1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
{-# LANGUAGE Trustworthy #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Foldable
-- Copyright : Ross Paterson 2005
-- License : BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Class of data structures that can be folded to a summary value.
--
-- Many of these functions generalize "Prelude", "Control.Monad" and
-- "Data.List" functions of the same names from lists to any 'Foldable'
-- functor. To avoid ambiguity, either import those modules hiding
-- these names or qualify uses of these function names with an alias
-- for this module.
--
-----------------------------------------------------------------------------
module Data.Foldable (
-- * Folds
Foldable(..),
-- ** Special biased folds
foldrM,
foldlM,
-- ** Folding actions
-- *** Applicative actions
traverse_,
for_,
sequenceA_,
asum,
-- *** Monadic actions
mapM_,
forM_,
sequence_,
msum,
-- ** Specialized folds
toList,
concat,
concatMap,
and,
or,
any,
all,
sum,
product,
maximum,
maximumBy,
minimum,
minimumBy,
-- ** Searches
elem,
notElem,
find
) where
import Prelude hiding (foldl, foldr, foldl1, foldr1, mapM_, sequence_,
elem, notElem, concat, concatMap, and, or, any, all,
sum, product, maximum, minimum)
import qualified Prelude (foldl, foldr, foldl1, foldr1)
import qualified Data.List as List (foldl')
import Control.Applicative
import Control.Monad (MonadPlus(..))
import Data.Maybe (fromMaybe, listToMaybe)
import Data.Monoid
import Data.Proxy
import GHC.Exts (build)
import GHC.Arr
-- | Data structures that can be folded.
--
-- Minimal complete definition: 'foldMap' or 'foldr'.
--
-- For example, given a data type
--
-- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
--
-- a suitable instance would be
--
-- > instance Foldable Tree where
-- > foldMap f Empty = mempty
-- > foldMap f (Leaf x) = f x
-- > foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
--
-- This is suitable even for abstract types, as the monoid is assumed
-- to satisfy the monoid laws. Alternatively, one could define @foldr@:
--
-- > instance Foldable Tree where
-- > foldr f z Empty = z
-- > foldr f z (Leaf x) = f x z
-- > foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
--
class Foldable t where
-- | Combine the elements of a structure using a monoid.
fold :: Monoid m => t m -> m
fold = foldMap id
-- | Map each element of the structure to a monoid,
-- and combine the results.
foldMap :: Monoid m => (a -> m) -> t a -> m
foldMap f = foldr (mappend . f) mempty
-- | Right-associative fold of a structure.
--
-- @'foldr' f z = 'Prelude.foldr' f z . 'toList'@
foldr :: (a -> b -> b) -> b -> t a -> b
foldr f z t = appEndo (foldMap (Endo . f) t) z
-- | Right-associative fold of a structure,
-- but with strict application of the operator.
foldr' :: (a -> b -> b) -> b -> t a -> b
foldr' f z0 xs = foldl f' id xs z0
where f' k x z = k $! f x z
-- | Left-associative fold of a structure.
--
-- @'foldl' f z = 'Prelude.foldl' f z . 'toList'@
foldl :: (b -> a -> b) -> b -> t a -> b
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
-- | Left-associative fold of a structure.
-- but with strict application of the operator.
--
-- @'foldl' f z = 'List.foldl'' f z . 'toList'@
foldl' :: (b -> a -> b) -> b -> t a -> b
foldl' f z0 xs = foldr f' id xs z0
where f' x k z = k $! f z x
-- | A variant of 'foldr' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- @'foldr1' f = 'Prelude.foldr1' f . 'toList'@
foldr1 :: (a -> a -> a) -> t a -> a
foldr1 f xs = fromMaybe (error "foldr1: empty structure")
(foldr mf Nothing xs)
where
mf x Nothing = Just x
mf x (Just y) = Just (f x y)
-- | A variant of 'foldl' that has no base case,
-- and thus may only be applied to non-empty structures.
--
-- @'foldl1' f = 'Prelude.foldl1' f . 'toList'@
foldl1 :: (a -> a -> a) -> t a -> a
foldl1 f xs = fromMaybe (error "foldl1: empty structure")
(foldl mf Nothing xs)
where
mf Nothing y = Just y
mf (Just x) y = Just (f x y)
{-# MINIMAL foldMap | foldr #-}
-- instances for Prelude types
instance Foldable Maybe where
foldr _ z Nothing = z
foldr f z (Just x) = f x z
foldl _ z Nothing = z
foldl f z (Just x) = f z x
instance Foldable [] where
foldr = Prelude.foldr
foldl = Prelude.foldl
foldl' = List.foldl'
foldr1 = Prelude.foldr1
foldl1 = Prelude.foldl1
instance Foldable (Either a) where
foldMap _ (Left _) = mempty
foldMap f (Right y) = f y
foldr _ z (Left _) = z
foldr f z (Right y) = f y z
instance Foldable ((,) a) where
foldMap f (_, y) = f y
foldr f z (_, y) = f y z
instance Ix i => Foldable (Array i) where
foldr f z = Prelude.foldr f z . elems
foldl f z = Prelude.foldl f z . elems
foldr1 f = Prelude.foldr1 f . elems
foldl1 f = Prelude.foldl1 f . elems
instance Foldable Proxy where
foldMap _ _ = mempty
{-# INLINE foldMap #-}
fold _ = mempty
{-# INLINE fold #-}
foldr _ z _ = z
{-# INLINE foldr #-}
foldl _ z _ = z
{-# INLINE foldl #-}
foldl1 _ _ = error "foldl1: Proxy"
{-# INLINE foldl1 #-}
foldr1 _ _ = error "foldr1: Proxy"
{-# INLINE foldr1 #-}
instance Foldable (Const m) where
foldMap _ _ = mempty
-- | Monadic fold over the elements of a structure,
-- associating to the right, i.e. from right to left.
foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
foldrM f z0 xs = foldl f' return xs z0
where f' k x z = f x z >>= k
-- | Monadic fold over the elements of a structure,
-- associating to the left, i.e. from left to right.
foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
foldlM f z0 xs = foldr f' return xs z0
where f' x k z = f z x >>= k
-- | Map each element of a structure to an action, evaluate
-- these actions from left to right, and ignore the results.
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
traverse_ f = foldr ((*>) . f) (pure ())
-- | 'for_' is 'traverse_' with its arguments flipped.
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
{-# INLINE for_ #-}
for_ = flip traverse_
-- | Map each element of a structure to a monadic action, evaluate
-- these actions from left to right, and ignore the results.
mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
mapM_ f = foldr ((>>) . f) (return ())
-- | 'forM_' is 'mapM_' with its arguments flipped.
forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
{-# INLINE forM_ #-}
forM_ = flip mapM_
-- | Evaluate each action in the structure from left to right,
-- and ignore the results.
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
sequenceA_ = foldr (*>) (pure ())
-- | Evaluate each monadic action in the structure from left to right,
-- and ignore the results.
sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
sequence_ = foldr (>>) (return ())
-- | The sum of a collection of actions, generalizing 'concat'.
asum :: (Foldable t, Alternative f) => t (f a) -> f a
{-# INLINE asum #-}
asum = foldr (<|>) empty
-- | The sum of a collection of actions, generalizing 'concat'.
msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
{-# INLINE msum #-}
msum = foldr mplus mzero
-- These use foldr rather than foldMap to avoid repeated concatenation.
-- | List of elements of a structure.
toList :: Foldable t => t a -> [a]
{-# INLINE toList #-}
toList t = build (\ c n -> foldr c n t)
-- | The concatenation of all the elements of a container of lists.
concat :: Foldable t => t [a] -> [a]
concat = fold
-- | Map a function over all the elements of a container and concatenate
-- the resulting lists.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
concatMap = foldMap
-- | 'and' returns the conjunction of a container of Bools. For the
-- result to be 'True', the container must be finite; 'False', however,
-- results from a 'False' value finitely far from the left end.
and :: Foldable t => t Bool -> Bool
and = getAll . foldMap All
-- | 'or' returns the disjunction of a container of Bools. For the
-- result to be 'False', the container must be finite; 'True', however,
-- results from a 'True' value finitely far from the left end.
or :: Foldable t => t Bool -> Bool
or = getAny . foldMap Any
-- | Determines whether any element of the structure satisfies the predicate.
any :: Foldable t => (a -> Bool) -> t a -> Bool
any p = getAny . foldMap (Any . p)
-- | Determines whether all elements of the structure satisfy the predicate.
all :: Foldable t => (a -> Bool) -> t a -> Bool
all p = getAll . foldMap (All . p)
-- | The 'sum' function computes the sum of the numbers of a structure.
sum :: (Foldable t, Num a) => t a -> a
sum = getSum . foldMap Sum
-- | The 'product' function computes the product of the numbers of a structure.
product :: (Foldable t, Num a) => t a -> a
product = getProduct . foldMap Product
-- | The largest element of a non-empty structure.
maximum :: (Foldable t, Ord a) => t a -> a
maximum = foldr1 max
-- | The largest element of a non-empty structure with respect to the
-- given comparison function.
maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
maximumBy cmp = foldr1 max'
where max' x y = case cmp x y of
GT -> x
_ -> y
-- | The least element of a non-empty structure.
minimum :: (Foldable t, Ord a) => t a -> a
minimum = foldr1 min
-- | The least element of a non-empty structure with respect to the
-- given comparison function.
minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
minimumBy cmp = foldr1 min'
where min' x y = case cmp x y of
GT -> y
_ -> x
-- | Does the element occur in the structure?
elem :: (Foldable t, Eq a) => a -> t a -> Bool
elem = any . (==)
-- | 'notElem' is the negation of 'elem'.
notElem :: (Foldable t, Eq a) => a -> t a -> Bool
notElem x = not . elem x
-- | The 'find' function takes a predicate and a structure and returns
-- the leftmost element of the structure matching the predicate, or
-- 'Nothing' if there is no such element.
find :: Foldable t => (a -> Bool) -> t a -> Maybe a
find p = listToMaybe . concatMap (\ x -> if p x then [x] else [])
|