File: plot-bench.py

package info (click to toggle)
haskell-futhark 0.25.32-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 18,236 kB
  • sloc: haskell: 100,484; ansic: 12,100; python: 3,440; yacc: 785; sh: 561; javascript: 558; lisp: 399; makefile: 277
file content (716 lines) | stat: -rwxr-xr-x 21,543 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
#!/usr/bin/env python3

from cycler import cycler
import sys
import argparse
import matplotlib.pyplot as plt  # type: ignore
import matplotlib
import numpy as np
import json
import os
import pathlib
import textwrap
import re
import time
import random
import string
from matplotlib.ticker import FormatStrFormatter
from multiprocessing import Pool
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, List, Tuple, NamedTuple, Set
from itertools import islice
from PIL import ImageFile
from collections import OrderedDict

assert sys.version_info >= (3, 9), "Use Python 3.9 or newer."
ImageFile.LOAD_TRUNCATED_IMAGES = True


CSS = """
h1 { font-size: 30px; }
h2 { font-size: 22px; }
h3 { font-size: 18px; }
h1, h2, h3 {
  background-color: #5f021f;
  color: #ffffff;
}
h3 { width: 50%; }
h1 a, h1 a:visited, h2 a, h2 a:visited, h3 a, h3 a:visited {
  color: #fff9e5;
  text-decoration: none;
}
img { width: 25% }
body {
    font-family: sans-serif;
    padding: 0px;
    margin: 0px;
    margin-left: auto;
    margin-right: auto;
    overflow-y: scroll;
    line-height: 1.7;
}
section        { border: 2px solid transparent; }
section:target { border: 2px solid black; }
"""


class PlotJob(NamedTuple):
    program_path: str
    program: str
    dataset: str
    benchmark_result: Dict[str, Any]
    plots: Dict[str, str]


def mpe(runtimes: Optional[np.ndarray[Any, Any]] = None, **kwargs) -> str:
    """Computes the Mean percentage error and formats for printing."""

    if runtimes is None:
        raise Exception(f"runtimes has to be not None.")

    factor = 100 / runtimes.shape[0]
    mpe = factor * ((runtimes - runtimes.mean()) / runtimes).sum()
    return f"{mpe:.5f}%"


def memory_usage(bytes: Optional[Dict[str, int]] = None, **kwargs) -> str:
    """Computes the memory usages of devices and formats for printing."""

    if bytes is None:
        raise Exception(f"bytes has to be not None.")

    def formatter(device: str, bs: int) -> str:
        return f"{format_bytes(bs)}@{device}"

    return ", ".join(map(lambda a: formatter(*a), bytes.items()))


def confidence_interval(
    runtimes: Optional[np.ndarray[Any, Any]] = None, **kwargs
) -> str:
    """Computes the 95% confidence interval and formats for printing."""

    if runtimes is None:
        raise Exception(f"runtimes has to be not None.")

    mean = runtimes.mean()
    bound = 0.95 * runtimes.std(ddof=1) / np.sqrt(runtimes.shape[0])
    return f"[{format_time(mean - bound)}; {format_time(mean + bound)}]"


# Here other descriptors can be added.
DESCRIPTORS = {
    "Mean Percentage Error": mpe,
    "Memory Usage": memory_usage,
    "95% Confidence Interval": confidence_interval,
}


def random_string(size: int) -> str:
    """Creates a random alphanumeric string of a given size."""
    letters = string.ascii_letters + string.digits
    return "".join(random.choice(letters) for _ in range(size))


def format_bytes(x: int) -> str:
    """Tries to find a suitable unit for input x given in bytes."""

    units = [
        ("TiB", 1 / (1024**4)),
        ("GiB", 1 / (1024**3)),
        ("MiB", 1 / (1024**2)),
        ("KiB", 1 / 1024),
        ("bytes", 1),
    ]

    for unit, factor in units:
        temp = factor * x
        if temp > 1:
            return f"{temp:.2f}{unit}"

    return f"{x * units[-1][1]:.2f}{units[-1][0]}"


def format_time(x: int) -> str:
    """Tries to find a suitable time unit for input x."""

    units = [
        ("h", 1 / (60 * 60 * 10**6)),
        ("min", 1 / (60 * 10**6)),
        ("s", 10 ** (-6)),
        ("ms", 10 ** (-3)),
        ("µs", 1),
    ]

    for unit, factor in units:
        temp = factor * x
        if temp > 1:
            return f"{temp:.2f}{unit}"

    return f"{x * units[-1][1]:.2f}{units[-1][0]}"


class PlotType(ABC):
    @abstractmethod
    def plot(self, ax, **kwargs) -> None:
        """Method used to create a plot."""
        raise NotImplementedError()

    @classmethod
    @abstractmethod
    def name(cls) -> str:
        """The name of the plot."""
        raise NotImplementedError()

    def __eq__(self, other) -> bool:
        return self.name() == other.name()

    def __lt__(self, other) -> bool:
        return self.name() < other.name()

    @classmethod
    def find_str_formatter(cls, z) -> Tuple[FormatStrFormatter, float]:
        """
        Tries to find a suitable time unit for the given numpy array. The
        scaling factor is returned and a string formatter for matplotlib axis
        using the suitable unit is returned.
        """
        units = [
            (FormatStrFormatter("$%.2fh$"), 1 / (60 * 60 * 10**6)),
            (FormatStrFormatter("$%.2fmin$"), 1 / (60 * 10**6)),
            (FormatStrFormatter("$%.2fs$"), 10 ** (-6)),
            (FormatStrFormatter("$%.2fms$"), 10 ** (-3)),
            (FormatStrFormatter("$%.2f\\mu s$"), 1.0),
        ]

        for unit, factor in units:
            if factor * z.max() > 1:
                return unit, factor

        return units[-1][0], units[-1][1]


PLOT_TYPES_USED: List[str]


class PerRun(PlotType):
    """Create a plot with runtime vs iteration number as plot."""

    def plot(self, ax, runtimes=None, **kwargs) -> None:
        ax.set_title("Per Runtime")
        x = np.arange(len(runtimes))
        y = runtimes
        formatter, factor = PerRun.find_str_formatter(y)
        y = y * factor
        runtimes = ax.scatter(x, y, marker=".")
        ax.legend([runtimes], ["Runtimes"])
        ax.xaxis.set_tick_params(rotation=45)
        ax.yaxis.set_major_formatter(formatter)
        ax.set_ylabel("Runtime")
        ax.set_xlabel("$i$th Runtime")
        ax.grid()

    @classmethod
    def name(cls) -> str:
        return "per_run"


class CumsumPerRun(PlotType):
    """Create a plot with cumulative runtime vs iteration number as plot."""

    def plot(self, ax, runtimes=None, **kwargs) -> None:
        ax.set_title("Cumulative runtime")
        x = np.arange(len(runtimes))
        y = np.cumsum(runtimes)
        formatter, factor = CumsumPerRun.find_str_formatter(y)
        y = y * factor
        X = np.vstack([x, np.ones(len(x))]).T
        slope, intercept = np.linalg.lstsq(X, y, rcond=None)[0]
        ax.scatter(x, y, marker=".")
        ax.xaxis.set_tick_params(rotation=45)
        ax.plot(x, slope * x + intercept, color="black")
        ax.set_ylabel("Cumulative Runtime")
        ax.set_xlabel("$i$th Runtime")
        ax.yaxis.set_major_formatter(formatter)
        ax.grid()

    @classmethod
    def name(cls) -> str:
        return "cumsum_per_run"


class RuntimeDensities(PlotType):
    """Creates a plots the probability density of the runtimes."""

    def plot(self, ax, runtimes=None, **kwargs) -> None:
        ax.set_title("Runtime Densities")
        bincount = np.trim_zeros(np.bincount(runtimes))
        y = bincount / len(runtimes)
        x = np.arange(runtimes.min(), runtimes.max() + 1)
        formatter, factor = RuntimeDensities.find_str_formatter(x)
        x = x * factor
        ax.xaxis.set_tick_params(rotation=45)
        ax.xaxis.set_major_formatter(formatter)
        mean = ax.axvline(x=runtimes.mean() * factor, color="k", label="mean")
        ymin = y.min()
        ymax = y.max()
        padding = abs(ymax - ymin) * 0.05
        ax.set_ylim(ymin - padding, ymax + padding)
        ax.legend([mean], ["Mean Runtime"])
        ax.set_xlabel("Runtime")
        ax.set_ylabel("Density")
        ax.plot(x, y, linestyle="-")
        ax.grid()

    @classmethod
    def name(cls) -> str:
        return "runtime_densities"


class LagPlot(PlotType):
    """
    Creates a lag plot where given some runtimes it copies the array and
    shifts them by one and then plots the two data points vs each other.
    """

    def plot(self, ax, runtimes=None, **kwargs) -> None:
        ax.set_title("Lag Plot")
        x = runtimes
        formatter, factor = LagPlot.find_str_formatter(x)
        x = x * factor
        y = np.roll(x, 1)
        ax.yaxis.set_major_formatter(formatter)
        ax.xaxis.set_major_formatter(formatter)
        ax.xaxis.set_tick_params(rotation=45)
        ax.set_xlabel("The $i$th Runtime")
        ax.set_ylabel("The $i$th + 1 Runtime")
        ax.scatter(x, y, marker=".")
        ax.grid()

    @classmethod
    def name(cls) -> str:
        return "lag_plot"


ALL_PLOT_TYPES = OrderedDict(
    {plot_type.name(): plot_type for plot_type in PlotType.__subclasses__()}
)


class Plotter:
    """Class that will plot and save many figures on a process."""

    def __init__(
        self,
        plot_types: List[PlotType],
        dpi: Any = "200",
        transparent: bool = False,
    ) -> None:
        self.dpi = dpi
        self.plot_types = list(sorted(plot_types))
        self.fig, self.ax = plt.subplots(figsize=(6.4, 5.8))
        self.transparent = transparent
        self.backends = {
            ".png": "AGG",
            ".pdf": "PDF",
            ".ps": "PS",
            ".eps": "PS",
            ".svg": "SVG",
            ".pgf": "PGF",
        }

    def plot(self, data: Dict[str, PlotJob]) -> None:
        """
        Will use the plotter function on all the given data. The data is a
        dictionary where the key is the destination and the value is the values
        that will be passed to the plotter function.
        """

        for datapoint in data.values():
            plots = datapoint.plots
            for plotter in self.plot_types:
                plotter.plot(self.ax, **datapoint.benchmark_result)

                program = datapoint.program
                dataset = datapoint.dataset
                dest = plots[plotter.name()]

                suptitle = textwrap.shorten(rf"{program}: {dataset}", 50)
                self.fig.suptitle(suptitle)
                self.fig.tight_layout()
                ext = pathlib.Path(dest).suffix
                self.fig.savefig(
                    dest,
                    bbox_inches="tight",
                    dpi=self.dpi,
                    backend=self.backends[ext],
                    transparent=self.transparent,
                )
                print(dest)
                self.ax.cla()
        plt.close(self.fig)


def chunks(data: Dict, size: int):
    """Generator that makes sub-dictionaries of a maximum size."""
    it = iter(data)
    for _ in range(0, len(data), size):
        yield {k: data[k] for k in islice(it, size)}


def get_args() -> Any:
    """Gets the arguments used in the program."""
    parser = argparse.ArgumentParser(
        prog="Futhark Plots", description="Makes plots for futhark benchmarks."
    )
    parser.add_argument(
        "filename",
        metavar="FILE",
        help=(
            "the benchmark results as a json file generated by futhark "
            "bench."
        ),
    )
    parser.add_argument(
        "--programs",
        metavar="PROGRAM0,PROGRAM1,...",
        help=(
            "the specific programs the plots will be generated from. Default"
            "is all programs."
        ),
    )
    parser.add_argument(
        "--plots",
        metavar="PLOTTYPE0,PLOTTYPE1,...",
        help=(
            f"the type of plots that will be generated which can be "
            f'{", ".join(ALL_PLOT_TYPES.keys())}. Default is all plots.'
        ),
    )
    parser.add_argument(
        "--filetype",
        default="png",
        metavar="BACKEND",
        help=(
            "the file type used, these can be found on the matplotlib "
            "website."
        ),
    )
    parser.add_argument(
        "--transparent",
        action="store_true",
        help="flag to use if the bagground should be transparent.",
    )

    return parser.parse_args()


def format_arg_list(args: Optional[str]) -> Optional[Set[str]]:
    """
    Takes a string of form 'a, b, c, d' and makes a list ['a', 'b', 'c', 'd']
    """
    if args is None:
        return None

    return set(map(lambda arg: arg.strip(), args.split(",")))


def make_plot_jobs_and_directories(
    programs: List[str],
    data: Dict[str, Dict[str, Dict[str, Any]]],
    file_type: str,
    plot_types: List[str],
    root: str = "graphs",
) -> Tuple[Dict[str, PlotJob], Dict[str, List[str]]]:
    """Makes dictionary with plot jobs where plot_jobs are the jobs."""

    plot_jobs = dict()
    folder_content: Dict[str, List[str]] = dict()

    def remove_characters(characters: List[str], text: str) -> str:
        rep = {re.escape(k): "" for k in characters}
        pattern = re.compile("|".join(rep.keys()))
        return pattern.sub(lambda m: rep[re.escape(m.group(0))], text)

    for program_path in programs:
        temp = data.get(program_path)
        if temp is None:
            raise Exception(f"{program_path} is not valid key.")

        datasets = temp.get("datasets")

        if datasets is None:
            raise Exception(f"{program_path} does not have a dataset key.")

        program_name = pathlib.Path(program_path).name
        program_directory = os.path.dirname(program_path)
        for dataset_path, dataset_dict in datasets.items():
            dataset_name = pathlib.Path(dataset_path).name
            bad_chars = [" ", "#", '"', "/"]
            dataset_path = remove_characters(bad_chars, dataset_path)
            dataset_name_striped = dataset_path.replace(".in", "")
            raw_filename = f"{program_name}_{dataset_name_striped}"
            dataset_filename = raw_filename[:100].replace(" ", "_")
            directory = os.path.join(
                root, program_directory, pathlib.Path(program_path).name
            )
            directory = "." if directory == "" else directory

            benchmark_result = dataset_dict.copy()
            np_runtimes = np.array(benchmark_result.get("runtimes"))
            benchmark_result["runtimes"] = np_runtimes

            os.makedirs(directory, exist_ok=True)

            if folder_content.get(directory) is None:
                folder_content[directory] = []

            while True:
                plot_file_name = os.path.join(
                    directory, f"{dataset_filename}_{random_string(16)}"
                )
                if plot_file_name not in folder_content[directory]:
                    break

            folder_content[directory].insert(0, plot_file_name)

            plot_jobs[plot_file_name] = PlotJob(
                program_path,
                program_name,
                dataset_name,
                benchmark_result,
                {
                    plot_type: f"{plot_file_name}_{plot_type}.{file_type}"
                    for plot_type in plot_types
                },
            )

    return plot_jobs, folder_content


def make_html_descriptors(plot_job: PlotJob) -> str:
    """Makes a table with statistical descriptors for the plot_job"""

    def row(name, func):
        result = func(**plot_job.benchmark_result)
        return rf"<tr><td>{name}:</td><td>{result}</td></tr>"

    return f"""<table>
    <tbody>
        {''.join(map(lambda a: row(*a), DESCRIPTORS.items()))}
    </tbody>
</table>"""


def make_html(
    folder_content: Dict[str, List[str]],
    plot_jobs: Dict[str, PlotJob],
    root: str,
) -> str:
    """Makes a simpel html document with links to each section with plots."""

    def make_key(s, size):
        return f'{"".join(e for e in s if e.isalnum())}{random_string(size)}'

    plot_jobs_keys = dict()
    for key in plot_jobs.keys():
        program = plot_jobs[key].program
        dataset = plot_jobs[key].dataset

        while True:
            id_key = make_key(program + dataset, 32)
            if id_key not in plot_jobs.values():
                break

        plot_jobs_keys[key] = id_key

    folder_keys: Dict[str, str] = dict()
    for folder in folder_content:
        while True:
            id_folder_key = make_key(folder, 32)
            if id_folder_key not in folder_keys.values():
                break

        folder_keys[folder] = id_folder_key

    root_prefix = f"{root}/"

    def make_li(p: str) -> str:
        """
        Makes a single bullet point for a given benchmark's dataset.
        """
        dataset = plot_jobs[p].dataset
        key = plot_jobs_keys[p]
        return rf"<li><a href=#{key}>{dataset}</a></li>"

    def make_list(path: str) -> str:
        """
        Creates the list which shows the structure of benchmarks and links to
        the sections.
        """
        sorted_paths = sorted(os.listdir(path))
        directory = list(map(lambda p: os.path.join(path, p), sorted_paths))

        isdir = os.path.isdir

        if len(directory) == 1 and isdir(directory[0]) and path == root:
            return make_list(directory[0])

        before = "".join(map(make_li, folder_content.get(path, [])))
        lis = "".join(map(make_list, directory))
        pretty_path = path.removeprefix(root_prefix)

        if folder_keys.get(path) is not None:
            pretty_path = f"<a href=#{folder_keys.get(path)}>{pretty_path}</a>"

        return rf"<li>{pretty_path}</li><ul>{before}{lis}</ul>"

    def make_subsection(plot_file: str, plot_job: Optional[PlotJob]) -> str:
        """
        Makes a subsection with plots and statistical descriptors.
        """
        if plot_job is None:
            raise Exception(f"A given PlotJob was None.")

        dataset = plot_job.dataset
        program = plot_job.program
        key = plot_jobs_keys[plot_file]
        descriptors = make_html_descriptors(plot_job)

        plots = "".join(
            map(lambda plot: f"<img src='{plot}'/>", plot_job.plots.values())
        )
        header = rf"<h3><a href=#{key}>{program}: {dataset}</a></h3>"
        return rf"<section id={key}>{header}{plots}{descriptors}</section>"

    def make_section(folder: str, dataset_plot_files: List[str]) -> str:
        """
        Makes a section with all the plots and descriptors for a given
        benchmark's datasets.
        """
        sub_data = map(lambda a: (a, plot_jobs.get(a)), dataset_plot_files)
        subsections = "".join(map(lambda a: make_subsection(*a), sub_data))
        pretty_folder = folder.removeprefix(root_prefix)
        folder_key = folder_keys[folder]
        header = rf"<h2><a href=#{folder_key}>{pretty_folder}</a></h2>"
        return rf"<section id={folder_key}>{header}{subsections}</section>"

    width = 100 // len(next(iter(plot_jobs.values())).plots)
    lis = make_list(root)
    sorted_content = sorted(folder_content.items())
    sections = "".join(map(lambda a: make_section(*a), sorted_content))
    return f"""<!doctype html>
    <html lang="en">
    <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
    <title>{root}</title>
    <style type="text/css">
      {CSS}
    </style>
    </head>
    <body>
    <header>
    <h1>{root}</h1>
    <nav>
        <ul>
            {lis}
        </ul>
    </nav>
    </header>
    {sections}
    </body>
    </html>"""


def task(plot_jobs: Dict[str, PlotJob]) -> None:
    """Begins plotting, it is used"""
    global plots
    global PLOT_TYPES_USED
    global TRANSPARENT

    plot_types = [
        plot_type()  # type: ignore
        for key, plot_type in ALL_PLOT_TYPES.items()
        if key in PLOT_TYPES_USED
    ]
    plotter = Plotter(plot_types, dpi=200, transparent=TRANSPARENT)
    plotter.plot(plot_jobs)


TRANSPARENT: bool


def main() -> None:
    global PLOT_TYPES_USED
    global TRANSPARENT
    plt.rcParams.update(
        {
            "ytick.color": "black",
            "xtick.color": "black",
            "axes.labelcolor": "black",
            "axes.edgecolor": "black",
            "axes.axisbelow": True,
            "text.usetex": False,
            "axes.prop_cycle": cycler(color=["#5f021f"]),
        }
    )

    args = get_args()
    filename = pathlib.Path(args.filename).stem
    data = json.load(open(args.filename, "r"))
    programs = format_arg_list(args.programs)

    plots_used = format_arg_list(args.plots)

    if plots_used is None:
        PLOT_TYPES_USED = list(sorted(ALL_PLOT_TYPES.keys()))
    else:
        PLOT_TYPES_USED = list(sorted(plots_used))
        temp = list(ALL_PLOT_TYPES.keys())
        for plot_type in PLOT_TYPES_USED:
            if plot_type not in temp:
                existing_plot_types = ", ".join(temp)
                raise Exception(
                    (
                        '"{plot_type}" is not a plot type try '
                        f"{existing_plot_types}"
                    )
                )

    filetype = args.filetype
    TRANSPARENT = args.transparent

    root = f"{filename}-plots"

    if os.path.exists(root):
        raise Exception(
            (
                f'The folder "{root}" must be removed before the plots can be '
                "made."
            )
        )

    if programs is None:
        programs = set(data.keys())
    else:
        programs = set(programs)
        keys = set(data.keys())
        if not programs.issubset(keys):
            diff = ", ".join(programs.difference(keys))
            raise Exception(f'"{diff}" are not valid keys.')

    plot_jobs, folder_content = make_plot_jobs_and_directories(
        list(programs), data, filetype, PLOT_TYPES_USED, root=root
    )

    with open(f"{filename}.html", "w") as fp:
        fp.write(make_html(folder_content, plot_jobs, root))

    with Pool(16) as p:
        p.map(task, chunks(plot_jobs, max(len(plot_jobs) // 32, 1)))

    print(f"Open {filename}.html in a browser.")


if __name__ == "__main__":
    main()