1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
|
{-
Copyright 2013-2015 Mario Blazevic
License: BSD3 (see BSD3-LICENSE.txt file)
-}
-- | This module defines the 'FactorialMonoid' class and some of its instances.
--
{-# LANGUAGE Haskell2010, Trustworthy #-}
module Data.Monoid.Factorial (
-- * Classes
FactorialMonoid(..), StableFactorialMonoid,
-- * Monad function equivalents
mapM, mapM_
)
where
import Prelude hiding (break, drop, dropWhile, foldl, foldMap, foldr, last, length, map, mapM, mapM_, max, min,
null, reverse, span, splitAt, take, takeWhile)
import Control.Arrow (first)
import qualified Control.Monad as Monad
import Data.Monoid (Monoid (..), Dual(..), Sum(..), Product(..), Endo(Endo, appEndo))
import qualified Data.Foldable as Foldable
import qualified Data.List as List
import qualified Data.ByteString as ByteString
import qualified Data.ByteString.Lazy as LazyByteString
import qualified Data.Text as Text
import qualified Data.Text.Lazy as LazyText
import qualified Data.IntMap as IntMap
import qualified Data.IntSet as IntSet
import qualified Data.Map as Map
import qualified Data.Sequence as Sequence
import qualified Data.Set as Set
import qualified Data.Vector as Vector
import Data.Int (Int64)
import Data.Numbers.Primes (primeFactors)
import Data.Monoid.Null (MonoidNull(null), PositiveMonoid)
-- | Class of monoids that can be split into irreducible (/i.e./, atomic or prime) 'factors' in a unique way. Factors of
-- a 'Product' are literally its prime factors:
--
-- prop> factors (Product 12) == [Product 2, Product 2, Product 3]
--
-- Factors of a list are /not/ its elements but all its single-item sublists:
--
-- prop> factors "abc" == ["a", "b", "c"]
--
-- The methods of this class satisfy the following laws:
--
-- > mconcat . factors == id
-- > null == List.null . factors
-- > List.all (\prime-> factors prime == [prime]) . factors
-- > factors == unfoldr splitPrimePrefix == List.reverse . unfoldr (fmap swap . splitPrimeSuffix)
-- > reverse == mconcat . List.reverse . factors
-- > primePrefix == maybe mempty fst . splitPrimePrefix
-- > primeSuffix == maybe mempty snd . splitPrimeSuffix
-- > inits == List.map mconcat . List.tails . factors
-- > tails == List.map mconcat . List.tails . factors
-- > foldl f a == List.foldl f a . factors
-- > foldl' f a == List.foldl' f a . factors
-- > foldr f a == List.foldr f a . factors
-- > span p m == (mconcat l, mconcat r) where (l, r) = List.span p (factors m)
-- > List.all (List.all (not . pred) . factors) . split pred
-- > mconcat . intersperse prime . split (== prime) == id
-- > splitAt i m == (mconcat l, mconcat r) where (l, r) = List.splitAt i (factors m)
-- > spanMaybe () (const $ bool Nothing (Maybe ()) . p) m == (takeWhile p m, dropWhile p m, ())
-- > spanMaybe s0 (\s m-> Just $ f s m) m0 == (m0, mempty, foldl f s0 m0)
-- > let (prefix, suffix, s') = spanMaybe s f m
-- > foldMaybe = foldl g (Just s)
-- > g s m = s >>= flip f m
-- > in all ((Nothing ==) . foldMaybe) (inits prefix)
-- > && prefix == last (filter (isJust . foldMaybe) $ inits m)
-- > && Just s' == foldMaybe prefix
-- > && m == prefix <> suffix
--
-- A minimal instance definition must implement 'factors' or 'splitPrimePrefix'. Other methods are provided and should
-- be implemented only for performance reasons.
class MonoidNull m => FactorialMonoid m where
-- | Returns a list of all prime factors; inverse of mconcat.
factors :: m -> [m]
-- | The prime prefix, 'mempty' if none.
primePrefix :: m -> m
-- | The prime suffix, 'mempty' if none.
primeSuffix :: m -> m
-- | Splits the argument into its prime prefix and the remaining suffix. Returns 'Nothing' for 'mempty'.
splitPrimePrefix :: m -> Maybe (m, m)
-- | Splits the argument into its prime suffix and the remaining prefix. Returns 'Nothing' for 'mempty'.
splitPrimeSuffix :: m -> Maybe (m, m)
-- | Returns the list of all prefixes of the argument, 'mempty' first.
inits :: m -> [m]
-- | Returns the list of all suffixes of the argument, 'mempty' last.
tails :: m -> [m]
-- | Like 'List.foldl' from "Data.List" on the list of 'primes'.
foldl :: (a -> m -> a) -> a -> m -> a
-- | Like 'List.foldl'' from "Data.List" on the list of 'primes'.
foldl' :: (a -> m -> a) -> a -> m -> a
-- | Like 'List.foldr' from "Data.List" on the list of 'primes'.
foldr :: (m -> a -> a) -> a -> m -> a
-- | The 'length' of the list of 'primes'.
length :: m -> Int
-- | Generalizes 'foldMap' from "Data.Foldable", except the function arguments are prime factors rather than the
-- structure elements.
foldMap :: Monoid n => (m -> n) -> m -> n
-- | Like 'List.span' from "Data.List" on the list of 'primes'.
span :: (m -> Bool) -> m -> (m, m)
-- | Equivalent to 'List.break' from "Data.List".
break :: (m -> Bool) -> m -> (m, m)
-- | Splits the monoid into components delimited by prime separators satisfying the given predicate. The primes
-- satisfying the predicate are not a part of the result.
split :: (m -> Bool) -> m -> [m]
-- | Equivalent to 'List.takeWhile' from "Data.List".
takeWhile :: (m -> Bool) -> m -> m
-- | Equivalent to 'List.dropWhile' from "Data.List".
dropWhile :: (m -> Bool) -> m -> m
-- | A stateful variant of 'span', threading the result of the test function as long as it returns 'Just'.
spanMaybe :: s -> (s -> m -> Maybe s) -> m -> (m, m, s)
-- | Strict version of 'spanMaybe'.
spanMaybe' :: s -> (s -> m -> Maybe s) -> m -> (m, m, s)
-- | Like 'List.splitAt' from "Data.List" on the list of 'primes'.
splitAt :: Int -> m -> (m, m)
-- | Equivalent to 'List.drop' from "Data.List".
drop :: Int -> m -> m
-- | Equivalent to 'List.take' from "Data.List".
take :: Int -> m -> m
-- | Equivalent to 'List.reverse' from "Data.List".
reverse :: m -> m
factors = List.unfoldr splitPrimePrefix
primePrefix = maybe mempty fst . splitPrimePrefix
primeSuffix = maybe mempty snd . splitPrimeSuffix
splitPrimePrefix x = case factors x
of [] -> Nothing
prefix : rest -> Just (prefix, mconcat rest)
splitPrimeSuffix x = case factors x
of [] -> Nothing
fs -> Just (mconcat (List.init fs), List.last fs)
inits = foldr (\m l-> mempty : List.map (mappend m) l) [mempty]
tails m = m : maybe [] (tails . snd) (splitPrimePrefix m)
foldl f f0 = List.foldl f f0 . factors
foldl' f f0 = List.foldl' f f0 . factors
foldr f f0 = List.foldr f f0 . factors
length = List.length . factors
foldMap f = foldr (mappend . f) mempty
span p m0 = spanAfter id m0
where spanAfter f m = case splitPrimePrefix m
of Just (prime, rest) | p prime -> spanAfter (f . mappend prime) rest
_ -> (f mempty, m)
break = span . (not .)
spanMaybe s0 f m0 = spanAfter id s0 m0
where spanAfter g s m = case splitPrimePrefix m
of Just (prime, rest) | Just s' <- f s prime -> spanAfter (g . mappend prime) s' rest
| otherwise -> (g mempty, m, s)
Nothing -> (m0, m, s)
spanMaybe' s0 f m0 = spanAfter id s0 m0
where spanAfter g s m = seq s $
case splitPrimePrefix m
of Just (prime, rest) | Just s' <- f s prime -> spanAfter (g . mappend prime) s' rest
| otherwise -> (g mempty, m, s)
Nothing -> (m0, m, s)
split p m = prefix : splitRest
where (prefix, rest) = break p m
splitRest = case splitPrimePrefix rest
of Nothing -> []
Just (_, tl) -> split p tl
takeWhile p = fst . span p
dropWhile p = snd . span p
splitAt n0 m0 | n0 <= 0 = (mempty, m0)
| otherwise = split' n0 id m0
where split' 0 f m = (f mempty, m)
split' n f m = case splitPrimePrefix m
of Nothing -> (f mempty, m)
Just (prime, rest) -> split' (pred n) (f . mappend prime) rest
drop n p = snd (splitAt n p)
take n p = fst (splitAt n p)
reverse = mconcat . List.reverse . factors
{-# MINIMAL factors | splitPrimePrefix #-}
-- | A subclass of 'FactorialMonoid' whose instances satisfy this additional law:
--
-- > factors (a <> b) == factors a <> factors b
class (FactorialMonoid m, PositiveMonoid m) => StableFactorialMonoid m
instance FactorialMonoid () where
factors () = []
primePrefix () = ()
primeSuffix () = ()
splitPrimePrefix () = Nothing
splitPrimeSuffix () = Nothing
length () = 0
reverse = id
instance FactorialMonoid a => FactorialMonoid (Dual a) where
factors (Dual a) = fmap Dual (reverse $ factors a)
length (Dual a) = length a
primePrefix (Dual a) = Dual (primeSuffix a)
primeSuffix (Dual a) = Dual (primePrefix a)
splitPrimePrefix (Dual a) = case splitPrimeSuffix a
of Nothing -> Nothing
Just (p, s) -> Just (Dual s, Dual p)
splitPrimeSuffix (Dual a) = case splitPrimePrefix a
of Nothing -> Nothing
Just (p, s) -> Just (Dual s, Dual p)
inits (Dual a) = fmap Dual (reverse $ tails a)
tails (Dual a) = fmap Dual (reverse $ inits a)
reverse (Dual a) = Dual (reverse a)
instance (Integral a, Eq a) => FactorialMonoid (Sum a) where
primePrefix (Sum a) = Sum (signum a )
primeSuffix = primePrefix
splitPrimePrefix (Sum 0) = Nothing
splitPrimePrefix (Sum a) = Just (Sum (signum a), Sum (a - signum a))
splitPrimeSuffix (Sum 0) = Nothing
splitPrimeSuffix (Sum a) = Just (Sum (a - signum a), Sum (signum a))
length (Sum a) = abs (fromIntegral a)
reverse = id
instance Integral a => FactorialMonoid (Product a) where
factors (Product a) = List.map Product (primeFactors a)
reverse = id
instance FactorialMonoid a => FactorialMonoid (Maybe a) where
factors Nothing = []
factors (Just a) | null a = [Just a]
| otherwise = List.map Just (factors a)
length Nothing = 0
length (Just a) | null a = 1
| otherwise = length a
reverse = fmap reverse
instance (FactorialMonoid a, FactorialMonoid b) => FactorialMonoid (a, b) where
factors (a, b) = List.map (\a1-> (a1, mempty)) (factors a) ++ List.map ((,) mempty) (factors b)
primePrefix (a, b) | null a = (a, primePrefix b)
| otherwise = (primePrefix a, mempty)
primeSuffix (a, b) | null b = (primeSuffix a, b)
| otherwise = (mempty, primeSuffix b)
splitPrimePrefix (a, b) = case (splitPrimePrefix a, splitPrimePrefix b)
of (Just (ap, as), _) -> Just ((ap, mempty), (as, b))
(Nothing, Just (bp, bs)) -> Just ((a, bp), (a, bs))
(Nothing, Nothing) -> Nothing
splitPrimeSuffix (a, b) = case (splitPrimeSuffix a, splitPrimeSuffix b)
of (_, Just (bp, bs)) -> Just ((a, bp), (mempty, bs))
(Just (ap, as), Nothing) -> Just ((ap, b), (as, b))
(Nothing, Nothing) -> Nothing
inits (a, b) = List.map (flip (,) mempty) (inits a) ++ List.map ((,) a) (List.tail $ inits b)
tails (a, b) = List.map (flip (,) b) (tails a) ++ List.map ((,) mempty) (List.tail $ tails b)
foldl f a0 (x, y) = foldl f2 (foldl f1 a0 x) y
where f1 a = f a . fromFst
f2 a = f a . fromSnd
foldl' f a0 (x, y) = a' `seq` foldl' f2 a' y
where f1 a = f a . fromFst
f2 a = f a . fromSnd
a' = foldl' f1 a0 x
foldr f a (x, y) = foldr (f . fromFst) (foldr (f . fromSnd) a y) x
foldMap f (x, y) = foldMap (f . fromFst) x `mappend` foldMap (f . fromSnd) y
length (a, b) = length a + length b
span p (x, y) = ((xp, yp), (xs, ys))
where (xp, xs) = span (p . fromFst) x
(yp, ys) | null xs = span (p . fromSnd) y
| otherwise = (mempty, y)
spanMaybe s0 f (x, y) | null xs = ((xp, yp), (xs, ys), s2)
| otherwise = ((xp, mempty), (xs, y), s1)
where (xp, xs, s1) = spanMaybe s0 (\s-> f s . fromFst) x
(yp, ys, s2) = spanMaybe s1 (\s-> f s . fromSnd) y
spanMaybe' s0 f (x, y) | null xs = ((xp, yp), (xs, ys), s2)
| otherwise = ((xp, mempty), (xs, y), s1)
where (xp, xs, s1) = spanMaybe' s0 (\s-> f s . fromFst) x
(yp, ys, s2) = spanMaybe' s1 (\s-> f s . fromSnd) y
split p (x0, y0) = fst $ List.foldr combine (ys, False) xs
where xs = List.map fromFst $ split (p . fromFst) x0
ys = List.map fromSnd $ split (p . fromSnd) y0
combine x (~(y:rest), False) = (mappend x y : rest, True)
combine x (rest, True) = (x:rest, True)
splitAt n (x, y) = ((xp, yp), (xs, ys))
where (xp, xs) = splitAt n x
(yp, ys) | null xs = splitAt (n - length x) y
| otherwise = (mempty, y)
reverse (a, b) = (reverse a, reverse b)
{-# INLINE fromFst #-}
fromFst :: Monoid b => a -> (a, b)
fromFst a = (a, mempty)
{-# INLINE fromSnd #-}
fromSnd :: Monoid a => b -> (a, b)
fromSnd b = (mempty, b)
instance FactorialMonoid [x] where
factors xs = List.map (:[]) xs
primePrefix [] = []
primePrefix (x:_) = [x]
primeSuffix [] = []
primeSuffix xs = [List.last xs]
splitPrimePrefix [] = Nothing
splitPrimePrefix (x:xs) = Just ([x], xs)
splitPrimeSuffix [] = Nothing
splitPrimeSuffix xs = Just (splitLast id xs)
where splitLast f last@[_] = (f [], last)
splitLast f ~(x:rest) = splitLast (f . (x:)) rest
inits = List.inits
tails = List.tails
foldl _ a [] = a
foldl f a (x:xs) = foldl f (f a [x]) xs
foldl' _ a [] = a
foldl' f a (x:xs) = let a' = f a [x] in a' `seq` foldl' f a' xs
foldr _ f0 [] = f0
foldr f f0 (x:xs) = f [x] (foldr f f0 xs)
length = List.length
foldMap f = mconcat . List.map (f . (:[]))
break f = List.break (f . (:[]))
span f = List.span (f . (:[]))
dropWhile f = List.dropWhile (f . (:[]))
takeWhile f = List.takeWhile (f . (:[]))
spanMaybe s0 f l = (prefix' [], suffix' [], s')
where (prefix', suffix', s', _) = List.foldl' g (id, id, s0, True) l
g (prefix, suffix, s1, live) x | live, Just s2 <- f s1 [x] = (prefix . (x:), id, s2, True)
| otherwise = (prefix, suffix . (x:), s1, False)
spanMaybe' s0 f l = (prefix' [], suffix' [], s')
where (prefix', suffix', s', _) = List.foldl' g (id, id, s0, True) l
g (prefix, suffix, s1, live) x | live, Just s2 <- f s1 [x] = seq s2 $ (prefix . (x:), id, s2, True)
| otherwise = (prefix, suffix . (x:), s1, False)
splitAt = List.splitAt
drop = List.drop
take = List.take
reverse = List.reverse
instance FactorialMonoid ByteString.ByteString where
factors x = factorize (ByteString.length x) x
where factorize 0 _ = []
factorize n xs = xs1 : factorize (pred n) xs'
where (xs1, xs') = ByteString.splitAt 1 xs
primePrefix = ByteString.take 1
primeSuffix x = ByteString.drop (ByteString.length x - 1) x
splitPrimePrefix x = if ByteString.null x then Nothing else Just (ByteString.splitAt 1 x)
splitPrimeSuffix x = if ByteString.null x then Nothing else Just (ByteString.splitAt (ByteString.length x - 1) x)
inits = ByteString.inits
tails = ByteString.tails
foldl f = ByteString.foldl f'
where f' a byte = f a (ByteString.singleton byte)
foldl' f = ByteString.foldl' f'
where f' a byte = f a (ByteString.singleton byte)
foldr f = ByteString.foldr (f . ByteString.singleton)
break f = ByteString.break (f . ByteString.singleton)
span f = ByteString.span (f . ByteString.singleton)
spanMaybe s0 f b = case ByteString.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- ByteString.splitAt i b -> (prefix, suffix, s')
where g w cont (i, s) | Just s' <- f s (ByteString.singleton w) = let i' = succ i :: Int in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f b = case ByteString.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- ByteString.splitAt i b -> (prefix, suffix, s')
where g w cont (i, s) | Just s' <- f s (ByteString.singleton w) = let i' = succ i :: Int in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
dropWhile f = ByteString.dropWhile (f . ByteString.singleton)
takeWhile f = ByteString.takeWhile (f . ByteString.singleton)
length = ByteString.length
split f = ByteString.splitWith f'
where f' = f . ByteString.singleton
splitAt = ByteString.splitAt
drop = ByteString.drop
take = ByteString.take
reverse = ByteString.reverse
instance FactorialMonoid LazyByteString.ByteString where
factors x = factorize (LazyByteString.length x) x
where factorize 0 _ = []
factorize n xs = xs1 : factorize (pred n) xs'
where (xs1, xs') = LazyByteString.splitAt 1 xs
primePrefix = LazyByteString.take 1
primeSuffix x = LazyByteString.drop (LazyByteString.length x - 1) x
splitPrimePrefix x = if LazyByteString.null x then Nothing
else Just (LazyByteString.splitAt 1 x)
splitPrimeSuffix x = if LazyByteString.null x then Nothing
else Just (LazyByteString.splitAt (LazyByteString.length x - 1) x)
inits = LazyByteString.inits
tails = LazyByteString.tails
foldl f = LazyByteString.foldl f'
where f' a byte = f a (LazyByteString.singleton byte)
foldl' f = LazyByteString.foldl' f'
where f' a byte = f a (LazyByteString.singleton byte)
foldr f = LazyByteString.foldr f'
where f' byte a = f (LazyByteString.singleton byte) a
length = fromIntegral . LazyByteString.length
break f = LazyByteString.break (f . LazyByteString.singleton)
span f = LazyByteString.span (f . LazyByteString.singleton)
spanMaybe s0 f b = case LazyByteString.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- LazyByteString.splitAt i b -> (prefix, suffix, s')
where g w cont (i, s) | Just s' <- f s (LazyByteString.singleton w) = let i' = succ i :: Int64 in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f b = case LazyByteString.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- LazyByteString.splitAt i b -> (prefix, suffix, s')
where g w cont (i, s)
| Just s' <- f s (LazyByteString.singleton w) = let i' = succ i :: Int64 in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
dropWhile f = LazyByteString.dropWhile (f . LazyByteString.singleton)
takeWhile f = LazyByteString.takeWhile (f . LazyByteString.singleton)
split f = LazyByteString.splitWith f'
where f' = f . LazyByteString.singleton
splitAt = LazyByteString.splitAt . fromIntegral
drop n = LazyByteString.drop (fromIntegral n)
take n = LazyByteString.take (fromIntegral n)
reverse = LazyByteString.reverse
instance FactorialMonoid Text.Text where
factors = Text.chunksOf 1
primePrefix = Text.take 1
primeSuffix x = if Text.null x then Text.empty else Text.singleton (Text.last x)
splitPrimePrefix = fmap (first Text.singleton) . Text.uncons
splitPrimeSuffix x = if Text.null x then Nothing else Just (Text.init x, Text.singleton (Text.last x))
inits = Text.inits
tails = Text.tails
foldl f = Text.foldl f'
where f' a char = f a (Text.singleton char)
foldl' f = Text.foldl' f'
where f' a char = f a (Text.singleton char)
foldr f = Text.foldr f'
where f' char a = f (Text.singleton char) a
length = Text.length
span f = Text.span (f . Text.singleton)
break f = Text.break (f . Text.singleton)
dropWhile f = Text.dropWhile (f . Text.singleton)
takeWhile f = Text.takeWhile (f . Text.singleton)
spanMaybe s0 f t = case Text.foldr g id t (0, s0)
of (i, s') | (prefix, suffix) <- Text.splitAt i t -> (prefix, suffix, s')
where g c cont (i, s) | Just s' <- f s (Text.singleton c) = let i' = succ i :: Int in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f t = case Text.foldr g id t (0, s0)
of (i, s') | (prefix, suffix) <- Text.splitAt i t -> (prefix, suffix, s')
where g c cont (i, s) | Just s' <- f s (Text.singleton c) = let i' = succ i :: Int in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
split f = Text.split f'
where f' = f . Text.singleton
splitAt = Text.splitAt
drop = Text.drop
take = Text.take
reverse = Text.reverse
instance FactorialMonoid LazyText.Text where
factors = LazyText.chunksOf 1
primePrefix = LazyText.take 1
primeSuffix x = if LazyText.null x then LazyText.empty else LazyText.singleton (LazyText.last x)
splitPrimePrefix = fmap (first LazyText.singleton) . LazyText.uncons
splitPrimeSuffix x = if LazyText.null x
then Nothing
else Just (LazyText.init x, LazyText.singleton (LazyText.last x))
inits = LazyText.inits
tails = LazyText.tails
foldl f = LazyText.foldl f'
where f' a char = f a (LazyText.singleton char)
foldl' f = LazyText.foldl' f'
where f' a char = f a (LazyText.singleton char)
foldr f = LazyText.foldr f'
where f' char a = f (LazyText.singleton char) a
length = fromIntegral . LazyText.length
span f = LazyText.span (f . LazyText.singleton)
break f = LazyText.break (f . LazyText.singleton)
dropWhile f = LazyText.dropWhile (f . LazyText.singleton)
takeWhile f = LazyText.takeWhile (f . LazyText.singleton)
spanMaybe s0 f t = case LazyText.foldr g id t (0, s0)
of (i, s') | (prefix, suffix) <- LazyText.splitAt i t -> (prefix, suffix, s')
where g c cont (i, s) | Just s' <- f s (LazyText.singleton c) = let i' = succ i :: Int64 in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f t = case LazyText.foldr g id t (0, s0)
of (i, s') | (prefix, suffix) <- LazyText.splitAt i t -> (prefix, suffix, s')
where g c cont (i, s) | Just s' <- f s (LazyText.singleton c) = let i' = succ i :: Int64 in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
split f = LazyText.split f'
where f' = f . LazyText.singleton
splitAt = LazyText.splitAt . fromIntegral
drop n = LazyText.drop (fromIntegral n)
take n = LazyText.take (fromIntegral n)
reverse = LazyText.reverse
instance Ord k => FactorialMonoid (Map.Map k v) where
factors = List.map (uncurry Map.singleton) . Map.toAscList
primePrefix map | Map.null map = map
| otherwise = uncurry Map.singleton $ Map.findMin map
primeSuffix map | Map.null map = map
| otherwise = uncurry Map.singleton $ Map.findMax map
splitPrimePrefix = fmap singularize . Map.minViewWithKey
where singularize ((k, v), rest) = (Map.singleton k v, rest)
splitPrimeSuffix = fmap singularize . Map.maxViewWithKey
where singularize ((k, v), rest) = (rest, Map.singleton k v)
foldl f = Map.foldlWithKey f'
where f' a k v = f a (Map.singleton k v)
foldl' f = Map.foldlWithKey' f'
where f' a k v = f a (Map.singleton k v)
foldr f = Map.foldrWithKey f'
where f' k v a = f (Map.singleton k v) a
length = Map.size
reverse = id
instance FactorialMonoid (IntMap.IntMap a) where
factors = List.map (uncurry IntMap.singleton) . IntMap.toAscList
primePrefix map | IntMap.null map = map
| otherwise = uncurry IntMap.singleton $ IntMap.findMin map
primeSuffix map | IntMap.null map = map
| otherwise = uncurry IntMap.singleton $ IntMap.findMax map
splitPrimePrefix = fmap singularize . IntMap.minViewWithKey
where singularize ((k, v), rest) = (IntMap.singleton k v, rest)
splitPrimeSuffix = fmap singularize . IntMap.maxViewWithKey
where singularize ((k, v), rest) = (rest, IntMap.singleton k v)
foldl f = IntMap.foldlWithKey f'
where f' a k v = f a (IntMap.singleton k v)
foldl' f = IntMap.foldlWithKey' f'
where f' a k v = f a (IntMap.singleton k v)
foldr f = IntMap.foldrWithKey f'
where f' k v a = f (IntMap.singleton k v) a
length = IntMap.size
reverse = id
instance FactorialMonoid IntSet.IntSet where
factors = List.map IntSet.singleton . IntSet.toAscList
primePrefix set | IntSet.null set = set
| otherwise = IntSet.singleton $ IntSet.findMin set
primeSuffix set | IntSet.null set = set
| otherwise = IntSet.singleton $ IntSet.findMax set
splitPrimePrefix = fmap singularize . IntSet.minView
where singularize (min, rest) = (IntSet.singleton min, rest)
splitPrimeSuffix = fmap singularize . IntSet.maxView
where singularize (max, rest) = (rest, IntSet.singleton max)
foldl f = IntSet.foldl f'
where f' a b = f a (IntSet.singleton b)
foldl' f = IntSet.foldl' f'
where f' a b = f a (IntSet.singleton b)
foldr f = IntSet.foldr f'
where f' a b = f (IntSet.singleton a) b
length = IntSet.size
reverse = id
instance FactorialMonoid (Sequence.Seq a) where
factors = List.map Sequence.singleton . Foldable.toList
primePrefix = Sequence.take 1
primeSuffix q = Sequence.drop (Sequence.length q - 1) q
splitPrimePrefix q = case Sequence.viewl q
of Sequence.EmptyL -> Nothing
hd Sequence.:< rest -> Just (Sequence.singleton hd, rest)
splitPrimeSuffix q = case Sequence.viewr q
of Sequence.EmptyR -> Nothing
rest Sequence.:> last -> Just (rest, Sequence.singleton last)
inits = Foldable.toList . Sequence.inits
tails = Foldable.toList . Sequence.tails
foldl f = Foldable.foldl f'
where f' a b = f a (Sequence.singleton b)
foldl' f = Foldable.foldl' f'
where f' a b = f a (Sequence.singleton b)
foldr f = Foldable.foldr f'
where f' a b = f (Sequence.singleton a) b
span f = Sequence.spanl (f . Sequence.singleton)
break f = Sequence.breakl (f . Sequence.singleton)
dropWhile f = Sequence.dropWhileL (f . Sequence.singleton)
takeWhile f = Sequence.takeWhileL (f . Sequence.singleton)
spanMaybe s0 f b = case Foldable.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- Sequence.splitAt i b -> (prefix, suffix, s')
where g x cont (i, s) | Just s' <- f s (Sequence.singleton x) = let i' = succ i :: Int in seq i' $ cont (i', s')
| otherwise = (i, s)
spanMaybe' s0 f b = case Foldable.foldr g id b (0, s0)
of (i, s') | (prefix, suffix) <- Sequence.splitAt i b -> (prefix, suffix, s')
where g x cont (i, s) | Just s' <- f s (Sequence.singleton x) = let i' = succ i :: Int in seq i' $ seq s' $ cont (i', s')
| otherwise = (i, s)
splitAt = Sequence.splitAt
drop = Sequence.drop
take = Sequence.take
length = Sequence.length
reverse = Sequence.reverse
instance Ord a => FactorialMonoid (Set.Set a) where
factors = List.map Set.singleton . Set.toAscList
primePrefix set | Set.null set = set
| otherwise = Set.singleton $ Set.findMin set
primeSuffix set | Set.null set = set
| otherwise = Set.singleton $ Set.findMax set
splitPrimePrefix = fmap singularize . Set.minView
where singularize (min, rest) = (Set.singleton min, rest)
splitPrimeSuffix = fmap singularize . Set.maxView
where singularize (max, rest) = (rest, Set.singleton max)
foldl f = Foldable.foldl f'
where f' a b = f a (Set.singleton b)
foldl' f = Foldable.foldl' f'
where f' a b = f a (Set.singleton b)
foldr f = Foldable.foldr f'
where f' a b = f (Set.singleton a) b
length = Set.size
reverse = id
instance FactorialMonoid (Vector.Vector a) where
factors x = factorize (Vector.length x) x
where factorize 0 _ = []
factorize n xs = xs1 : factorize (pred n) xs'
where (xs1, xs') = Vector.splitAt 1 xs
primePrefix = Vector.take 1
primeSuffix x = Vector.drop (Vector.length x - 1) x
splitPrimePrefix x = if Vector.null x then Nothing else Just (Vector.splitAt 1 x)
splitPrimeSuffix x = if Vector.null x then Nothing else Just (Vector.splitAt (Vector.length x - 1) x)
inits x0 = initsWith x0 []
where initsWith x rest | Vector.null x = x:rest
| otherwise = initsWith (Vector.unsafeInit x) (x:rest)
tails x = x : if Vector.null x then [] else tails (Vector.unsafeTail x)
foldl f = Vector.foldl f'
where f' a byte = f a (Vector.singleton byte)
foldl' f = Vector.foldl' f'
where f' a byte = f a (Vector.singleton byte)
foldr f = Vector.foldr f'
where f' byte a = f (Vector.singleton byte) a
break f = Vector.break (f . Vector.singleton)
span f = Vector.span (f . Vector.singleton)
dropWhile f = Vector.dropWhile (f . Vector.singleton)
takeWhile f = Vector.takeWhile (f . Vector.singleton)
spanMaybe s0 f v = case Vector.ifoldr g Left v s0
of Left s' -> (v, Vector.empty, s')
Right (i, s') | (prefix, suffix) <- Vector.splitAt i v -> (prefix, suffix, s')
where g i x cont s | Just s' <- f s (Vector.singleton x) = cont s'
| otherwise = Right (i, s)
spanMaybe' s0 f v = case Vector.ifoldr' g Left v s0
of Left s' -> (v, Vector.empty, s')
Right (i, s') | (prefix, suffix) <- Vector.splitAt i v -> (prefix, suffix, s')
where g i x cont s | Just s' <- f s (Vector.singleton x) = seq s' (cont s')
| otherwise = Right (i, s)
splitAt = Vector.splitAt
drop = Vector.drop
take = Vector.take
length = Vector.length
reverse = Vector.reverse
instance StableFactorialMonoid ()
instance StableFactorialMonoid a => StableFactorialMonoid (Dual a)
instance StableFactorialMonoid [x]
instance StableFactorialMonoid ByteString.ByteString
instance StableFactorialMonoid LazyByteString.ByteString
instance StableFactorialMonoid Text.Text
instance StableFactorialMonoid LazyText.Text
instance StableFactorialMonoid (Sequence.Seq a)
instance StableFactorialMonoid (Vector.Vector a)
-- | A 'Monad.mapM' equivalent.
mapM :: (FactorialMonoid a, Monoid b, Monad m) => (a -> m b) -> a -> m b
mapM f = ($ return mempty) . appEndo . foldMap (Endo . Monad.liftM2 mappend . f)
-- | A 'Monad.mapM_' equivalent.
mapM_ :: (FactorialMonoid a, Monad m) => (a -> m b) -> a -> m ()
mapM_ f = foldr ((>>) . f) (return ())
|