File: inspection.hs

package info (click to toggle)
haskell-generic-data 1.1.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 304 kB
  • sloc: haskell: 2,577; makefile: 6
file content (513 lines) | stat: -rw-r--r-- 16,080 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
{-# OPTIONS_GHC -dsuppress-all #-}
{-# LANGUAGE
    BangPatterns,
    CPP,
    DeriveFunctor,
    DeriveFoldable,
    DeriveTraversable,
    DeriveGeneric,
    DerivingVia,
    EmptyCase,
    EmptyDataDeriving,
    TemplateHaskell
    #-}

{-# LANGUAGE TypeOperators, TypeFamilies #-}

import Control.Applicative (liftA2)
import GHC.Generics
import Data.Coerce (coerce)
import Data.Semigroup (Sum(..), All(..))

import Test.Inspection

import Generic.Data
import Generic.Data.Microsurgery
  ( ProductSurgery
  , CopyRep
  , Surgery'(..)
  )

import Inspection.Boilerplate

-- Test cases

data T = T Int Bool
  deriving Generic
  deriving (Semigroup, Monoid)
    via ProductSurgery (CopyRep (Sum Int, All)) T
  deriving (Eq, Ord)
    via Generically T

mappendT, mappendTG :: T -> T -> T
mappendT (T a1 b1) (T a2 b2) = T (a1 + a2) (b1 && b2)
mappendTG x y = x <> y

memptyT, memptyTG :: T
memptyT = T 0 True
memptyTG = mempty

eqT, eqTG :: T -> T -> Bool
eqT (T a1 b1) (T a2 b2) = a1 == a2 && b1 == b2
eqTG = (==)

compareT, compareTG :: T -> T -> Ordering
compareT (T a1 b1) (T a2 b2) = compare a1 a2 <> compare b1 b2
compareTG = compare

inspect $ 'mappendT ==- 'mappendTG
inspect $ 'memptyT ==- 'memptyTG
inspect $ 'eqT ==- 'eqTG
inspect $ 'compareT ==- 'compareTG

data Empty a
  deriving (Generic, Generic1, Eq, Ord, Functor, Foldable, Traversable)

-- Arity 0 (nullary)
data Ary0 a = Ary0
  deriving (Generic, Generic1, Eq, Ord, Functor, Foldable, Traversable)

-- Arity 1 (unary) (Lazy, Strict, Newtype)
data Ary1 a = Ary1 a
  deriving (Generic, Generic1, Eq, Ord, Functor, Foldable, Traversable)

data Ary1' a = Ary1' !a
  deriving (Generic, Generic1, Eq, Ord, Functor, Foldable, Traversable)

newtype Ary1NT a = Ary1NT a
  deriving (Generic, Generic1, Eq, Ord, Functor, Foldable, Traversable)

-- Arity 2 (binary)
data Ary2 a = Ary2 a a
  deriving (Generic, Generic1, Eq, Ord, Functor, Foldable, Traversable)

-- Arity 4 (quaternary)
data Ary4 a = Ary4 a a [Int] [a]
  deriving (Generic, Generic1, Eq, Ord, Functor, Foldable, Traversable)

-- A big sum of stuff
data Big a
  = Big0
  | Big1 a
  | Big2 a a
  | Big4 a a a a
  | Big8 Int a [a] [Int] [a] a a a
  deriving (Generic1, Eq, Ord, Functor, Foldable, Traversable)

-- Handwritten to add INLINE pragmas. TODO: get GHC to do this
instance Generic (Big a) where
  type Rep (Big a) =
        U1
    :+: K1 () a
    :+: (K1 () a :*: K1 () a)
    :+: (K1 () a :*: K1 () a :*: K1 () a :*: K1 () a)
    :+: (   K1 () Int :*: K1 () a :*: K1 () [a] :*: K1 () [Int]
        :*: K1 () ([a]) :*: K1 () a :*: K1 () a :*: K1 () a)
  from Big0 = L1 U1
  from (Big1 x) = R1 (L1 (K1 x))
  from (Big2 x1 x2) = R1 (R1 (L1 (K1 x1 :*: K1 x2)))
  from (Big4 x1 x2 x3 x4) = R1 (R1 (R1 (L1 (K1 x1 :*: K1 x2 :*: K1 x3 :*: K1 x4))))
  from (Big8 x1 x2 x3 x4 x5 x6 x7 x8) = R1 (R1 (R1 (R1 (K1 x1 :*: K1 x2 :*: K1 x3 :*: K1 x4 :*: K1 x5 :*: K1 x6 :*: K1 x7 :*: K1 x8))))
  {-# INLINE from #-}

  to (L1 _) = Big0
  to (R1 (L1 (K1 x))) = Big1 x
  to (R1 (R1 (L1 (K1 x1 :*: K1 x2)))) = Big2 x1 x2
  to (R1 (R1 (R1 (L1 (K1 x1 :*: K1 x2 :*: K1 x3 :*: K1 x4))))) = Big4 x1 x2 x3 x4
  to (R1 (R1 (R1 (R1 (K1 x1 :*: K1 x2 :*: K1 x3 :*: K1 x4 :*: K1 x5 :*: K1 x6 :*: K1 x7 :*: K1 x8))))) = Big8 x1 x2 x3 x4 x5 x6 x7 x8
  {-# INLINE to #-}

-- Empty

-- Stock deriving of fmap does not use an EmptyCase.
fmapEmptyRS :: (a -> b) -> Empty a -> Empty b
fmapEmptyRS _ = coerce

foldMapEmptyRS :: Monoid m => (a -> m) -> Empty a -> m
foldMapEmptyRS _ _ = mempty

--

mk_eq' ''Empty [| \ _ _ -> True |]
inspect $ 'eqEmptyR ==- 'eqEmptyS
inspect $ 'eqEmptyR ==- 'eqEmptyG

mk_compare' ''Empty [| \ _ _ -> EQ |]
inspect $ 'compareEmptyR ==- 'compareEmptyS
inspect $ 'compareEmptyR ==- 'compareEmptyG

mk_fmap ''Empty [| \ _ v -> case v of {} |]
inspect $ 'fmapEmptyRS ==- 'fmapEmptyS
inspect $ 'fmapEmptyR ==- 'fmapEmptyG

mk_foldMap ''Empty [| \ _ v -> case v of {} |]
inspect $ 'foldMapEmptyRS ==- 'foldMapEmptyS
inspect $ 'foldMapEmptyR ==- 'foldMapEmptyG

-- No EmptyCase!
mk_foldr ''Empty [| \_ b _ -> b |]
inspect $ 'foldrEmptyR ==- 'foldrEmptyS
inspect $ 'foldrEmptyR ==- 'foldrEmptyG

mk_traverse ''Empty [| \ _ v -> case v of {} |]
inspect $ 'traverseEmptyS ==- 'traverseEmptyS
inspect $ 'traverseEmptyR ==- 'traverseEmptyG

mk_sequenceA ''Empty [| \ v -> case v of {} |]
inspect $ 'sequenceAEmptyS ==- 'sequenceAEmptyS
inspect $ 'sequenceAEmptyR ==- 'sequenceAEmptyG

-- Ary0

eqAry0RS :: Ary0 a -> Ary0 a -> Bool
eqAry0RS Ary0 Ary0 = True

compareAry0RS :: Ary0 a -> Ary0 a -> Ordering
compareAry0RS Ary0 Ary0 = EQ

fmapAry0RS :: (a -> b) -> Ary0 a -> Ary0 b
fmapAry0RS _ = coerce

mk_eq' ''Ary0 [| \ _ _ -> True |]
inspect $ 'eqAry0RS ==- 'eqAry0S
inspect $ 'eqAry0R ==- 'eqAry0G

mk_compare' ''Ary0 [| \ _ _ -> EQ |]
inspect $ 'compareAry0RS ==- 'compareAry0S
inspect $ 'compareAry0R ==- 'compareAry0G

mk_fmap ''Ary0 [| \ _ _ -> Ary0 |]
inspect $ 'fmapAry0RS ==- 'fmapAry0S
inspect $ 'fmapAry0R ==- 'fmapAry0G

mk_foldMap ''Ary0 [| \ _ _ -> mempty |]
inspect $ 'foldMapAry0R ==- 'foldMapAry0S
inspect $ 'foldMapAry0R ==- 'foldMapAry0G

mk_foldr ''Ary0 [| \_ b _ -> b |]
inspect $ 'foldrAry0R ==- 'foldrAry0S
inspect $ 'foldrAry0R ==- 'foldrAry0G

mk_traverse ''Ary0 [| \ _ _ -> pure Ary0 |]
inspect $ 'traverseAry0S ==- 'traverseAry0S
inspect $ 'traverseAry0R ==- 'traverseAry0G

mk_sequenceA ''Ary0 [| \ _ -> pure Ary0 |]
inspect $ 'sequenceAAry0S ==- 'sequenceAAry0S
inspect $ 'sequenceAAry0R ==- 'sequenceAAry0G

-- Ary1

eqAry1RS :: Eq a => Ary1 a -> Ary1 a -> Bool
eqAry1RS (Ary1 x1) (Ary1 y1) = x1 == y1

compareAry1RS :: Ord a => Ary1 a -> Ary1 a -> Ordering
compareAry1RS (Ary1 x1) (Ary1 y1) = compare x1 y1

fmapAry1RS :: (a -> b) -> Ary1 a -> Ary1 b
fmapAry1RS f (Ary1 x) = Ary1 (f x)

foldMapAry1RS :: Monoid m => (a -> m) -> Ary1 a -> m
foldMapAry1RS f (Ary1 x) = f x

foldrAry1RS :: (a -> b -> b) -> b -> Ary1 a -> b
foldrAry1RS f b (Ary1 x) = f x b

traverseAry1RS :: Applicative f => (a -> f b) -> Ary1 a -> f (Ary1 b)
traverseAry1RS f (Ary1 x) = Ary1 <$> f x

sequenceAAry1RS :: Applicative f => Ary1 (f a) -> f (Ary1 a)
sequenceAAry1RS (Ary1 x) = Ary1 <$> x

mk_eq ''Ary1 [| \ ~(Ary1 x1) ~(Ary1 y1) -> x1 == y1 |]
inspect $ 'eqAry1RS ==- 'eqAry1S
inspect $ 'eqAry1R ==- 'eqAry1G

mk_compare ''Ary1 [| \ ~(Ary1 x1) ~(Ary1 y1) -> compare x1 y1 |]
inspect $ 'compareAry1RS ==- 'compareAry1S
inspect $ 'compareAry1R ==- 'compareAry1G

mk_fmap ''Ary1 [| \ f ~(Ary1 x) -> Ary1 (f x) |]
inspect $ 'fmapAry1RS ==- 'fmapAry1S
inspect $ 'fmapAry1R ==- 'fmapAry1G

mk_foldMap ''Ary1 [| \ f ~(Ary1 x) -> f x |]
inspect $ 'foldMapAry1RS ==- 'foldMapAry1S
inspect $ 'foldMapAry1R ==- 'foldMapAry1G

mk_foldr ''Ary1 [| \ f r ~(Ary1 x) -> f x r |]
inspect $ 'foldrAry1RS ==- 'foldrAry1S
inspect $ 'foldrAry1R ==- 'foldrAry1G

mk_traverse ''Ary1 [| \ f ~(Ary1 x) -> Ary1 <$> f x |]
inspect $ 'traverseAry1RS ==- 'traverseAry1S
inspect $ 'traverseAry1R ==- 'traverseAry1G

mk_sequenceA ''Ary1 [| \ ~(Ary1 x) -> Ary1 <$> x |]
inspect $ 'sequenceAAry1RS ==- 'sequenceAAry1S
inspect $ 'sequenceAAry1R ==- 'sequenceAAry1G

-- Generic @to@ seems to be lazy here
mk_ap ''Ary1 [| \ ~(Ary1 f1) ~(Ary1 x1) -> Ary1 (f1 x1) |]
inspect $ 'apAry1R ==- 'apAry1G

mk_liftA2 ''Ary1 [| \ f ~(Ary1 x1) ~(Ary1 x2) -> Ary1 (f x1 x2) |]
inspect $ 'liftA2Ary1R ==- 'liftA2Ary1G

-- Ary1' (strict, this is entirely the same as Ary1)

eqAry1'RS :: Eq a => Ary1' a -> Ary1' a -> Bool
eqAry1'RS (Ary1' x1) (Ary1' y1) = x1 == y1

compareAry1'RS :: Ord a => Ary1' a -> Ary1' a -> Ordering
compareAry1'RS (Ary1' x1) (Ary1' y1) = compare x1 y1

fmapAry1'RS :: (a -> b) -> Ary1' a -> Ary1' b
fmapAry1'RS f (Ary1' x) = Ary1' (f x)

foldMapAry1'RS :: Monoid m => (a -> m) -> Ary1' a -> m
foldMapAry1'RS f (Ary1' x) = f x

foldrAry1'RS :: (a -> b -> b) -> b -> Ary1' a -> b
foldrAry1'RS f b (Ary1' x) = f x b

traverseAry1'RS :: Applicative f => (a -> f b) -> Ary1' a -> f (Ary1' b)
traverseAry1'RS f (Ary1' x) = Ary1' <$> f x

sequenceAAry1'RS :: Applicative f => Ary1' (f a) -> f (Ary1' a)
sequenceAAry1'RS (Ary1' x) = Ary1' <$> x

mk_eq ''Ary1' [| \ ~(Ary1' x1) ~(Ary1' y1) -> x1 == y1 |]
inspect $ 'eqAry1'RS ==- 'eqAry1'S
inspect $ 'eqAry1'R ==- 'eqAry1'G

mk_compare ''Ary1' [| \ ~(Ary1' x1) ~(Ary1' y1) -> compare x1 y1 |]
inspect $ 'compareAry1'RS ==- 'compareAry1'S
inspect $ 'compareAry1'R ==- 'compareAry1'G

mk_fmap ''Ary1' [| \ f ~(Ary1' x) -> Ary1' (f x) |]
inspect $ 'fmapAry1'RS ==- 'fmapAry1'S
inspect $ 'fmapAry1'R ==- 'fmapAry1'G

mk_foldMap ''Ary1' [| \ f ~(Ary1' x) -> f x |]
inspect $ 'foldMapAry1'RS ==- 'foldMapAry1'S
inspect $ 'foldMapAry1'R ==- 'foldMapAry1'G

mk_foldr ''Ary1' [| \ f r ~(Ary1' x) -> f x r |]
inspect $ 'foldrAry1'RS ==- 'foldrAry1'S
inspect $ 'foldrAry1'R ==- 'foldrAry1'G

-- TODO: These tests fail because of a difference in how the Functor
-- dictionary is accessed via the Applicative dictionary.
-- The rest looks alright.
#if __GLASGOW_HASKELL__ >= 810
mk_traverse ''Ary1' [| \ f ~(Ary1' x) -> Ary1' <$> f x |]
inspect $ 'traverseAry1'RS ==- 'traverseAry1'S
inspect $ 'traverseAry1'R ==- 'traverseAry1'G

mk_sequenceA ''Ary1' [| \ ~(Ary1' x) -> Ary1' <$> x |]
inspect $ 'sequenceAAry1'RS ==- 'sequenceAAry1'S
inspect $ 'sequenceAAry1'R ==- 'sequenceAAry1'G
#endif

-- Generic @to@ seems to be lazy here
mk_ap ''Ary1' [| \ ~(Ary1' f1) ~(Ary1' x1) -> Ary1' (f1 x1) |]
inspect $ 'apAry1'R ==- 'apAry1'G

mk_liftA2 ''Ary1' [| \ f ~(Ary1' x1) ~(Ary1' x2) -> Ary1' (f x1 x2) |]
inspect $ 'liftA2Ary1'R ==- 'liftA2Ary1'G

-- Ary1NT

eqAry1NTRS :: Eq a => Ary1NT a -> Ary1NT a -> Bool
eqAry1NTRS = (coerce :: (a -> a -> Bool) -> Ary1NT a -> Ary1NT a -> Bool) (==)

compareAry1NTRS :: Ord a => Ary1NT a -> Ary1NT a -> Ordering
compareAry1NTRS = (coerce :: (a -> a -> Ordering) -> Ary1NT a -> Ary1NT a -> Ordering) compare

mk_eq ''Ary1NT [| \ (Ary1NT x1) (Ary1NT y1) -> x1 == y1 |]
inspect $ 'eqAry1NTRS ==- 'eqAry1NTS
inspect $ 'eqAry1NTR ==- 'eqAry1NTG

mk_compare ''Ary1NT [| \ (Ary1NT x1) (Ary1NT y1) -> compare x1 y1 |]
inspect $ 'compareAry1NTRS ==- 'compareAry1NTS
inspect $ 'compareAry1NTR ==- 'compareAry1NTG

mk_fmap ''Ary1NT [| \ f (Ary1NT x) -> Ary1NT (f x) |]
inspect $ 'fmapAry1NTR ==- 'fmapAry1NTS
inspect $ 'fmapAry1NTR ==- 'fmapAry1NTG

mk_foldMap ''Ary1NT [| \ f (Ary1NT x) -> f x |]
inspect $ 'foldMapAry1NTR ==- 'foldMapAry1NTS
inspect $ 'foldMapAry1NTR ==- 'foldMapAry1NTG

mk_foldr ''Ary1NT [| \ f r (Ary1NT x) -> f x r |]
inspect $ 'foldrAry1NTR ==- 'foldrAry1NTS
inspect $ 'foldrAry1NTR ==- 'foldrAry1NTG

mk_traverse ''Ary1NT [| \ f (Ary1NT x) -> fmap Ary1NT (f x) |]
inspect $ 'traverseAry1NTR ==- 'traverseAry1NTS
inspect $ 'traverseAry1NTR ==- 'traverseAry1NTG

mk_ap ''Ary1NT [| \ (Ary1NT f1) (Ary1NT x1) -> Ary1NT (f1 x1) |]
inspect $ 'apAry1NTR ==- 'apAry1NTG

mk_liftA2 ''Ary1NT [| \ f (Ary1NT x1) (Ary1NT x2) -> Ary1NT (f x1 x2) |]
inspect $ 'liftA2Ary1NTR ==- 'liftA2Ary1NTG

-- Ary2

mk_eq ''Ary2 [| \ (Ary2 x1 x2) (Ary2 y1 y2) -> x1 == y1 && x2 == y2 |]
inspect $ 'eqAry2R ==- 'eqAry2S
inspect $ 'eqAry2R ==- 'eqAry2G

mk_compare ''Ary2 [| \ (Ary2 x1 x2) (Ary2 y1 y2) -> compare x1 y1 <> compare x2 y2 |]
inspect $ 'compareAry2R ==- 'compareAry2S
inspect $ 'compareAry2R ==- 'compareAry2G

mk_fmap ''Ary2 [| \ f (Ary2 x y) -> Ary2 (f x) (f y) |]
inspect $ 'fmapAry2R ==- 'fmapAry2S
inspect $ 'fmapAry2R ==- 'fmapAry2G

mk_foldMap ''Ary2 [| \ f (Ary2 x y) -> f x `mappend` f y |]
inspect $ 'foldMapAry2R ==- 'foldMapAry2S
inspect $ 'foldMapAry2R ==- 'foldMapAry2G

mk_foldr ''Ary2 [| \ f r (Ary2 x y) -> f x (f y r) |]
inspect $ 'foldrAry2R ==- 'foldrAry2S
inspect $ 'foldrAry2R ==- 'foldrAry2G

mk_traverse ''Ary2 [| \ f (Ary2 x y) -> liftA2 Ary2 (f x) (f y) |]
inspect $ 'traverseAry2R ==- 'traverseAry2S
inspect $ 'traverseAry2R ==- 'traverseAry2G

mk_sequenceA ''Ary2 [| \ (Ary2 x y) -> liftA2 Ary2 x y |]
inspect $ 'sequenceAAry2R ==- 'sequenceAAry2S
inspect $ 'sequenceAAry2R ==- 'sequenceAAry2G

mk_ap ''Ary2 [| \ (Ary2 f1 f2) (Ary2 x1 x2) -> Ary2 (f1 x1) (f2 x2) |]
inspect $ 'apAry2R ==- 'apAry2G

mk_liftA2 ''Ary2 [| \ f (Ary2 x1 y1) (Ary2 x2 y2) -> Ary2 (f x1 x2) (f y1 y2) |]
inspect $ 'liftA2Ary2R ==- 'liftA2Ary2G

-- Ary4

sequenceAAry4RS :: Applicative f => Ary4 (f a) -> f (Ary4 a)
sequenceAAry4RS = traverse id

-- The simplifier is good enough to reassociate (&&)
mk_eq ''Ary4
  [| \ (Ary4 x1 x2 x3 x4) (Ary4 y1 y2 y3 y4) ->
       x1 == y1 && x2 == y2 && x3 == y3 && x4 == y4 |]
inspect $ 'eqAry4R ==- 'eqAry4S
inspect $ 'eqAry4R ==- 'eqAry4G

-- The simplifier is good enough to reassociate (<>)
mk_compare ''Ary4
  [| \ (Ary4 x1 x2 x3 x4) (Ary4 y1 y2 y3 y4) ->
       compare x1 y1 <> compare x2 y2 <> compare x3 y3 <> compare x4 y4 |]
inspect $ 'compareAry4R ==- 'compareAry4S
inspect $ 'compareAry4R ==- 'compareAry4G

mk_fmap ''Ary4
  [| \ f (Ary4 x y z t) -> Ary4 (f x) (f y) z (fmap f t) |]
inspect $ 'fmapAry4R ==- 'fmapAry4S
inspect $ 'fmapAry4R ==- 'fmapAry4G

mk_foldMap ''Ary4
  [| \ f (Ary4 x y _ z) -> f x `mappend` (f y `mappend` foldMap f z) |]
inspect $ 'foldMapAry4R ==- 'foldMapAry4S
inspect $ 'foldMapAry4R ==- 'foldMapAry4G

mk_foldr ''Ary4
  [| \ f r (Ary4 x y _ t) -> f x (f y (foldr f r t)) |]
inspect $ 'foldrAry4R ==- 'foldrAry4S
inspect $ 'foldrAry4R ==- 'foldrAry4G

mk_traverse ''Ary4
  [| \ f (Ary4 x y z t) ->
       liftA2 (\x' y' -> Ary4 x' y' z) (f x) (f y) <*> traverse f t |]
inspect $ 'traverseAry4R ==- 'traverseAry4S
inspect $ 'traverseAry4R ==- 'traverseAry4G

mk_sequenceA ''Ary4 [| \ (Ary4 x y z t) -> liftA2 (\x' y' -> Ary4 x' y' z) x y <*> sequenceA t |]
inspect $ 'sequenceAAry4RS ==- 'sequenceAAry4S
inspect $ 'sequenceAAry4R ==- 'sequenceAAry4G

mk_ap ''Ary4
  [| \ (Ary4 f1 f2 fz f3) (Ary4 x1 x2 xz x3) ->
       Ary4 (f1 x1) (f2 x2) (fz <> xz) (f3 <*> x3) |]
inspect $ 'apAry4R ==- 'apAry4G

mk_liftA2 ''Ary4
  [| \ f (Ary4 x1 y1 fz z1) (Ary4 x2 y2 xz z2) ->
       Ary4 (f x1 x2) (f y1 y2) (fz <> xz) (liftA2 f z1 z2) |]
inspect $ 'liftA2Ary4R ==- 'liftA2Ary4G

-- Big

-- The simplifier is good enough to reassociate (&&)
mk_eq ''Big
  [| \ x y -> case (x, y) of
       (Big0, Big0) -> True
       (Big1 x1, Big1 y1) ->
         x1 == y1
       (Big2 x1 x2, Big2 y1 y2) ->
         x1 == y1 && x2 == y2
       (Big4 x1 x2 x3 x4, Big4 y1 y2 y3 y4) ->
         x1 == y1 && x2 == y2 && x3 == y3 && x4 == y4
       (Big8 x1 x2 x3 x4 x5 x6 x7 x8, Big8 y1 y2 y3 y4 y5 y6 y7 y8) ->
         x1 == y1 && x2 == y2 && x3 == y3 && x4 == y4 &&
         x5 == y5 && x6 == y6 && x7 == y7 && x8 == y8
       (_, _) -> False |]
inspect $ 'eqBigR === 'eqBigS
inspect $ 'eqBigR =/= 'eqBigG -- TODO make this test pass

{- TODO Update the rest, after figuring out the above test case
-- The simplifier is good enough to reassociate (<>)
mk_compare ''Big
  [| \ (Big4 x1 x2 x3 x4) (Big4 y1 y2 y3 y4) ->
       compare x1 y1 <> compare x2 y2 <> compare x3 y3 <> compare x4 y4 |]
inspect $ 'compareBigR === 'compareBigS
inspect $ 'compareBigR === 'compareBigG

mk_fmap ''Big
  [| \ f (Big4 x y z t) -> Big (f x) (f y) z (fmap f t) |]
inspect $ 'fmapBigR ==- 'fmapBigS
inspect $ 'fmapBigR ==- 'fmapBigG

mk_foldMap ''Big
  [| \ f (Big4 x y _ z) -> f x `mappend` (f y `mappend` foldMap f z) |]
inspect $ 'foldMapBigR ==- 'foldMapBigS
inspect $ 'foldMapBigR ==- 'foldMapBigG

mk_foldr ''Big
  [| \ f r (Big4 x y _ t) -> f x (f y (foldr f r t)) |]
inspect $ 'foldrBigR ==- 'foldrBigS
inspect $ 'foldrBigR ==- 'foldrBigG

mk_traverse ''Big
  [| \ f (Big4 x y z t) ->
       liftA2 (\x' y' -> Big x' y' z) (f x) (f y) <*> (traverse f t) |]
inspect $ 'traverseBigR ==- 'traverseBigS
inspect $ 'traverseBigR ==- 'traverseBigG

mk_sequenceA ''Big [| \ (Big4 x y z t) -> liftA2 (\x' y' -> Big x' y' z) x y <*> sequenceA t |]
inspect $ 'sequenceABigRS ==- 'sequenceABigS
inspect $ 'sequenceABigR ==- 'sequenceABigG

mk_ap ''Big
  [| \ (Big4 f1 f2 fz f3) (Big4 x1 x2 xz x3) ->
       Big (f1 x1) (f2 x2) (fz <> xz) (f3 <*> x3) |]
inspect $ 'apBigR ==- 'apBigG

mk_liftA2 ''Big
  [| \ f (Big4 x1 y1 fz z1) (Big4 x2 y2 xz z2) ->
       Big (f x1 x2) (f y1 y2) (fz <> xz) (liftA2 f z1 z2) |]
inspect $ 'liftA2BigR ==- 'liftA2BigG
-}

-- dummy
main :: IO ()
main = pure ()