1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
#if __GLASGOW_HASKELL__ >= 705
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
#endif
{-# OPTIONS_GHC -fno-warn-orphans #-}
module ExampleSpec (main, spec) where
import Generics.Deriving
import Generics.Deriving.TH
import GHC.Exts (Addr#, Char#, Double#, Float#, Int#, Word#)
import Prelude hiding (Either(..))
import Test.Hspec (Spec, describe, hspec, it, parallel, shouldBe)
import qualified Text.Read.Lex (Lexeme)
-------------------------------------------------------------------------------
-- Example: Haskell's lists and Maybe
-------------------------------------------------------------------------------
hList:: [Int]
hList = [1..10]
maybe1, maybe2 :: Maybe (Maybe Char)
maybe1 = Nothing
maybe2 = Just (Just 'p')
double :: [Int] -> [Int]
double [] = []
double (x:xs) = x:x:xs
-------------------------------------------------------------------------------
-- Example: trees of integers (kind *)
-------------------------------------------------------------------------------
data Tree = Empty | Branch Int Tree Tree
$(deriveAll0 ''Tree)
instance GShow Tree where
gshowsPrec = gshowsPrecdefault
instance Uniplate Tree where
children = childrendefault
context = contextdefault
descend = descenddefault
descendM = descendMdefault
transform = transformdefault
transformM = transformMdefault
instance GEnum Tree where
genum = genumDefault
upgradeTree :: Tree -> Tree
upgradeTree Empty = Branch 0 Empty Empty
upgradeTree (Branch n l r) = Branch (succ n) l r
tree :: Tree
tree = Branch 2 Empty (Branch 1 Empty Empty)
-------------------------------------------------------------------------------
-- Example: lists (kind * -> *)
-------------------------------------------------------------------------------
data List a = Nil | Cons a (List a)
$(deriveAll0And1 ''List)
instance GFunctor List where
gmap = gmapdefault
instance (GShow a) => GShow (List a) where
gshowsPrec = gshowsPrecdefault
instance (Uniplate a) => Uniplate (List a) where
children = childrendefault
context = contextdefault
descend = descenddefault
descendM = descendMdefault
transform = transformdefault
transformM = transformMdefault
list :: List Char
list = Cons 'p' (Cons 'q' Nil)
listlist :: List (List Char)
listlist = Cons list (Cons Nil Nil) -- ["pq",""]
-------------------------------------------------------------------------------
-- Example: Type composition
-------------------------------------------------------------------------------
data Rose a = Rose [a] [Rose a]
$(deriveAll0And1 ''Rose)
instance (GShow a) => GShow (Rose a) where
gshowsPrec = gshowsPrecdefault
instance GFunctor Rose where
gmap = gmapdefault
-- Example usage
rose1 :: Rose Int
rose1 = Rose [1,2] [Rose [3,4] [], Rose [5] []]
-------------------------------------------------------------------------------
-- Example: Higher-order kinded datatype, type composition
-------------------------------------------------------------------------------
data GRose f a = GRose (f a) (f (GRose f a))
deriving instance Functor f => Functor (GRose f)
$(deriveMeta ''GRose)
$(deriveRepresentable0 ''GRose)
$(deriveRep1 ''GRose)
instance Functor f => Generic1 (GRose f) where
type Rep1 (GRose f) = $(makeRep1 ''GRose) f
from1 = $(makeFrom1 ''GRose)
to1 = $(makeTo1 ''GRose)
instance (GShow (f a), GShow (f (GRose f a))) => GShow (GRose f a) where
gshowsPrec = gshowsPrecdefault
instance (Functor f, GFunctor f) => GFunctor (GRose f) where
gmap = gmapdefault
grose1 :: GRose [] Int
grose1 = GRose [1,2] [GRose [3] [], GRose [] []]
-------------------------------------------------------------------------------
-- Example: Two parameters, nested on other parameter
-------------------------------------------------------------------------------
data Either a b = Left (Either [a] b) | Right b
$(deriveAll0And1 ''Either)
instance (GShow a, GShow b) => GShow (Either a b) where
gshowsPrec = gshowsPrecdefault
instance GFunctor (Either a) where
gmap = gmapdefault
either1 :: Either Int Char
either1 = Left either2
either2 :: Either [Int] Char
either2 = Right 'p'
-------------------------------------------------------------------------------
-- Example: Nested datatype, record selectors
-------------------------------------------------------------------------------
data Nested a = Leaf | Nested { value :: a, rec :: Nested [a] }
deriving Functor
$(deriveAll0And1 ''Nested)
instance (GShow a) => GShow (Nested a) where
gshowsPrec = gshowsPrecdefault
instance GFunctor Nested where
gmap = gmapdefault
nested :: Nested Int
nested = Nested { value = 1, rec = Nested [2] (Nested [[3],[4,5],[]] Leaf) }
-------------------------------------------------------------------------------
-- Example: Nested datatype Bush (minimal)
-------------------------------------------------------------------------------
data Bush a = BushNil | BushCons a (Bush (Bush a)) deriving Functor
$(deriveAll0And1 ''Bush)
instance GFunctor Bush where
gmap = gmapdefault
instance (GShow a) => GShow (Bush a) where
gshowsPrec = gshowsPrecdefault
bush1 :: Bush Int
bush1 = BushCons 0 (BushCons (BushCons 1 BushNil) BushNil)
-------------------------------------------------------------------------------
-- Example: Double type composition (minimal)
-------------------------------------------------------------------------------
data Weird a = Weird [[[a]]] deriving Show
$(deriveAll0And1 ''Weird)
instance GFunctor Weird where
gmap = gmapdefault
--------------------------------------------------------------------------------
-- Temporary tests for TH generation
--------------------------------------------------------------------------------
data Empty a
data (:/:) f a = MyType1Nil
| MyType1Cons { _myType1Rec :: (f :/: a), _myType2Rec :: MyType2 }
| MyType1Cons2 (f :/: a) Int a (f a)
| (f :/: a) :/: MyType2
infixr 5 :!@!:
data GADTSyntax a b where
GADTPrefix :: d -> c -> GADTSyntax c d
(:!@!:) :: e -> f -> GADTSyntax e f
data MyType2 = MyType2 Float ([] :/: Int)
data PlainHash a = Hash a Addr# Char# Double# Float# Int# Word#
-- Test to see if generated names are unique
data Lexeme = Lexeme
#if MIN_VERSION_template_haskell(2,7,0)
data family MyType3
# if __GLASGOW_HASKELL__ >= 705
(a :: v) (b :: w) (c :: x) (d :: y) (e :: z)
# else
(a :: *) (b :: *) (c :: * -> *) (d :: *) (e :: *)
# endif
newtype instance MyType3 (f p) (f p) f p (q :: *) = MyType3Newtype q
data instance MyType3 Bool () f p q = MyType3True | MyType3False
data instance MyType3 Int () f p (q :: *) = MyType3Hash q Addr# Char# Double# Float# Int# Word#
#endif
$(deriveAll0And1 ''Empty)
$(deriveAll0And1 ''(:/:))
$(deriveAll0And1 ''GADTSyntax)
$(deriveAll0 ''MyType2)
$(deriveAll0And1 ''PlainHash)
$(deriveAll0 ''ExampleSpec.Lexeme)
$(deriveAll0 ''Text.Read.Lex.Lexeme)
#if MIN_VERSION_template_haskell(2,7,0)
# if __GLASGOW_HASKELL__ < 705
-- We can't use deriveAll0And1 on GHC 7.4 due to an old bug :(
$(deriveMeta 'MyType3Newtype)
$(deriveRep0 'MyType3Newtype)
$(deriveRep1 'MyType3Newtype)
instance Generic (MyType3 (f p) (f p) f p q) where
type Rep (MyType3 (f p) (f p) f p q) = $(makeRep0 'MyType3Newtype) f p q
from = $(makeFrom0 'MyType3Newtype)
to = $(makeTo0 'MyType3Newtype)
instance Generic1 (MyType3 (f p) (f p) f p) where
type Rep1 (MyType3 (f p) (f p) f p) = $(makeRep1 'MyType3Newtype) f p
from1 = $(makeFrom1 'MyType3Newtype)
to1 = $(makeTo1 'MyType3Newtype)
# else
$(deriveAll0And1 'MyType3Newtype)
# endif
$(deriveAll0And1 'MyType3False)
$(deriveAll0And1 'MyType3Hash)
#endif
-------------------------------------------------------------------------------
-- Unit tests
-------------------------------------------------------------------------------
main :: IO ()
main = hspec spec
spec :: Spec
spec = parallel $ do
describe "[] and Maybe tests" $ do
it "gshow hList" $
gshow hList `shouldBe`
"[1,2,3,4,5,6,7,8,9,10]"
it "gshow (children maybe2)" $
gshow (children maybe2) `shouldBe`
"[]"
it "gshow (transform (const \"abc\") [])" $
gshow (transform (const "abc") []) `shouldBe`
"\"abc\""
it "gshow (transform double hList)" $
gshow (transform double hList) `shouldBe`
"[1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10]"
it "gshow (geq hList hList)" $
gshow (geq hList hList) `shouldBe`
"True"
it "gshow (geq maybe1 maybe2)" $
gshow (geq maybe1 maybe2) `shouldBe`
"False"
it "gshow (take 5 genum)" $
gshow (take 5 (genum :: [Maybe Int])) `shouldBe`
"[Nothing,Just 0,Just -1,Just 1,Just -2]"
it "gshow (take 15 genum)" $
gshow (take 15 (genum :: [[Int]])) `shouldBe`
"[[],[0],[0,0],[-1],[0,0,0],[-1,0],[1],[0,-1],[-1,0,0],[1,0],[-2],[0,0,0,0],[-1,-1],[1,0,0],[-2,0]]"
it "gshow (range ([0], [1]))" $
gshow (range ([0], [1::Int])) `shouldBe`
"[[0],[0,0],[-1],[0,0,0],[-1,0]]"
it "gshow (inRange ([0], [3,5]) hList)" $
gshow (inRange ([0], [3,5::Int]) hList) `shouldBe`
"False"
describe "Tests for Tree" $ do
it "gshow tree" $
gshow tree `shouldBe`
"Branch 2 Empty (Branch 1 Empty Empty)"
it "gshow (children tree)" $
gshow (children tree) `shouldBe`
"[Empty,Branch 1 Empty Empty]"
it "gshow (descend (descend (\\_ -> Branch 0 Empty Empty)) tree)" $
gshow (descend (descend (\_ -> Branch 0 Empty Empty)) tree) `shouldBe`
"Branch 2 Empty (Branch 1 (Branch 0 Empty Empty) (Branch 0 Empty Empty))"
it "gshow (context tree [Branch 1 Empty Empty,Empty])" $
gshow (context tree [Branch 1 Empty Empty,Empty]) `shouldBe`
"Branch 2 (Branch 1 Empty Empty) Empty"
it "gshow (transform upgradeTree tree)" $
gshow (transform upgradeTree tree) `shouldBe`
"Branch 3 (Branch 0 Empty Empty) (Branch 2 (Branch 0 Empty Empty) (Branch 0 Empty Empty))"
it "gshow (take 10 genum)" $ do
gshow (take 10 (genum :: [Tree])) `shouldBe`
"[Empty,Branch 0 Empty Empty,Branch 0 Empty (Branch 0 Empty Empty),Branch -1 Empty Empty,Branch 0 (Branch 0 Empty Empty) Empty,Branch -1 Empty (Branch 0 Empty Empty),Branch 1 Empty Empty,Branch 0 Empty (Branch 0 Empty (Branch 0 Empty Empty)),Branch -1 (Branch 0 Empty Empty) Empty,Branch 1 Empty (Branch 0 Empty Empty)]"
describe "Tests for List" $ do
it "gshow (gmap fromEnum list)" $
gshow (gmap fromEnum list) `shouldBe`
"Cons 112 (Cons 113 Nil)"
it "gshow (gmap gshow listlist)" $
gshow (gmap gshow listlist) `shouldBe`
"Cons \"Cons 'p' (Cons 'q' Nil)\" (Cons \"Nil\" Nil)"
it "gshow list" $
gshow list `shouldBe`
"Cons 'p' (Cons 'q' Nil)"
it "gshow listlist" $
gshow listlist `shouldBe`
"Cons (Cons 'p' (Cons 'q' Nil)) (Cons Nil Nil)"
it "gshow (children list)" $
gshow (children list) `shouldBe`
"[Cons 'q' Nil]"
it "gshow (children listlist)" $
gshow (children listlist) `shouldBe`
"[Cons Nil Nil]"
describe "Tests for Rose" $ do
it "gshow rose1" $
gshow rose1 `shouldBe`
"Rose [1,2] [Rose [3,4] [],Rose [5] []]"
it "gshow (gmap gshow rose1)" $
gshow (gmap gshow rose1) `shouldBe`
"Rose [\"1\",\"2\"] [Rose [\"3\",\"4\"] [],Rose [\"5\"] []]"
describe "Tests for GRose" $ do
it "gshow grose1" $
gshow grose1 `shouldBe`
"GRose [1,2] [GRose [3] [],GRose [] []]"
it "gshow (gmap gshow grose1)" $
gshow (gmap gshow grose1) `shouldBe`
"GRose [\"1\",\"2\"] [GRose [\"3\"] [],GRose [] []]"
describe "Tests for Either" $ do
it "gshow either1" $
gshow either1 `shouldBe`
"Left Right 'p'"
it "gshow (gmap gshow either1)" $
gshow (gmap gshow either1) `shouldBe`
"Left Right \"'p'\""
describe "Tests for Nested" $ do
it "gshow nested" $
gshow nested `shouldBe`
"Nested {value = 1, rec = Nested {value = [2], rec = Nested {value = [[3],[4,5],[]], rec = Leaf}}}"
it "gshow (gmap gshow nested)" $
gshow (gmap gshow nested) `shouldBe`
"Nested {value = \"1\", rec = Nested {value = [\"2\"], rec = Nested {value = [[\"3\"],[\"4\",\"5\"],[]], rec = Leaf}}}"
describe "Tests for Bush" $ do
it "gshow bush1" $
gshow bush1 `shouldBe`
"BushCons 0 (BushCons (BushCons 1 BushNil) BushNil)"
it "gshow (gmap gshow bush1)" $
gshow (gmap gshow bush1) `shouldBe`
"BushCons \"0\" (BushCons (BushCons \"1\" BushNil) BushNil)"
|