DIM = 16
TR_TILE_DIM = TR_BLOCK_DIM * 2
TR_ELEMS_PER_THREAD = 8
def parse_preferred_device(s):
pref_num = 0
if len(s) > 1 and s[0] == "#":
i = 1
while i < len(s):
if not s[i].isdigit():
break
else:
pref_num = pref_num * 10 + int(s[i])
i += 1
while i < len(s) and s[i].isspace():
i += 1
return (s[i:], pref_num)
else:
return (s, 0)
def get_prefered_context(
interactive=False, platform_pref=None, device_pref=None
):
if device_pref != None:
(device_pref, device_num) = parse_preferred_device(device_pref)
else:
device_num = 0
if interactive:
return cl.create_some_context(interactive=True)
def blacklisted(p, d):
return (
platform_pref == None
and device_pref == None
and p.name == "Apple"
and d.name.find("Intel(R) Core(TM)") >= 0
)
def platform_ok(p):
return not platform_pref or p.name.find(platform_pref) >= 0
def device_ok(d):
return not device_pref or d.name.find(device_pref) >= 0
device_matches = 0
for p in cl.get_platforms():
if not platform_ok(p):
continue
for d in p.get_devices():
if blacklisted(p, d) or not device_ok(d):
continue
if device_matches == device_num:
return cl.Context(devices=[d])
else:
device_matches += 1
raise Exception(
"No OpenCL platform and device matching constraints found."
)
def param_assignment(s):
name, value = s.split("=")
return (name, int(value))
def check_types(self, required_types):
if "f64" in required_types:
if (
self.device.get_info(cl.device_info.PREFERRED_VECTOR_WIDTH_DOUBLE)
== 0
):
raise Exception(
"Program uses double-precision floats, but this is not supported on chosen device: %s"
% self.device.name
)
def apply_size_heuristics(self, size_heuristics, sizes):
for platform_name, device_type, size, valuef in size_heuristics:
if (
sizes[size] == None
and self.platform.name.find(platform_name) >= 0
and (self.device.type & device_type) == device_type
):
sizes[size] = valuef(self.device)
return sizes
def to_c_str_rep(x):
if type(x) is bool or type(x) is np.bool_:
if x:
return "true"
else:
return "false"
else:
return str(x)
def initialise_opencl_object(
self,
program_src="",
build_options=[],
command_queue=None,
interactive=False,
platform_pref=None,
device_pref=None,
default_group_size=None,
default_num_groups=None,
default_tile_size=None,
default_reg_tile_size=None,
default_threshold=None,
size_heuristics=[],
required_types=[],
all_sizes={},
user_sizes={},
constants=[],
):
if command_queue is None:
self.ctx = get_prefered_context(
interactive, platform_pref, device_pref
)
self.queue = cl.CommandQueue(self.ctx)
else:
self.ctx = command_queue.context
self.queue = command_queue
self.device = self.queue.device
self.platform = self.device.platform
self.pool = cl.tools.MemoryPool(cl.tools.ImmediateAllocator(self.queue))
device_type = self.device.type
check_types(self, required_types)
max_group_size = int(self.device.max_work_group_size)
max_tile_size = int(np.sqrt(self.device.max_work_group_size))
self.max_thread_block_size = max_group_size
self.max_tile_size = max_tile_size
self.max_threshold = 0
self.max_grid_size = 0
self.max_shared_memory = int(self.device.local_mem_size)
# Futhark reserves 4 bytes of local memory for its own purposes.
self.max_shared_memory -= 4
# See comment in rts/c/opencl.h.
if self.platform.name.find("NVIDIA CUDA") >= 0:
self.max_shared_memory -= 12
elif self.platform.name.find("AMD") >= 0:
self.max_shared_memory -= 16
self.max_registers = int(2**16) # Not sure how to query for this.
self.max_cache = self.device.get_info(cl.device_info.GLOBAL_MEM_CACHE_SIZE)
if self.max_cache == 0:
self.max_cache = 1024 * 1024
self.free_list = {}
self.global_failure = self.pool.allocate(np.int32().itemsize)
cl.enqueue_fill_buffer(
self.queue, self.global_failure, np.int32(-1), 0, np.int32().itemsize
)
self.global_failure_args = self.pool.allocate(
np.int64().itemsize * (self.global_failure_args_max + 1)
)
self.failure_is_an_option = np.int32(0)
if "default_group_size" in sizes:
default_group_size = sizes["default_group_size"]
del sizes["default_group_size"]
if "default_num_groups" in sizes:
default_num_groups = sizes["default_num_groups"]
del sizes["default_num_groups"]
if "default_tile_size" in sizes:
default_tile_size = sizes["default_tile_size"]
del sizes["default_tile_size"]
if "default_reg_tile_size" in sizes:
default_reg_tile_size = sizes["default_reg_tile_size"]
del sizes["default_reg_tile_size"]
if "default_threshold" in sizes:
default_threshold = sizes["default_threshold"]
del sizes["default_threshold"]
default_group_size_set = default_group_size != None
default_tile_size_set = default_tile_size != None
default_sizes = apply_size_heuristics(
self,
size_heuristics,
{
"group_size": default_group_size,
"tile_size": default_tile_size,
"reg_tile_size": default_reg_tile_size,
"num_groups": default_num_groups,
"lockstep_width": None,
"threshold": default_threshold,
},
)
default_group_size = default_sizes["group_size"]
default_num_groups = default_sizes["num_groups"]
default_threshold = default_sizes["threshold"]
default_tile_size = default_sizes["tile_size"]
default_reg_tile_size = default_sizes["reg_tile_size"]
lockstep_width = default_sizes["lockstep_width"]
if default_group_size > max_group_size:
if default_group_size_set:
sys.stderr.write(
"Note: Device limits group size to {} (down from {})\n".format(
max_tile_size, default_group_size
)
)
default_group_size = max_group_size
if default_tile_size > max_tile_size:
if default_tile_size_set:
sys.stderr.write(
"Note: Device limits tile size to {} (down from {})\n".format(
max_tile_size, default_tile_size
)
)
default_tile_size = max_tile_size
for k, v in user_sizes.items():
if k in all_sizes:
all_sizes[k]["value"] = v
else:
raise Exception(
"Unknown size: {}\nKnown sizes: {}".format(
k, " ".join(all_sizes.keys())
)
)
self.sizes = {}
for k, v in all_sizes.items():
if v["class"] == "thread_block_size":
max_value = max_group_size
default_value = default_group_size
elif v["class"] == "grid_size":
max_value = max_group_size # Intentional!
default_value = default_num_groups
elif v["class"] == "tile_size":
max_value = max_tile_size
default_value = default_tile_size
elif v["class"] == "reg_tile_size":
max_value = None
default_value = default_reg_tile_size
elif v["class"].startswith("shared_memory"):
max_value = self.max_shared_memory
default_value = self.max_shared_memory
elif v["class"].startswith("cache"):
max_value = self.max_cache
default_value = self.max_cache
elif v["class"].startswith("threshold"):
max_value = None
default_value = default_threshold
else:
# Bespoke sizes have no limit or default.
max_value = None
if v["value"] == None:
self.sizes[k] = default_value
elif max_value != None and v["value"] > max_value:
sys.stderr.write(
"Note: Device limits {} to {} (down from {}\n".format(
k, max_value, v["value"]
)
)
self.sizes[k] = max_value
else:
self.sizes[k] = v["value"]
# XXX: we perform only a subset of z-encoding here. Really, the
# compiler should provide us with the variables to which
# parameters are mapped.
if len(program_src) >= 0:
build_options += ["-DLOCKSTEP_WIDTH={}".format(lockstep_width)]
build_options += [
"-D{}={}".format("max_thread_block_size", max_group_size)
]
build_options += [
"-D{}={}".format(
s.replace("z", "zz")
.replace(".", "zi")
.replace("#", "zh")
.replace("'", "zq"),
v,
)
for (s, v) in self.sizes.items()
]
build_options += [
"-D{}={}".format(s, to_c_str_rep(f())) for (s, f) in constants
]
if self.platform.name == "Oclgrind":
build_options += ["-DEMULATE_F16"]
build_options += [
f"-DTR_BLOCK_DIM={TR_BLOCK_DIM}",
f"-DTR_TILE_DIM={TR_TILE_DIM}",
f"-DTR_ELEMS_PER_THREAD={TR_ELEMS_PER_THREAD}",
]
program = cl.Program(self.ctx, program_src).build(build_options)
self.transpose_kernels = {
1: {
"default": program.map_transpose_1b,
"low_height": program.map_transpose_1b_low_height,
"low_width": program.map_transpose_1b_low_width,
"small": program.map_transpose_1b_small,
"large": program.map_transpose_1b_large,
},
2: {
"default": program.map_transpose_2b,
"low_height": program.map_transpose_2b_low_height,
"low_width": program.map_transpose_2b_low_width,
"small": program.map_transpose_2b_small,
"large": program.map_transpose_2b_large,
},
4: {
"default": program.map_transpose_4b,
"low_height": program.map_transpose_4b_low_height,
"low_width": program.map_transpose_4b_low_width,
"small": program.map_transpose_4b_small,
"large": program.map_transpose_4b_large,
},
8: {
"default": program.map_transpose_8b,
"low_height": program.map_transpose_8b_low_height,
"low_width": program.map_transpose_8b_low_width,
"small": program.map_transpose_8b_small,
"large": program.map_transpose_8b_large,
},
}
self.copy_kernels = {
1: program.lmad_copy_1b,
2: program.lmad_copy_2b,
4: program.lmad_copy_4b,
8: program.lmad_copy_8b,
}
return program
def opencl_alloc(self, min_size, tag):
min_size = 4 if min_size == 0 else min_size
assert min_size > 0
# Round up to a multiple of four.
min_size = ((min_size + 3) // 4) * 4
return self.pool.allocate(min_size)
def opencl_free_all(self):
self.pool.free_held()
def sync(self):
failure = np.empty(1, dtype=np.int32)
cl.enqueue_copy(self.queue, failure, self.global_failure, is_blocking=True)
self.failure_is_an_option = np.int32(0)
if failure[0] >= 0:
# Reset failure information.
cl.enqueue_fill_buffer(
self.queue,
self.global_failure,
np.int32(-1),
0,
np.int32().itemsize,
)
# Read failure args.
failure_args = np.empty(
self.global_failure_args_max + 1, dtype=np.int64
)
cl.enqueue_copy(
self.queue,
failure_args,
self.global_failure_args,
is_blocking=True,
)
raise Exception(self.failure_msgs[failure[0]].format(*failure_args))
def map_transpose_gpu2gpu(
self, elem_size, dst, dst_offset, src, src_offset, k, n, m
):
kernels = self.transpose_kernels[elem_size]
kernel = kernels["default"]
mulx = TR_BLOCK_DIM / n
muly = TR_BLOCK_DIM / m
group_dims = (TR_TILE_DIM, TR_TILE_DIM // TR_ELEMS_PER_THREAD, 1)
dims = (
(m + TR_TILE_DIM - 1) // TR_TILE_DIM * group_dims[0],
(n + TR_TILE_DIM - 1) // TR_TILE_DIM * group_dims[1],
k,
)
k32 = np.int32(k)
n32 = np.int32(n)
m32 = np.int32(m)
mulx32 = np.int32(mulx)
muly32 = np.int32(muly)
kernel.set_args(
cl.LocalMemory(TR_TILE_DIM * (TR_TILE_DIM + 1) * elem_size),
dst,
dst_offset,
src,
src_offset,
k32,
m32,
n32,
mulx32,
muly32,
np.int32(0),
np.int32(0),
)
cl.enqueue_nd_range_kernel(self.queue, kernel, dims, group_dims)
def copy_elements_gpu2gpu(
self,
elem_size,
dst,
dst_offset,
dst_strides,
src,
src_offset,
src_strides,
shape,
):
r = len(shape)
if r > 8:
raise Exception(
"Futhark runtime limitation:\nCannot copy array of greater than rank 8.\n"
)
n = np.prod(shape)
zero = np.int64(0)
layout_args = [None] * (8 * 3)
for i in range(8):
if i < r:
layout_args[i * 3 + 0] = shape[i]
layout_args[i * 3 + 1] = dst_strides[i]
layout_args[i * 3 + 2] = src_strides[i]
else:
layout_args[i * 3 + 0] = zero
layout_args[i * 3 + 1] = zero
layout_args[i * 3 + 2] = zero
kernel = self.copy_kernels[elem_size]
kernel.set_args(
cl.LocalMemory(1),
dst,
dst_offset,
src,
src_offset,
n,
np.int32(r),
*layout_args,
)
w = 256
dims = ((n + w - 1) // w * w,)
group_dims = (w,)
cl.enqueue_nd_range_kernel(self.queue, kernel, dims, group_dims)
def lmad_copy_gpu2gpu(
self, pt, dst, dst_offset, dst_strides, src, src_offset, src_strides, shape
):
elem_size = ct.sizeof(pt)
nbytes = np.prod(shape) * elem_size
if nbytes == 0:
return None
if lmad_memcpyable(dst_strides, src_strides, shape):
cl.enqueue_copy(
self.queue,
dst,
src,
dst_offset=dst_offset * elem_size,
src_offset=src_offset * elem_size,
byte_count=nbytes,
)
else:
tr = lmad_map_tr(dst_strides, src_strides, shape)
if tr is not None:
(k, n, m) = tr
map_transpose_gpu2gpu(
self, elem_size, dst, dst_offset, src, src_offset, k, m, n
)
else:
copy_elements_gpu2gpu(
self,
elem_size,
dst,
dst_offset,
dst_strides,
src,
src_offset,
src_strides,
shape,
)
|