1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Futhark.IR.Mem.IxFunTests
( tests,
)
where
import Data.Bifunctor
import Data.Function ((&))
import Data.List qualified as L
import Data.Map qualified as M
import Data.Text qualified as T
import Futhark.Analysis.PrimExp.Convert
import Futhark.IR.Mem.IxFun.Alg qualified as IxFunAlg
import Futhark.IR.Mem.IxFunWrapper
import Futhark.IR.Mem.IxFunWrapper qualified as IxFunWrap
import Futhark.IR.Mem.LMAD qualified as IxFunLMAD
import Futhark.IR.Prop
import Futhark.IR.Syntax
import Futhark.IR.Syntax.Core ()
import Futhark.Util.IntegralExp qualified as IE
import Futhark.Util.Pretty
import Test.Tasty
import Test.Tasty.HUnit
import Prelude hiding (span)
import Prelude qualified as P
instance IE.IntegralExp Int where
quot = P.quot
rem = P.rem
div = P.div
mod = P.mod
pow = (P.^)
sgn = Just . P.signum
allPoints :: [Int] -> [[Int]]
allPoints dims =
let total = product dims
strides = drop 1 $ L.reverse $ scanl (*) 1 $ L.reverse dims
in map (unflatInd strides) [0 .. total - 1]
where
unflatInd :: [Int] -> Int -> [Int]
unflatInd strides x =
fst $
foldl
( \(res, acc) span ->
(res ++ [acc `P.div` span], acc `P.mod` span)
)
([], x)
strides
compareIxFuns :: Maybe (IxFunLMAD.LMAD Int) -> IxFunAlg.IxFun Int -> Assertion
compareIxFuns (Just ixfunLMAD) ixfunAlg =
let lmadShape = IxFunLMAD.shape ixfunLMAD
algShape = IxFunAlg.shape ixfunAlg
points = allPoints lmadShape
resLMAD = map (IxFunLMAD.index ixfunLMAD) points
resAlg = map (IxFunAlg.index ixfunAlg) points
errorMessage =
T.unpack . docText $
"lmad ixfun: "
<> pretty ixfunLMAD
</> "alg ixfun: "
<> pretty ixfunAlg
</> "lmad shape: "
<> pretty lmadShape
</> "alg shape: "
<> pretty algShape
</> "lmad points length: "
<> pretty (length resLMAD)
</> "alg points length: "
<> pretty (length resAlg)
</> "lmad points: "
<> pretty resLMAD
</> "alg points: "
<> pretty resAlg
in (lmadShape == algShape && resLMAD == resAlg) @? errorMessage
compareIxFuns Nothing ixfunAlg =
assertFailure $
unlines
[ "lmad ixfun: Nothing",
"alg ixfun: " <> prettyString ixfunAlg
]
compareOps :: IxFunWrap.IxFun Int -> Assertion
compareOps (ixfunLMAD, ixfunAlg) = compareIxFuns ixfunLMAD ixfunAlg
compareOpsFailure :: IxFunWrap.IxFun Int -> Assertion
compareOpsFailure (Nothing, _) = pure ()
compareOpsFailure (Just ixfunLMAD, ixfunAlg) =
assertFailure . T.unpack . docText $
"Not supposed to be representable as LMAD."
</> "lmad ixfun: "
<> pretty ixfunLMAD
</> "alg ixfun: "
<> pretty ixfunAlg
-- XXX: Clean this up.
n :: Int
n = 19
slice3 :: Slice Int
slice3 =
Slice
[ DimSlice 2 (n `P.div` 3) 3,
DimFix (n `P.div` 2),
DimSlice 1 (n `P.div` 2) 2
]
-- Actual tests.
tests :: TestTree
tests =
testGroup "IxFunTests" $
concat
[ test_iota,
test_slice_iota,
test_slice_reshape_iota1,
test_permute_slice_iota,
test_reshape_iota,
test_reshape_permute_iota,
test_slice_reshape_iota2,
test_reshape_slice_iota3,
test_flatten_strided,
test_complex1,
test_complex2,
test_expand1,
test_expand2,
test_expand3,
test_expand4,
test_flatSlice_iota,
test_slice_flatSlice_iota,
test_flatSlice_flatSlice_iota,
test_flatSlice_slice_iota,
test_flatSlice_transpose_slice_iota
-- TODO: Without z3, these tests fail. Ideally, our internal simplifier
-- should be able to handle them:
--
-- test_disjoint3
]
singleton :: TestTree -> [TestTree]
singleton = (: [])
test_iota :: [TestTree]
test_iota =
singleton . testCase "iota" . compareOps $
iota [n]
test_slice_iota :: [TestTree]
test_slice_iota =
singleton . testCase "slice . iota" . compareOps $
slice (iota [n, n, n]) slice3
test_slice_reshape_iota1 :: [TestTree]
test_slice_reshape_iota1 =
singleton . testCase "slice . reshape . iota 1" . compareOps $
slice (reshape (iota [n, n, n]) [n `P.div` 2, n `P.div` 3, 1]) slice3
test_permute_slice_iota :: [TestTree]
test_permute_slice_iota =
singleton . testCase "permute . slice . iota" . compareOps $
permute (slice (iota [n, n, n]) slice3) [1, 0]
test_reshape_iota :: [TestTree]
test_reshape_iota =
-- This tests a pattern that occurs with ScalarSpace.
singleton . testCase "reshape . zeroslice . iota" . compareOps $
let s = Slice [DimSlice 0 n 0, DimSlice 0 n 1]
in reshape (slice (iota [n, n]) s) [1, n, 1, n]
test_reshape_permute_iota :: [TestTree]
test_reshape_permute_iota =
-- negative reshape test
singleton . testCase "reshape . permute . iota" . compareOpsFailure $
let newdims = [n * n, n]
in reshape (permute (iota [n, n, n]) [1, 2, 0]) newdims
test_slice_reshape_iota2 :: [TestTree]
test_slice_reshape_iota2 =
singleton . testCase "slice . reshape . iota 2" . compareOps $
let newdims = [n * n, n]
slc =
Slice
[ DimFix (n `P.div` 2),
DimSlice 0 n 1
]
in slice (reshape (iota [n, n, n, n]) newdims) slc
test_reshape_slice_iota3 :: [TestTree]
test_reshape_slice_iota3 =
-- negative reshape test
singleton . testCase "reshape . slice . iota 3" . compareOpsFailure $
let newdims = [n * n, n]
slc =
Slice
[ DimFix (n `P.div` 2),
DimSlice 0 n 1,
DimSlice 0 (n `P.div` 2) 1,
DimSlice 0 n 1
]
in reshape (slice (iota [n, n, n, n]) slc) newdims
-- Tests flattening something that is strided - this can occur after
-- memory expansion.
test_flatten_strided :: [TestTree]
test_flatten_strided =
singleton . testCase "reshape . fix . iota 3d" . compareOps $
let slc = Slice [DimSlice 0 n 1, DimSlice 0 2 1, DimFix 1]
in reshape (slice (iota [n, 2, n * n]) slc) [2 * 10]
test_complex1 :: [TestTree]
test_complex1 =
singleton . testCase "permute . slice . permute . slice . iota 1" . compareOps $
let slice33 =
Slice
[ DimSlice (n - 1) (n `P.div` 3) (-1),
DimSlice (n - 1) n (-1),
DimSlice (n - 1) n (-1),
DimSlice 0 n 1
]
ixfun = permute (slice (iota [n, n, n, n, n]) slice33) [3, 1, 2, 0]
m = n `P.div` 3
slice1 =
Slice
[ DimSlice 0 n 1,
DimSlice (n - 1) n (-1),
DimSlice (n - 1) n (-1),
DimSlice 1 (m - 2) (-1)
]
ixfun' = slice ixfun slice1
in ixfun'
test_complex2 :: [TestTree]
test_complex2 =
singleton . testCase "permute . slice . permute . slice . iota 2" . compareOps $
let slc2 =
Slice
[ DimFix (n `P.div` 2),
DimSlice (n - 1) (n `P.div` 3) (-1),
DimSlice (n - 1) n (-1),
DimSlice (n - 1) n (-1),
DimSlice 0 n 1
]
ixfun = permute (slice (iota [n, n, n, n, n]) slc2) [3, 1, 2, 0]
m = n `P.div` 3
slice1 =
Slice
[ DimSlice 0 n 1,
DimSlice (n - 1) n (-1),
DimSlice (n - 1) n (-1),
DimSlice 1 (m - 2) (-1)
]
ixfun' = slice ixfun slice1
in ixfun'
-- Imitates a case from memory expansion.
test_expand1 :: [TestTree]
test_expand1 =
[ testCase "expand . iota1d" . compareOps $
expand t nt (iota [n])
]
where
t = 3
nt = 7
-- Imitates another case from memory expansion.
test_expand2 :: [TestTree]
test_expand2 =
[ testCase "expand . iota2d" . compareOps $
expand t nt (iota [n, n])
]
where
t = 3
nt = 7
test_expand3 :: [TestTree]
test_expand3 =
[ testCase "expand . permute . iota2d" . compareOps $
expand t nt (permute (iota [n, n `div` 2]) [1, 0])
]
where
t = 3
nt = 7
test_expand4 :: [TestTree]
test_expand4 =
[ testCase "expand . slice . iota1d" . compareOps $
expand t nt (slice (iota [n]) (Slice [DimSlice (n `div` 2) (n `div` 2) 1]))
]
where
t = 3
nt = 7
test_flatSlice_iota :: [TestTree]
test_flatSlice_iota =
singleton . testCase "flatSlice . iota" . compareOps $
flatSlice (iota [n * n * n * n]) $
FlatSlice 2 [FlatDimIndex (n * 2) 4, FlatDimIndex n 3, FlatDimIndex 1 2]
test_slice_flatSlice_iota :: [TestTree]
test_slice_flatSlice_iota =
singleton . testCase "slice . flatSlice . iota " . compareOps $
slice (flatSlice (iota [2 + n * n * n]) flat_slice) $
Slice [DimFix 2, DimSlice 0 n 1, DimFix 0]
where
flat_slice = FlatSlice 2 [FlatDimIndex (n * n) 1, FlatDimIndex n 1, FlatDimIndex 1 1]
test_flatSlice_flatSlice_iota :: [TestTree]
test_flatSlice_flatSlice_iota =
singleton . testCase "flatSlice . flatSlice . iota " . compareOps $
flatSlice (flatSlice (iota [10 * 10]) flat_slice_1) flat_slice_2
where
flat_slice_1 = FlatSlice 17 [FlatDimIndex 3 27, FlatDimIndex 3 10, FlatDimIndex 3 1]
flat_slice_2 = FlatSlice 2 [FlatDimIndex 2 (-2)]
test_flatSlice_slice_iota :: [TestTree]
test_flatSlice_slice_iota =
singleton . testCase "flatSlice . slice . iota " . compareOps $
flatSlice (slice (iota [210, 100]) $ Slice [DimSlice 10 100 2, DimFix 10]) flat_slice_1
where
flat_slice_1 = FlatSlice 17 [FlatDimIndex 3 27, FlatDimIndex 3 10, FlatDimIndex 3 1]
test_flatSlice_transpose_slice_iota :: [TestTree]
test_flatSlice_transpose_slice_iota =
singleton . testCase "flatSlice . transpose . slice . iota " . compareOps $
flatSlice (permute (slice (iota [20, 20]) $ Slice [DimSlice 1 5 2, DimSlice 0 5 2]) [1, 0]) flat_slice_1
where
flat_slice_1 = FlatSlice 1 [FlatDimIndex 2 2]
-- test_disjoint2 :: [TestTree]
-- test_disjoint2 =
-- let add_nw64 = (+)
-- mul_nw64 = (*)
-- sub64 = (-)
-- vname s i = VName (nameFromString s) i
-- in [ let gtid_8472 = TPrimExp $ LeafExp (vname "gtid" 8472) $ IntType Int64
-- gtid_8473 = TPrimExp $ LeafExp (vname "gtid" 8473) $ IntType Int64
-- gtid_8474 = TPrimExp $ LeafExp (vname "gtid" 8474) $ IntType Int64
-- num_blocks_8284 = TPrimExp $ LeafExp (vname "num_blocks" 8284) $ IntType Int64
-- nonnegs = freeIn [gtid_8472, gtid_8473, gtid_8474, num_blocks_8284]
-- j_m_i_8287 :: TPrimExp Int64 VName
-- j_m_i_8287 = num_blocks_8284 - 1
-- lessthans :: [(VName, PrimExp VName)]
-- lessthans =
-- [ (head $ namesToList $ freeIn gtid_8472, untyped j_m_i_8287),
-- (head $ namesToList $ freeIn gtid_8473, untyped j_m_i_8287),
-- (head $ namesToList $ freeIn gtid_8474, untyped (16 :: TPrimExp Int64 VName))
-- ]
-- lm1 :: IxFunLMAD.LMAD (TPrimExp Int64 VName)
-- lm1 =
-- IxFunLMAD.LMAD
-- 256
-- [ IxFunLMAD.LMADDim 256 0 (sub64 (num_blocks_8284) 1) 0 ,
-- IxFunLMAD.LMADDim 1 0 16 1 ,
-- IxFunLMAD.LMADDim 16 0 16 2
-- ]
-- lm2 :: IxFunLMAD.LMAD (TPrimExp Int64 VName)
-- lm2 =
-- IxFunLMAD.LMAD
-- (add_nw64 (add_nw64 (add_nw64 (add_nw64 (mul_nw64 (256) (num_blocks_8284)) (256)) (mul_nw64 (gtid_8472) (mul_nw64 (256) (num_blocks_8284)))) (mul_nw64 (gtid_8473) (256))) (mul_nw64 (gtid_8474) (16)))
-- [IxFunLMAD.LMADDim 1 0 16 0 ]
-- in testCase (pretty lm1 <> " and " <> pretty lm2) $ IxFunLMAD.disjoint2 lessthans nonnegs lm1 lm2 @? "Failed"
-- ]
-- test_lessThanish :: [TestTree]
-- test_lessThanish =
-- [testCase "0 < 1" $ IxFunLMAD.lessThanish mempty mempty 0 1 @? "Failed"]
-- test_lessThanOrEqualish :: [TestTree]
-- test_lessThanOrEqualish =
-- [testCase "1 <= 1" $ IxFunLMAD.lessThanOrEqualish mempty mempty 1 1 @? "Failed"]
_test_disjoint3 :: [TestTree]
_test_disjoint3 =
let foo s = VName (nameFromString s)
add_nw64 = (+)
add64 = (+)
mul_nw64 = (*)
mul64 = (*)
sub64 = (-)
sdiv64 = IE.div
sub_nw64 = (-)
disjointTester asserts lessthans lm1 lm2 =
let nonnegs = map (`LeafExp` IntType Int64) $ namesToList $ freeIn lm1 <> freeIn lm2
scmap =
M.fromList $
map (\x -> (x, Prim $ IntType Int64)) $
namesToList $
freeIn lm1 <> freeIn lm2 <> freeIn lessthans <> freeIn asserts
in IxFunLMAD.disjoint3 scmap asserts lessthans nonnegs lm1 lm2
in [ testCase "lm1 and lm2" $
let lessthans =
[ ( i_12214,
sdiv64 (sub64 n_blab 1) block_size_12121
),
(gtid_12553, add64 1 i_12214)
]
& map (\(v, p) -> (head $ namesToList $ freeIn v, untyped p))
asserts =
[ untyped ((2 * block_size_12121 :: TPrimExp Int64 VName) .<. n_blab :: TPrimExp Bool VName),
untyped ((3 :: TPrimExp Int64 VName) .<. n_blab :: TPrimExp Bool VName)
]
block_size_12121 = TPrimExp $ LeafExp (foo "block_size" 12121) $ IntType Int64
i_12214 = TPrimExp $ LeafExp (foo "i" 12214) $ IntType Int64
n_blab = TPrimExp $ LeafExp (foo "n" 1337) $ IntType Int64
gtid_12553 = TPrimExp $ LeafExp (foo "gtid" 12553) $ IntType Int64
lm1 =
IxFunLMAD.LMAD
(add_nw64 (mul64 block_size_12121 i_12214) (mul_nw64 (add_nw64 gtid_12553 1) (sub64 (mul64 block_size_12121 n_blab) block_size_12121)))
[ IxFunLMAD.LMADDim (add_nw64 (mul_nw64 block_size_12121 n_blab) (mul_nw64 (-1) block_size_12121)) (sub_nw64 (sub_nw64 (add64 1 i_12214) gtid_12553) 1),
IxFunLMAD.LMADDim 1 (block_size_12121 + 1)
]
lm2 =
IxFunLMAD.LMAD
(block_size_12121 * i_12214)
[ IxFunLMAD.LMADDim (add_nw64 (mul_nw64 block_size_12121 n_blab) (mul_nw64 (-1) block_size_12121)) gtid_12553,
IxFunLMAD.LMADDim 1 (1 + block_size_12121)
]
lm_w =
IxFunLMAD.LMAD
(add_nw64 (add64 (add64 1 n_blab) (mul64 block_size_12121 i_12214)) (mul_nw64 gtid_12553 (sub64 (mul64 block_size_12121 n_blab) block_size_12121)))
[ IxFunLMAD.LMADDim n_blab block_size_12121,
IxFunLMAD.LMADDim 1 block_size_12121
]
lm_blocks =
IxFunLMAD.LMAD
(block_size_12121 * i_12214 + n_blab + 1)
[ IxFunLMAD.LMADDim (add_nw64 (mul_nw64 block_size_12121 n_blab) (mul_nw64 (-1) block_size_12121)) (i_12214 + 1),
IxFunLMAD.LMADDim n_blab block_size_12121,
IxFunLMAD.LMADDim 1 block_size_12121
]
lm_lower_per =
IxFunLMAD.LMAD
(block_size_12121 * i_12214)
[ IxFunLMAD.LMADDim (add_nw64 (mul_nw64 block_size_12121 n_blab) (mul_nw64 (-1) block_size_12121)) (i_12214 + 1),
IxFunLMAD.LMADDim 1 (block_size_12121 + 1)
]
res1 = disjointTester asserts lessthans lm1 lm_w
res2 = disjointTester asserts lessthans lm2 lm_w
res3 = disjointTester asserts lessthans lm_lower_per lm_blocks
in res1 && res2 && res3 @? "Failed",
testCase "nw second half" $ do
let lessthans =
[ ( i_12214,
sdiv64 (sub64 n_blab 1) block_size_12121
),
(gtid_12553, add64 1 i_12214)
]
& map (\(v, p) -> (head $ namesToList $ freeIn v, untyped p))
asserts =
[ untyped ((2 * block_size_12121 :: TPrimExp Int64 VName) .<. n_blab :: TPrimExp Bool VName),
untyped ((3 :: TPrimExp Int64 VName) .<. n_blab :: TPrimExp Bool VName)
]
block_size_12121 = TPrimExp $ LeafExp (foo "block_size" 12121) $ IntType Int64
i_12214 = TPrimExp $ LeafExp (foo "i" 12214) $ IntType Int64
n_blab = TPrimExp $ LeafExp (foo "n" 1337) $ IntType Int64
gtid_12553 = TPrimExp $ LeafExp (foo "gtid" 12553) $ IntType Int64
lm1 =
IxFunLMAD.LMAD
(add_nw64 (add64 n_blab (sub64 (sub64 (mul64 n_blab (add64 1 (mul64 block_size_12121 (add64 1 i_12214)))) block_size_12121) 1)) (mul_nw64 (add_nw64 gtid_12553 1) (sub64 (mul64 block_size_12121 n_blab) block_size_12121)))
[ IxFunLMAD.LMADDim (add_nw64 (mul_nw64 block_size_12121 n_blab) (mul_nw64 (-1) block_size_12121)) (sub_nw64 (sub_nw64 (sub64 (sub64 (sdiv64 (sub64 n_blab 1) block_size_12121) i_12214) 1) gtid_12553) 1),
IxFunLMAD.LMADDim n_blab block_size_12121
]
lm2 =
IxFunLMAD.LMAD
(add_nw64 (sub64 (sub64 (mul64 n_blab (add64 1 (mul64 block_size_12121 (add64 1 i_12214)))) block_size_12121) 1) (mul_nw64 (add_nw64 gtid_12553 1) (sub64 (mul64 block_size_12121 n_blab) block_size_12121)))
[ IxFunLMAD.LMADDim (add_nw64 (mul_nw64 block_size_12121 n_blab) (mul_nw64 (-1) block_size_12121)) (sub_nw64 (sub_nw64 (sub64 (sub64 (sdiv64 (sub64 n_blab 1) block_size_12121) i_12214) 1) gtid_12553) 1),
IxFunLMAD.LMADDim 1 (1 + block_size_12121)
]
lm3 =
IxFunLMAD.LMAD
(add64 n_blab (sub64 (sub64 (mul64 n_blab (add64 1 (mul64 block_size_12121 (add64 1 i_12214)))) block_size_12121) 1))
[ IxFunLMAD.LMADDim (add_nw64 (mul_nw64 block_size_12121 n_blab) (mul_nw64 (-1) block_size_12121)) gtid_12553,
IxFunLMAD.LMADDim n_blab block_size_12121
]
lm4 =
IxFunLMAD.LMAD
(sub64 (sub64 (mul64 n_blab (add64 1 (mul64 block_size_12121 (add64 1 i_12214)))) block_size_12121) 1)
[ IxFunLMAD.LMADDim
(add_nw64 (mul_nw64 block_size_12121 n_blab) (mul_nw64 (-1) block_size_12121))
gtid_12553,
IxFunLMAD.LMADDim
1
(1 + block_size_12121)
]
lm_w =
IxFunLMAD.LMAD
(add_nw64 (sub64 (mul64 n_blab (add64 2 (mul64 block_size_12121 (add64 1 i_12214)))) block_size_12121) (mul_nw64 gtid_12553 (sub64 (mul64 block_size_12121 n_blab) block_size_12121)))
[ IxFunLMAD.LMADDim n_blab block_size_12121,
IxFunLMAD.LMADDim 1 block_size_12121
]
res1 = disjointTester asserts lessthans lm1 lm_w
res2 = disjointTester asserts lessthans lm2 lm_w
res3 = disjointTester asserts lessthans lm3 lm_w
res4 = disjointTester asserts lessthans lm4 lm_w
in res1 && res2 && res3 && res4 @? "Failed " <> show [res1, res2, res3, res4],
testCase "lud long" $
let lessthans =
[ bimap
(head . namesToList . freeIn)
untyped
(step, num_blocks - 1 :: TPrimExp Int64 VName)
]
step = TPrimExp $ LeafExp (foo "step" 1337) $ IntType Int64
num_blocks = TPrimExp $ LeafExp (foo "n" 1338) $ IntType Int64
lm1 =
IxFunLMAD.LMAD
(1024 * num_blocks * (1 + step) + 1024 * step)
[ IxFunLMAD.LMADDim (1024 * num_blocks) (num_blocks - step - 1),
IxFunLMAD.LMADDim 32 32,
IxFunLMAD.LMADDim 1 32
]
lm_w1 =
IxFunLMAD.LMAD
(1024 * num_blocks * step + 1024 * step)
[ IxFunLMAD.LMADDim 32 32,
IxFunLMAD.LMADDim 1 32
]
lm_w2 =
IxFunLMAD.LMAD
((1 + step) * 1024 * num_blocks + (1 + step) * 1024)
[ IxFunLMAD.LMADDim (1024 * num_blocks) (num_blocks - step - 1),
IxFunLMAD.LMADDim 1024 (num_blocks - step - 1),
IxFunLMAD.LMADDim 1024 1,
IxFunLMAD.LMADDim 32 1,
IxFunLMAD.LMADDim 128 8,
IxFunLMAD.LMADDim 4 8,
IxFunLMAD.LMADDim 32 4,
IxFunLMAD.LMADDim 1 4
]
asserts =
[ untyped ((1 :: TPrimExp Int64 VName) .<. num_blocks :: TPrimExp Bool VName)
]
res1 = disjointTester asserts lessthans lm1 lm_w1
res2 = disjointTester asserts lessthans lm1 lm_w2
in res1 && res2 @? "Failed"
]
|