1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
module Language.Futhark.TypeChecker.TypesTests (tests) where
import Data.Bifunctor
import Data.List (isInfixOf)
import Data.Map qualified as M
import Data.Text qualified as T
import Futhark.FreshNames
import Futhark.Util.Pretty (docText, prettyTextOneLine)
import Language.Futhark
import Language.Futhark.Semantic
import Language.Futhark.SyntaxTests ()
import Language.Futhark.TypeChecker (initialEnv)
import Language.Futhark.TypeChecker.Monad
import Language.Futhark.TypeChecker.Names (resolveTypeExp)
import Language.Futhark.TypeChecker.Terms
import Language.Futhark.TypeChecker.Types
import Test.Tasty
import Test.Tasty.HUnit
evalTest :: TypeExp (ExpBase NoInfo Name) Name -> Either String ([VName], ResRetType) -> TestTree
evalTest te expected =
testCase (prettyString te) $
case (fmap (extract . fst) (run (checkTypeExp checkSizeExp =<< resolveTypeExp te)), expected) of
(Left got_e, Left expected_e) ->
let got_e_s = T.unpack $ docText $ prettyTypeError got_e
in (expected_e `isInfixOf` got_e_s) @? got_e_s
(Left got_e, Right _) ->
let got_e_s = T.unpack $ docText $ prettyTypeError got_e
in assertFailure $ "Failed: " <> got_e_s
(Right actual_t, Right expected_t) ->
actual_t @?= expected_t
(Right actual_t, Left _) ->
assertFailure $ "Expected error, got: " <> show actual_t
where
extract (_, svars, t, _) = (svars, t)
run = snd . runTypeM env mempty (mkInitialImport "") (newNameSource 100)
-- We hack up an environment with some predefined type
-- abbreviations for testing. This is all pretty sensitive to the
-- specific unique names, so we have to be careful!
env =
initialEnv
{ envTypeTable =
M.fromList
[ ( "square_1000",
TypeAbbr
Unlifted
[TypeParamDim "n_1001" mempty]
"[n_1001][n_1001]i32"
),
( "fun_1100",
TypeAbbr
Lifted
[ TypeParamType Lifted "a_1101" mempty,
TypeParamType Lifted "b_1102" mempty
]
"a_1101 -> b_1102"
),
( "pair_1200",
TypeAbbr
SizeLifted
[]
"?[n_1201][m_1202].([n_1201]i64, [m_1202]i64)"
)
]
<> envTypeTable initialEnv,
envNameMap =
M.fromList
[ ((Type, "square"), "square_1000"),
((Type, "fun"), "fun_1100"),
((Type, "pair"), "pair_1200")
]
<> envNameMap initialEnv
}
evalTests :: TestTree
evalTests =
testGroup
"Type expression elaboration"
[ testGroup "Positive tests" (map mkPos pos),
testGroup "Negative tests" (map mkNeg neg)
]
where
mkPos (x, y) = evalTest x (Right y)
mkNeg (x, y) = evalTest x (Left y)
pos =
[ ( "[]i32",
([], "?[d_100].[d_100]i32")
),
( "[][]i32",
([], "?[d_100][d_101].[d_100][d_101]i32")
),
( "bool -> []i32",
([], "bool -> ?[d_100].[d_100]i32")
),
( "bool -> []f32 -> []i32",
(["d_100"], "bool -> [d_100]f32 -> ?[d_101].[d_101]i32")
),
( "([]i32,[]i32)",
([], "?[d_100][d_101].([d_100]i32, [d_101]i32)")
),
( "{a:[]i32,b:[]i32}",
([], "?[d_100][d_101].{a:[d_100]i32, b:[d_101]i32}")
),
( "?[n].[n][n]bool",
([], "?[n_100].[n_100][n_100]bool")
),
( "([]i32 -> []i32) -> bool -> []i32",
(["d_100"], "([d_100]i32 -> ?[d_101].[d_101]i32) -> bool -> ?[d_102].[d_102]i32")
),
( "((k: i64) -> [k]i32 -> [k]i32) -> []i32 -> bool",
(["d_101"], "((k_100: i64) -> [k_100]i32 -> [k_100]i32) -> [d_101]i32 -> bool")
),
( "square [10]",
([], "[10][10]i32")
),
( "square []",
([], "?[d_100].[d_100][d_100]i32")
),
( "bool -> square []",
([], "bool -> ?[d_100].[d_100][d_100]i32")
),
( "(k: i64) -> square [k]",
([], "(k_100: i64) -> [k_100][k_100]i32")
),
( "fun i32 bool",
([], "i32 -> bool")
),
( "fun ([]i32) bool",
([], "?[d_100].[d_100]i32 -> bool")
),
( "fun bool ([]i32)",
([], "?[d_100].bool -> [d_100]i32")
),
( "bool -> fun ([]i32) bool",
([], "bool -> ?[d_100].[d_100]i32 -> bool")
),
( "bool -> fun bool ([]i32)",
([], "bool -> ?[d_100].bool -> [d_100]i32")
),
( "pair",
([], "?[n_100][m_101].([n_100]i64, [m_101]i64)")
),
( "(pair,pair)",
([], "?[n_100][m_101][n_102][m_103].(([n_100]i64, [m_101]i64), ([n_102]i64, [m_103]i64))")
)
]
neg =
[ ("?[n].bool", "Existential size \"n\""),
("?[n].bool -> [n]bool", "Existential size \"n\""),
("?[n].[n]bool -> [n]bool", "Existential size \"n\""),
("?[n].[n]bool -> bool", "Existential size \"n\"")
]
substTest :: M.Map VName (Subst StructRetType) -> StructRetType -> StructRetType -> TestTree
substTest m t expected =
testCase (pretty_m <> ": " <> T.unpack (prettyTextOneLine t)) $
applySubst (`M.lookup` m) t @?= expected
where
pretty_m = T.unpack $ prettyText $ map (first toName) $ M.toList m
-- Some of these tests may be a bit fragile, in that they depend on
-- internal renumbering, which can be arbitrary.
substTests :: TestTree
substTests =
testGroup
"Type substitution"
[ substTest m0 "t_0" "i64",
substTest m0 "[1]t_0" "[1]i64",
substTest m0 "?[n_10].[n_10]t_0" "?[n_10].[n_10]i64",
--
substTest m1 "t_0" "?[n_1].[n_1]bool",
substTest m1 "f32 -> t_0" "f32 -> ?[n_1].[n_1]bool",
substTest m1 "f32 -> f64 -> t_0" "f32 -> f64 -> ?[n_1].[n_1]bool",
substTest m1 "f32 -> t_0 -> bool" "?[n_1].f32 -> [n_1]bool -> bool",
substTest m1 "f32 -> t_0 -> t_0" "?[n_1].f32 -> [n_1]bool -> ?[n_2].[n_2]bool"
]
where
m0 =
M.fromList [("t_0", Subst [] "i64")]
m1 =
M.fromList [("t_0", Subst [] "?[n_1].[n_1]bool")]
tests :: TestTree
tests = testGroup "Basic type operations" [evalTests, substTests]
|