1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
|
{-
(c) The GRASP Project, Glasgow University, 1994-1998
Wired-in knowledge about {\em non-primitive} types
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE OverloadedStrings #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | This module is about types that can be defined in Haskell, but which
-- must be wired into the compiler nonetheless. C.f module "GHC.Builtin.Types.Prim"
module GHC.Builtin.Types (
-- * Helper functions defined here
mkWiredInTyConName, -- This is used in GHC.Builtin.Types.Literals to define the
-- built-in functions for evaluation.
mkWiredInIdName, -- used in GHC.Types.Id.Make
-- * All wired in things
wiredInTyCons, isBuiltInOcc_maybe,
-- * Bool
boolTy, boolTyCon, boolTyCon_RDR, boolTyConName,
trueDataCon, trueDataConId, true_RDR,
falseDataCon, falseDataConId, false_RDR,
promotedFalseDataCon, promotedTrueDataCon,
-- * Ordering
orderingTyCon,
ordLTDataCon, ordLTDataConId,
ordEQDataCon, ordEQDataConId,
ordGTDataCon, ordGTDataConId,
promotedLTDataCon, promotedEQDataCon, promotedGTDataCon,
-- * Boxing primitive types
boxingDataCon_maybe,
-- * Char
charTyCon, charDataCon, charTyCon_RDR,
charTy, stringTy, charTyConName, stringTyCon_RDR,
-- * Double
doubleTyCon, doubleDataCon, doubleTy, doubleTyConName,
-- * Float
floatTyCon, floatDataCon, floatTy, floatTyConName,
-- * Int
intTyCon, intDataCon, intTyCon_RDR, intDataCon_RDR, intTyConName,
intTy,
-- * Word
wordTyCon, wordDataCon, wordTyConName, wordTy,
-- * Word8
word8TyCon, word8DataCon, word8TyConName, word8Ty,
-- * List
listTyCon, listTyCon_RDR, listTyConName, listTyConKey,
nilDataCon, nilDataConName, nilDataConKey,
consDataCon_RDR, consDataCon, consDataConName,
promotedNilDataCon, promotedConsDataCon,
mkListTy, mkPromotedListTy,
-- * Maybe
maybeTyCon, maybeTyConName,
nothingDataCon, nothingDataConName, promotedNothingDataCon,
justDataCon, justDataConName, promotedJustDataCon,
-- * Tuples
mkTupleTy, mkTupleTy1, mkBoxedTupleTy, mkTupleStr,
tupleTyCon, tupleDataCon, tupleTyConName, tupleDataConName,
promotedTupleDataCon,
unitTyCon, unitDataCon, unitDataConId, unitTy, unitTyConKey,
pairTyCon,
unboxedUnitTyCon, unboxedUnitDataCon,
unboxedTupleKind, unboxedSumKind,
-- ** Constraint tuples
cTupleTyConName, cTupleTyConNames, isCTupleTyConName,
cTupleTyConNameArity_maybe,
cTupleDataConName, cTupleDataConNames,
-- * Any
anyTyCon, anyTy, anyTypeOfKind,
-- * Recovery TyCon
makeRecoveryTyCon,
-- * Sums
mkSumTy, sumTyCon, sumDataCon,
-- * Kinds
typeNatKindCon, typeNatKind, typeSymbolKindCon, typeSymbolKind,
isLiftedTypeKindTyConName, liftedTypeKind,
typeToTypeKind, constraintKind,
liftedTypeKindTyCon, constraintKindTyCon, constraintKindTyConName,
liftedTypeKindTyConName,
-- * Equality predicates
heqTyCon, heqTyConName, heqClass, heqDataCon,
eqTyCon, eqTyConName, eqClass, eqDataCon, eqTyCon_RDR,
coercibleTyCon, coercibleTyConName, coercibleDataCon, coercibleClass,
-- * RuntimeRep and friends
runtimeRepTyCon, vecCountTyCon, vecElemTyCon,
runtimeRepTy, liftedRepTy, liftedRepDataCon, liftedRepDataConTyCon,
vecRepDataConTyCon, tupleRepDataConTyCon, sumRepDataConTyCon,
liftedRepDataConTy, unliftedRepDataConTy,
intRepDataConTy,
int8RepDataConTy, int16RepDataConTy, int32RepDataConTy, int64RepDataConTy,
wordRepDataConTy,
word8RepDataConTy, word16RepDataConTy, word32RepDataConTy, word64RepDataConTy,
addrRepDataConTy,
floatRepDataConTy, doubleRepDataConTy,
vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy,
vec64DataConTy,
int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy,
int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy,
word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy,
doubleElemRepDataConTy,
-- * Multiplicity and friends
multiplicityTyConName, oneDataConName, manyDataConName, multiplicityTy,
multiplicityTyCon, oneDataCon, manyDataCon, oneDataConTy, manyDataConTy,
oneDataConTyCon, manyDataConTyCon,
multMulTyCon,
unrestrictedFunTyCon, unrestrictedFunTyConName,
-- * Bignum
integerTy, integerTyCon, integerTyConName,
integerISDataCon, integerISDataConName,
integerIPDataCon, integerIPDataConName,
integerINDataCon, integerINDataConName,
naturalTy, naturalTyCon, naturalTyConName,
naturalNSDataCon, naturalNSDataConName,
naturalNBDataCon, naturalNBDataConName
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import {-# SOURCE #-} GHC.Types.Id.Make ( mkDataConWorkId, mkDictSelId )
-- friends:
import GHC.Builtin.Names
import GHC.Builtin.Types.Prim
import {-# SOURCE #-} GHC.Builtin.Uniques
-- others:
import GHC.Core.Coercion.Axiom
import GHC.Types.Id
import GHC.Types.Var (VarBndr (Bndr))
import GHC.Settings.Constants ( mAX_TUPLE_SIZE, mAX_CTUPLE_SIZE, mAX_SUM_SIZE )
import GHC.Unit.Module ( Module )
import GHC.Core.Type
import GHC.Types.RepType
import GHC.Core.DataCon
import {-# SOURCE #-} GHC.Core.ConLike
import GHC.Core.TyCon
import GHC.Core.Class ( Class, mkClass )
import GHC.Types.Name.Reader
import GHC.Types.Name as Name
import GHC.Types.Name.Env ( NameEnv, mkNameEnv, lookupNameEnv, lookupNameEnv_NF )
import GHC.Types.Name.Set ( NameSet, mkNameSet, elemNameSet )
import GHC.Types.Basic
import GHC.Types.ForeignCall
import GHC.Types.SrcLoc ( noSrcSpan )
import GHC.Types.Unique
import Data.Array
import GHC.Data.FastString
import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Data.BooleanFormula ( mkAnd )
import qualified Data.ByteString.Char8 as BS
import Data.List ( elemIndex )
alpha_tyvar :: [TyVar]
alpha_tyvar = [alphaTyVar]
alpha_ty :: [Type]
alpha_ty = [alphaTy]
{-
Note [Wiring in RuntimeRep]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The RuntimeRep type (and friends) in GHC.Types has a bunch of constructors,
making it a pain to wire in. To ease the pain somewhat, we use lists of
the different bits, like Uniques, Names, DataCons. These lists must be
kept in sync with each other. The rule is this: use the order as declared
in GHC.Types. All places where such lists exist should contain a reference
to this Note, so a search for this Note's name should find all the lists.
See also Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType.
************************************************************************
* *
\subsection{Wired in type constructors}
* *
************************************************************************
If you change which things are wired in, make sure you change their
names in GHC.Builtin.Names, so they use wTcQual, wDataQual, etc
-}
-- This list is used only to define GHC.Builtin.Utils.wiredInThings. That in turn
-- is used to initialise the name environment carried around by the renamer.
-- This means that if we look up the name of a TyCon (or its implicit binders)
-- that occurs in this list that name will be assigned the wired-in key we
-- define here.
--
-- Because of their infinite nature, this list excludes
-- * tuples, including boxed, unboxed and constraint tuples
--- (mkTupleTyCon, unitTyCon, pairTyCon)
-- * unboxed sums (sumTyCon)
-- See Note [Infinite families of known-key names] in GHC.Builtin.Names
--
-- See also Note [Known-key names]
wiredInTyCons :: [TyCon]
wiredInTyCons = [ -- Units are not treated like other tuples, because they
-- are defined in GHC.Base, and there's only a few of them. We
-- put them in wiredInTyCons so that they will pre-populate
-- the name cache, so the parser in isBuiltInOcc_maybe doesn't
-- need to look out for them.
unitTyCon
, unboxedUnitTyCon
, anyTyCon
, boolTyCon
, charTyCon
, stringTyCon
, doubleTyCon
, floatTyCon
, intTyCon
, wordTyCon
, word8TyCon
, listTyCon
, orderingTyCon
, maybeTyCon
, heqTyCon
, eqTyCon
, coercibleTyCon
, typeNatKindCon
, typeSymbolKindCon
, runtimeRepTyCon
, vecCountTyCon
, vecElemTyCon
, constraintKindTyCon
, liftedTypeKindTyCon
, multiplicityTyCon
, naturalTyCon
, integerTyCon
]
mkWiredInTyConName :: BuiltInSyntax -> Module -> FastString -> Unique -> TyCon -> Name
mkWiredInTyConName built_in modu fs unique tycon
= mkWiredInName modu (mkTcOccFS fs) unique
(ATyCon tycon) -- Relevant TyCon
built_in
mkWiredInDataConName :: BuiltInSyntax -> Module -> FastString -> Unique -> DataCon -> Name
mkWiredInDataConName built_in modu fs unique datacon
= mkWiredInName modu (mkDataOccFS fs) unique
(AConLike (RealDataCon datacon)) -- Relevant DataCon
built_in
mkWiredInIdName :: Module -> FastString -> Unique -> Id -> Name
mkWiredInIdName mod fs uniq id
= mkWiredInName mod (mkOccNameFS Name.varName fs) uniq (AnId id) UserSyntax
-- See Note [Kind-changing of (~) and Coercible]
-- in libraries/ghc-prim/GHC/Types.hs
eqTyConName, eqDataConName, eqSCSelIdName :: Name
eqTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "~") eqTyConKey eqTyCon
eqDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "Eq#") eqDataConKey eqDataCon
eqSCSelIdName = mkWiredInIdName gHC_TYPES (fsLit "eq_sel") eqSCSelIdKey eqSCSelId
{- Note [eqTyCon (~) is built-in syntax]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The (~) type operator used in equality constraints (a~b) is considered built-in
syntax. This has a few consequences:
* The user is not allowed to define their own type constructors with this name:
ghci> class a ~ b
<interactive>:1:1: error: Illegal binding of built-in syntax: ~
* Writing (a ~ b) does not require enabling -XTypeOperators. It does, however,
require -XGADTs or -XTypeFamilies.
* The (~) type operator is always in scope. It doesn't need to be imported,
and it cannot be hidden.
* We have a bunch of special cases in the compiler to arrange all of the above.
There's no particular reason for (~) to be special, but fixing this would be a
breaking change.
-}
eqTyCon_RDR :: RdrName
eqTyCon_RDR = nameRdrName eqTyConName
-- See Note [Kind-changing of (~) and Coercible]
-- in libraries/ghc-prim/GHC/Types.hs
heqTyConName, heqDataConName, heqSCSelIdName :: Name
heqTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "~~") heqTyConKey heqTyCon
heqDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "HEq#") heqDataConKey heqDataCon
heqSCSelIdName = mkWiredInIdName gHC_TYPES (fsLit "heq_sel") heqSCSelIdKey heqSCSelId
-- See Note [Kind-changing of (~) and Coercible] in libraries/ghc-prim/GHC/Types.hs
coercibleTyConName, coercibleDataConName, coercibleSCSelIdName :: Name
coercibleTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Coercible") coercibleTyConKey coercibleTyCon
coercibleDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "MkCoercible") coercibleDataConKey coercibleDataCon
coercibleSCSelIdName = mkWiredInIdName gHC_TYPES (fsLit "coercible_sel") coercibleSCSelIdKey coercibleSCSelId
charTyConName, charDataConName, intTyConName, intDataConName, stringTyConName :: Name
charTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Char") charTyConKey charTyCon
charDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "C#") charDataConKey charDataCon
stringTyConName = mkWiredInTyConName UserSyntax gHC_BASE (fsLit "String") stringTyConKey stringTyCon
intTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Int") intTyConKey intTyCon
intDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "I#") intDataConKey intDataCon
boolTyConName, falseDataConName, trueDataConName :: Name
boolTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Bool") boolTyConKey boolTyCon
falseDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "False") falseDataConKey falseDataCon
trueDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "True") trueDataConKey trueDataCon
listTyConName, nilDataConName, consDataConName :: Name
listTyConName = mkWiredInTyConName BuiltInSyntax gHC_TYPES (fsLit "[]") listTyConKey listTyCon
nilDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit "[]") nilDataConKey nilDataCon
consDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit ":") consDataConKey consDataCon
maybeTyConName, nothingDataConName, justDataConName :: Name
maybeTyConName = mkWiredInTyConName UserSyntax gHC_MAYBE (fsLit "Maybe")
maybeTyConKey maybeTyCon
nothingDataConName = mkWiredInDataConName UserSyntax gHC_MAYBE (fsLit "Nothing")
nothingDataConKey nothingDataCon
justDataConName = mkWiredInDataConName UserSyntax gHC_MAYBE (fsLit "Just")
justDataConKey justDataCon
wordTyConName, wordDataConName, word8TyConName, word8DataConName :: Name
wordTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Word") wordTyConKey wordTyCon
wordDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "W#") wordDataConKey wordDataCon
word8TyConName = mkWiredInTyConName UserSyntax gHC_WORD (fsLit "Word8") word8TyConKey word8TyCon
word8DataConName = mkWiredInDataConName UserSyntax gHC_WORD (fsLit "W8#") word8DataConKey word8DataCon
floatTyConName, floatDataConName, doubleTyConName, doubleDataConName :: Name
floatTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Float") floatTyConKey floatTyCon
floatDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "F#") floatDataConKey floatDataCon
doubleTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Double") doubleTyConKey doubleTyCon
doubleDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "D#") doubleDataConKey doubleDataCon
-- Any
{-
Note [Any types]
~~~~~~~~~~~~~~~~
The type constructor Any,
type family Any :: k where { }
It has these properties:
* Note that 'Any' is kind polymorphic since in some program we may
need to use Any to fill in a type variable of some kind other than *
(see #959 for examples). Its kind is thus `forall k. k``.
* It is defined in module GHC.Types, and exported so that it is
available to users. For this reason it's treated like any other
wired-in type:
- has a fixed unique, anyTyConKey,
- lives in the global name cache
* It is a *closed* type family, with no instances. This means that
if ty :: '(k1, k2) we add a given coercion
g :: ty ~ (Fst ty, Snd ty)
If Any was a *data* type, then we'd get inconsistency because 'ty'
could be (Any '(k1,k2)) and then we'd have an equality with Any on
one side and '(,) on the other. See also #9097 and #9636.
* When instantiated at a lifted type it is inhabited by at least one value,
namely bottom
* You can safely coerce any /lifted/ type to Any, and back with unsafeCoerce.
* It does not claim to be a *data* type, and that's important for
the code generator, because the code gen may *enter* a data value
but never enters a function value.
* It is wired-in so we can easily refer to it where we don't have a name
environment (e.g. see Rules.matchRule for one example)
* If (Any k) is the type of a value, it must be a /lifted/ value. So
if we have (Any @(TYPE rr)) then rr must be 'LiftedRep. See
Note [TYPE and RuntimeRep] in GHC.Builtin.Types.Prim. This is a convenient
invariant, and makes isUnliftedTyCon well-defined; otherwise what
would (isUnliftedTyCon Any) be?
It's used to instantiate un-constrained type variables after type checking. For
example, 'length' has type
length :: forall a. [a] -> Int
and the list datacon for the empty list has type
[] :: forall a. [a]
In order to compose these two terms as @length []@ a type
application is required, but there is no constraint on the
choice. In this situation GHC uses 'Any',
> length (Any *) ([] (Any *))
Above, we print kinds explicitly, as if with --fprint-explicit-kinds.
The Any tycon used to be quite magic, but we have since been able to
implement it merely with an empty kind polymorphic type family. See #10886 for a
bit of history.
-}
anyTyConName :: Name
anyTyConName =
mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Any") anyTyConKey anyTyCon
anyTyCon :: TyCon
anyTyCon = mkFamilyTyCon anyTyConName binders res_kind Nothing
(ClosedSynFamilyTyCon Nothing)
Nothing
NotInjective
where
binders@[kv] = mkTemplateKindTyConBinders [liftedTypeKind]
res_kind = mkTyVarTy (binderVar kv)
anyTy :: Type
anyTy = mkTyConTy anyTyCon
anyTypeOfKind :: Kind -> Type
anyTypeOfKind kind = mkTyConApp anyTyCon [kind]
-- | Make a fake, recovery 'TyCon' from an existing one.
-- Used when recovering from errors in type declarations
makeRecoveryTyCon :: TyCon -> TyCon
makeRecoveryTyCon tc
= mkTcTyCon (tyConName tc)
bndrs res_kind
noTcTyConScopedTyVars
True -- Fully generalised
flavour -- Keep old flavour
where
flavour = tyConFlavour tc
[kv] = mkTemplateKindVars [liftedTypeKind]
(bndrs, res_kind)
= case flavour of
PromotedDataConFlavour -> ([mkNamedTyConBinder Inferred kv], mkTyVarTy kv)
_ -> (tyConBinders tc, tyConResKind tc)
-- For data types we have already validated their kind, so it
-- makes sense to keep it. For promoted data constructors we haven't,
-- so we recover with kind (forall k. k). Otherwise consider
-- data T a where { MkT :: Show a => T a }
-- If T is for some reason invalid, we don't want to fall over
-- at (promoted) use-sites of MkT.
-- Kinds
typeNatKindConName, typeSymbolKindConName :: Name
typeNatKindConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Nat") typeNatKindConNameKey typeNatKindCon
typeSymbolKindConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Symbol") typeSymbolKindConNameKey typeSymbolKindCon
constraintKindTyConName :: Name
constraintKindTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Constraint") constraintKindTyConKey constraintKindTyCon
liftedTypeKindTyConName :: Name
liftedTypeKindTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Type") liftedTypeKindTyConKey liftedTypeKindTyCon
multiplicityTyConName :: Name
multiplicityTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "Multiplicity")
multiplicityTyConKey multiplicityTyCon
oneDataConName, manyDataConName :: Name
oneDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit "One") oneDataConKey oneDataCon
manyDataConName = mkWiredInDataConName BuiltInSyntax gHC_TYPES (fsLit "Many") manyDataConKey manyDataCon
-- It feels wrong to have One and Many be BuiltInSyntax. But otherwise,
-- `Many`, in particular, is considered out of scope unless an appropriate
-- file is open. The problem with this is that `Many` appears implicitly in
-- types every time there is an `(->)`, hence out-of-scope errors get
-- reported. Making them built-in make it so that they are always considered in
-- scope.
runtimeRepTyConName, vecRepDataConName, tupleRepDataConName, sumRepDataConName :: Name
runtimeRepTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "RuntimeRep") runtimeRepTyConKey runtimeRepTyCon
vecRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "VecRep") vecRepDataConKey vecRepDataCon
tupleRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "TupleRep") tupleRepDataConKey tupleRepDataCon
sumRepDataConName = mkWiredInDataConName UserSyntax gHC_TYPES (fsLit "SumRep") sumRepDataConKey sumRepDataCon
-- See Note [Wiring in RuntimeRep]
runtimeRepSimpleDataConNames :: [Name]
runtimeRepSimpleDataConNames
= zipWith3Lazy mk_special_dc_name
[ fsLit "LiftedRep", fsLit "UnliftedRep"
, fsLit "IntRep"
, fsLit "Int8Rep", fsLit "Int16Rep", fsLit "Int32Rep", fsLit "Int64Rep"
, fsLit "WordRep"
, fsLit "Word8Rep", fsLit "Word16Rep", fsLit "Word32Rep", fsLit "Word64Rep"
, fsLit "AddrRep"
, fsLit "FloatRep", fsLit "DoubleRep"
]
runtimeRepSimpleDataConKeys
runtimeRepSimpleDataCons
vecCountTyConName :: Name
vecCountTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "VecCount") vecCountTyConKey vecCountTyCon
-- See Note [Wiring in RuntimeRep]
vecCountDataConNames :: [Name]
vecCountDataConNames = zipWith3Lazy mk_special_dc_name
[ fsLit "Vec2", fsLit "Vec4", fsLit "Vec8"
, fsLit "Vec16", fsLit "Vec32", fsLit "Vec64" ]
vecCountDataConKeys
vecCountDataCons
vecElemTyConName :: Name
vecElemTyConName = mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "VecElem") vecElemTyConKey vecElemTyCon
-- See Note [Wiring in RuntimeRep]
vecElemDataConNames :: [Name]
vecElemDataConNames = zipWith3Lazy mk_special_dc_name
[ fsLit "Int8ElemRep", fsLit "Int16ElemRep", fsLit "Int32ElemRep"
, fsLit "Int64ElemRep", fsLit "Word8ElemRep", fsLit "Word16ElemRep"
, fsLit "Word32ElemRep", fsLit "Word64ElemRep"
, fsLit "FloatElemRep", fsLit "DoubleElemRep" ]
vecElemDataConKeys
vecElemDataCons
mk_special_dc_name :: FastString -> Unique -> DataCon -> Name
mk_special_dc_name fs u dc = mkWiredInDataConName UserSyntax gHC_TYPES fs u dc
boolTyCon_RDR, false_RDR, true_RDR, intTyCon_RDR, charTyCon_RDR, stringTyCon_RDR,
intDataCon_RDR, listTyCon_RDR, consDataCon_RDR :: RdrName
boolTyCon_RDR = nameRdrName boolTyConName
false_RDR = nameRdrName falseDataConName
true_RDR = nameRdrName trueDataConName
intTyCon_RDR = nameRdrName intTyConName
charTyCon_RDR = nameRdrName charTyConName
stringTyCon_RDR = nameRdrName stringTyConName
intDataCon_RDR = nameRdrName intDataConName
listTyCon_RDR = nameRdrName listTyConName
consDataCon_RDR = nameRdrName consDataConName
{-
************************************************************************
* *
\subsection{mkWiredInTyCon}
* *
************************************************************************
-}
-- This function assumes that the types it creates have all parameters at
-- Representational role, and that there is no kind polymorphism.
pcTyCon :: Name -> Maybe CType -> [TyVar] -> [DataCon] -> TyCon
pcTyCon name cType tyvars cons
= mkAlgTyCon name
(mkAnonTyConBinders VisArg tyvars)
liftedTypeKind
(map (const Representational) tyvars)
cType
[] -- No stupid theta
(mkDataTyConRhs cons)
(VanillaAlgTyCon (mkPrelTyConRepName name))
False -- Not in GADT syntax
pcDataCon :: Name -> [TyVar] -> [Type] -> TyCon -> DataCon
pcDataCon n univs tys = pcDataConW n univs (map linear tys)
pcDataConW :: Name -> [TyVar] -> [Scaled Type] -> TyCon -> DataCon
pcDataConW n univs tys = pcDataConWithFixity False n univs
[] -- no ex_tvs
univs -- the univs are precisely the user-written tyvars
tys
pcDataConWithFixity :: Bool -- ^ declared infix?
-> Name -- ^ datacon name
-> [TyVar] -- ^ univ tyvars
-> [TyCoVar] -- ^ ex tycovars
-> [TyCoVar] -- ^ user-written tycovars
-> [Scaled Type] -- ^ args
-> TyCon
-> DataCon
pcDataConWithFixity infx n = pcDataConWithFixity' infx n (dataConWorkerUnique (nameUnique n))
NoRRI
-- The Name's unique is the first of two free uniques;
-- the first is used for the datacon itself,
-- the second is used for the "worker name"
--
-- To support this the mkPreludeDataConUnique function "allocates"
-- one DataCon unique per pair of Ints.
pcDataConWithFixity' :: Bool -> Name -> Unique -> RuntimeRepInfo
-> [TyVar] -> [TyCoVar] -> [TyCoVar]
-> [Scaled Type] -> TyCon -> DataCon
-- The Name should be in the DataName name space; it's the name
-- of the DataCon itself.
--
-- IMPORTANT NOTE:
-- if you try to wire-in a /GADT/ data constructor you will
-- find it hard (we did). You will need wrapper and worker
-- Names, a DataConBoxer, DataConRep, EqSpec, etc.
-- Try hard not to wire-in GADT data types. You will live
-- to regret doing so (we do).
pcDataConWithFixity' declared_infix dc_name wrk_key rri
tyvars ex_tyvars user_tyvars arg_tys tycon
= data_con
where
tag_map = mkTyConTagMap tycon
-- This constructs the constructor Name to ConTag map once per
-- constructor, which is quadratic. It's OK here, because it's
-- only called for wired in data types that don't have a lot of
-- constructors. It's also likely that GHC will lift tag_map, since
-- we call pcDataConWithFixity' with static TyCons in the same module.
-- See Note [Constructor tag allocation] and #14657
data_con = mkDataCon dc_name declared_infix prom_info
(map (const no_bang) arg_tys)
[] -- No labelled fields
tyvars ex_tyvars
(mkTyVarBinders SpecifiedSpec user_tyvars)
[] -- No equality spec
[] -- No theta
arg_tys (mkTyConApp tycon (mkTyVarTys tyvars))
rri
tycon
(lookupNameEnv_NF tag_map dc_name)
[] -- No stupid theta
(mkDataConWorkId wrk_name data_con)
NoDataConRep -- Wired-in types are too simple to need wrappers
no_bang = HsSrcBang NoSourceText NoSrcUnpack NoSrcStrict
wrk_name = mkDataConWorkerName data_con wrk_key
prom_info = mkPrelTyConRepName dc_name
mkDataConWorkerName :: DataCon -> Unique -> Name
mkDataConWorkerName data_con wrk_key =
mkWiredInName modu wrk_occ wrk_key
(AnId (dataConWorkId data_con)) UserSyntax
where
modu = ASSERT( isExternalName dc_name )
nameModule dc_name
dc_name = dataConName data_con
dc_occ = nameOccName dc_name
wrk_occ = mkDataConWorkerOcc dc_occ
-- used for RuntimeRep and friends
pcSpecialDataCon :: Name -> [Type] -> TyCon -> RuntimeRepInfo -> DataCon
pcSpecialDataCon dc_name arg_tys tycon rri
= pcDataConWithFixity' False dc_name (dataConWorkerUnique (nameUnique dc_name)) rri
[] [] [] (map linear arg_tys) tycon
{-
************************************************************************
* *
Kinds
* *
************************************************************************
-}
typeNatKindCon, typeSymbolKindCon :: TyCon
-- data Nat
-- data Symbol
typeNatKindCon = pcTyCon typeNatKindConName Nothing [] []
typeSymbolKindCon = pcTyCon typeSymbolKindConName Nothing [] []
typeNatKind, typeSymbolKind :: Kind
typeNatKind = mkTyConTy typeNatKindCon
typeSymbolKind = mkTyConTy typeSymbolKindCon
constraintKindTyCon :: TyCon
-- 'TyCon.isConstraintKindCon' assumes that this is an AlgTyCon!
constraintKindTyCon = pcTyCon constraintKindTyConName Nothing [] []
liftedTypeKind, typeToTypeKind, constraintKind :: Kind
liftedTypeKind = tYPE liftedRepTy
typeToTypeKind = liftedTypeKind `mkVisFunTyMany` liftedTypeKind
constraintKind = mkTyConApp constraintKindTyCon []
{-
************************************************************************
* *
Stuff for dealing with tuples
* *
************************************************************************
Note [How tuples work] See also Note [Known-key names] in GHC.Builtin.Names
~~~~~~~~~~~~~~~~~~~~~~
* There are three families of tuple TyCons and corresponding
DataCons, expressed by the type BasicTypes.TupleSort:
data TupleSort = BoxedTuple | UnboxedTuple | ConstraintTuple
* All three families are AlgTyCons, whose AlgTyConRhs is TupleTyCon
* BoxedTuples
- A wired-in type
- Data type declarations in GHC.Tuple
- The data constructors really have an info table
* UnboxedTuples
- A wired-in type
- Have a pretend DataCon, defined in GHC.Prim,
but no actual declaration and no info table
* ConstraintTuples
- Are known-key rather than wired-in. Reason: it's awkward to
have all the superclass selectors wired-in.
- Declared as classes in GHC.Classes, e.g.
class (c1,c2) => (c1,c2)
- Given constraints: the superclasses automatically become available
- Wanted constraints: there is a built-in instance
instance (c1,c2) => (c1,c2)
See GHC.Tc.Solver.Interact.matchCTuple
- Currently just go up to 62; beyond that
you have to use manual nesting
- Their OccNames look like (%,,,%), so they can easily be
distinguished from term tuples. But (following Haskell) we
pretty-print saturated constraint tuples with round parens;
see BasicTypes.tupleParens.
* In quite a lot of places things are restricted just to
BoxedTuple/UnboxedTuple, and then we used BasicTypes.Boxity to distinguish
E.g. tupleTyCon has a Boxity argument
* When looking up an OccName in the original-name cache
(GHC.Iface.Env.lookupOrigNameCache), we spot the tuple OccName to make sure
we get the right wired-in name. This guy can't tell the difference
between BoxedTuple and ConstraintTuple (same OccName!), so tuples
are not serialised into interface files using OccNames at all.
* Serialization to interface files works via the usual mechanism for known-key
things: instead of serializing the OccName we just serialize the key. During
deserialization we lookup the Name associated with the unique with the logic
in GHC.Builtin.Uniques. See Note [Symbol table representation of names] for details.
Note [One-tuples]
~~~~~~~~~~~~~~~~~
GHC supports both boxed and unboxed one-tuples:
- Unboxed one-tuples are sometimes useful when returning a
single value after CPR analysis
- A boxed one-tuple is used by GHC.HsToCore.Utils.mkSelectorBinds, when
there is just one binder
Basically it keeps everything uniform.
However the /naming/ of the type/data constructors for one-tuples is a
bit odd:
3-tuples: (,,) (,,)#
2-tuples: (,) (,)#
1-tuples: ??
0-tuples: () ()#
Zero-tuples have used up the logical name. So we use 'Solo' and 'Solo#'
for one-tuples. So in ghc-prim:GHC.Tuple we see the declarations:
data () = ()
data Solo a = Solo a
data (a,b) = (a,b)
There is no way to write a boxed one-tuple in Haskell using tuple syntax.
They can, however, be written using other methods:
1. They can be written directly by importing them from GHC.Tuple.
2. They can be generated by way of Template Haskell or in `deriving` code.
There is nothing special about one-tuples in Core; in particular, they have no
custom pretty-printing, just using `Solo`.
Note that there is *not* a unary constraint tuple, unlike for other forms of
tuples. See [Ignore unary constraint tuples] in GHC.Tc.Gen.HsType for more
details.
See also Note [Flattening one-tuples] in GHC.Core.Make and
Note [Don't flatten tuples from HsSyn] in GHC.Core.Make.
-----
-- Wrinkle: Make boxed one-tuple names have known keys
-----
We make boxed one-tuple names have known keys so that `data Solo a = Solo a`,
defined in GHC.Tuple, will be used when one-tuples are spliced in through
Template Haskell. This program (from #18097) crucially relies on this:
case $( tupE [ [| "ok" |] ] ) of Solo x -> putStrLn x
Unless Solo has a known key, the type of `$( tupE [ [| "ok" |] ] )` (an
ExplicitTuple of length 1) will not match the type of Solo (an ordinary
data constructor used in a pattern). Making Solo known-key allows GHC to make
this connection.
Unlike Solo, every other tuple is /not/ known-key
(see Note [Infinite families of known-key names] in GHC.Builtin.Names). The
main reason for this exception is that other tuples are written with special
syntax, and as a result, they are renamed using a special `isBuiltInOcc_maybe`
function (see Note [Built-in syntax and the OrigNameCache] in GHC.Types.Name.Cache).
In contrast, Solo is just an ordinary data type with no special syntax, so it
doesn't really make sense to handle it in `isBuiltInOcc_maybe`. Making Solo
known-key is the next-best way to teach the internals of the compiler about it.
-}
-- | Built-in syntax isn't "in scope" so these OccNames map to wired-in Names
-- with BuiltInSyntax. However, this should only be necessary while resolving
-- names produced by Template Haskell splices since we take care to encode
-- built-in syntax names specially in interface files. See
-- Note [Symbol table representation of names].
--
-- Moreover, there is no need to include names of things that the user can't
-- write (e.g. type representation bindings like $tc(,,,)).
isBuiltInOcc_maybe :: OccName -> Maybe Name
isBuiltInOcc_maybe occ =
case name of
"[]" -> Just $ choose_ns listTyConName nilDataConName
":" -> Just consDataConName
-- equality tycon
"~" -> Just eqTyConName
-- function tycon
"FUN" -> Just funTyConName
"->" -> Just unrestrictedFunTyConName
-- boxed tuple data/tycon
-- We deliberately exclude Solo (the boxed 1-tuple).
-- See Note [One-tuples] (Wrinkle: Make boxed one-tuple names have known keys)
"()" -> Just $ tup_name Boxed 0
_ | Just rest <- "(" `BS.stripPrefix` name
, (commas, rest') <- BS.span (==',') rest
, ")" <- rest'
-> Just $ tup_name Boxed (1+BS.length commas)
-- unboxed tuple data/tycon
"(##)" -> Just $ tup_name Unboxed 0
"Solo#" -> Just $ tup_name Unboxed 1
_ | Just rest <- "(#" `BS.stripPrefix` name
, (commas, rest') <- BS.span (==',') rest
, "#)" <- rest'
-> Just $ tup_name Unboxed (1+BS.length commas)
-- unboxed sum tycon
_ | Just rest <- "(#" `BS.stripPrefix` name
, (pipes, rest') <- BS.span (=='|') rest
, "#)" <- rest'
-> Just $ tyConName $ sumTyCon (1+BS.length pipes)
-- unboxed sum datacon
_ | Just rest <- "(#" `BS.stripPrefix` name
, (pipes1, rest') <- BS.span (=='|') rest
, Just rest'' <- "_" `BS.stripPrefix` rest'
, (pipes2, rest''') <- BS.span (=='|') rest''
, "#)" <- rest'''
-> let arity = BS.length pipes1 + BS.length pipes2 + 1
alt = BS.length pipes1 + 1
in Just $ dataConName $ sumDataCon alt arity
_ -> Nothing
where
name = bytesFS $ occNameFS occ
choose_ns :: Name -> Name -> Name
choose_ns tc dc
| isTcClsNameSpace ns = tc
| isDataConNameSpace ns = dc
| otherwise = pprPanic "tup_name" (ppr occ)
where ns = occNameSpace occ
tup_name boxity arity
= choose_ns (getName (tupleTyCon boxity arity))
(getName (tupleDataCon boxity arity))
mkTupleOcc :: NameSpace -> Boxity -> Arity -> OccName
-- No need to cache these, the caching is done in mk_tuple
mkTupleOcc ns Boxed ar = mkOccName ns (mkBoxedTupleStr ar)
mkTupleOcc ns Unboxed ar = mkOccName ns (mkUnboxedTupleStr ar)
mkCTupleOcc :: NameSpace -> Arity -> OccName
mkCTupleOcc ns ar = mkOccName ns (mkConstraintTupleStr ar)
mkTupleStr :: Boxity -> Arity -> String
mkTupleStr Boxed = mkBoxedTupleStr
mkTupleStr Unboxed = mkUnboxedTupleStr
mkBoxedTupleStr :: Arity -> String
mkBoxedTupleStr 0 = "()"
mkBoxedTupleStr 1 = "Solo" -- See Note [One-tuples]
mkBoxedTupleStr ar = '(' : commas ar ++ ")"
mkUnboxedTupleStr :: Arity -> String
mkUnboxedTupleStr 0 = "(##)"
mkUnboxedTupleStr 1 = "Solo#" -- See Note [One-tuples]
mkUnboxedTupleStr ar = "(#" ++ commas ar ++ "#)"
mkConstraintTupleStr :: Arity -> String
mkConstraintTupleStr 0 = "(%%)"
mkConstraintTupleStr 1 = "Solo%" -- See Note [One-tuples]
mkConstraintTupleStr ar = "(%" ++ commas ar ++ "%)"
commas :: Arity -> String
commas ar = take (ar-1) (repeat ',')
cTupleTyConName :: Arity -> Name
cTupleTyConName arity
= mkExternalName (mkCTupleTyConUnique arity) gHC_CLASSES
(mkCTupleOcc tcName arity) noSrcSpan
cTupleTyConNames :: [Name]
cTupleTyConNames = map cTupleTyConName (0 : [2..mAX_CTUPLE_SIZE])
cTupleTyConNameSet :: NameSet
cTupleTyConNameSet = mkNameSet cTupleTyConNames
isCTupleTyConName :: Name -> Bool
-- Use Type.isCTupleClass where possible
isCTupleTyConName n
= ASSERT2( isExternalName n, ppr n )
nameModule n == gHC_CLASSES
&& n `elemNameSet` cTupleTyConNameSet
-- | If the given name is that of a constraint tuple, return its arity.
-- Note that this is inefficient.
cTupleTyConNameArity_maybe :: Name -> Maybe Arity
cTupleTyConNameArity_maybe n
| not (isCTupleTyConName n) = Nothing
| otherwise = fmap adjustArity (n `elemIndex` cTupleTyConNames)
where
-- Since `cTupleTyConNames` jumps straight from the `0` to the `2`
-- case, we have to adjust accordingly our calculated arity.
adjustArity a = if a > 0 then a + 1 else a
cTupleDataConName :: Arity -> Name
cTupleDataConName arity
= mkExternalName (mkCTupleDataConUnique arity) gHC_CLASSES
(mkCTupleOcc dataName arity) noSrcSpan
cTupleDataConNames :: [Name]
cTupleDataConNames = map cTupleDataConName (0 : [2..mAX_CTUPLE_SIZE])
tupleTyCon :: Boxity -> Arity -> TyCon
tupleTyCon sort i | i > mAX_TUPLE_SIZE = fst (mk_tuple sort i) -- Build one specially
tupleTyCon Boxed i = fst (boxedTupleArr ! i)
tupleTyCon Unboxed i = fst (unboxedTupleArr ! i)
tupleTyConName :: TupleSort -> Arity -> Name
tupleTyConName ConstraintTuple a = cTupleTyConName a
tupleTyConName BoxedTuple a = tyConName (tupleTyCon Boxed a)
tupleTyConName UnboxedTuple a = tyConName (tupleTyCon Unboxed a)
promotedTupleDataCon :: Boxity -> Arity -> TyCon
promotedTupleDataCon boxity i = promoteDataCon (tupleDataCon boxity i)
tupleDataCon :: Boxity -> Arity -> DataCon
tupleDataCon sort i | i > mAX_TUPLE_SIZE = snd (mk_tuple sort i) -- Build one specially
tupleDataCon Boxed i = snd (boxedTupleArr ! i)
tupleDataCon Unboxed i = snd (unboxedTupleArr ! i)
tupleDataConName :: Boxity -> Arity -> Name
tupleDataConName sort i = dataConName (tupleDataCon sort i)
boxedTupleArr, unboxedTupleArr :: Array Int (TyCon,DataCon)
boxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Boxed i | i <- [0..mAX_TUPLE_SIZE]]
unboxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Unboxed i | i <- [0..mAX_TUPLE_SIZE]]
-- | Given the TupleRep/SumRep tycon and list of RuntimeReps of the unboxed
-- tuple/sum arguments, produces the return kind of an unboxed tuple/sum type
-- constructor. @unboxedTupleSumKind [IntRep, LiftedRep] --> TYPE (TupleRep/SumRep
-- [IntRep, LiftedRep])@
unboxedTupleSumKind :: TyCon -> [Type] -> Kind
unboxedTupleSumKind tc rr_tys
= tYPE (mkTyConApp tc [mkPromotedListTy runtimeRepTy rr_tys])
-- | Specialization of 'unboxedTupleSumKind' for tuples
unboxedTupleKind :: [Type] -> Kind
unboxedTupleKind = unboxedTupleSumKind tupleRepDataConTyCon
mk_tuple :: Boxity -> Int -> (TyCon,DataCon)
mk_tuple Boxed arity = (tycon, tuple_con)
where
tycon = mkTupleTyCon tc_name tc_binders tc_res_kind tc_arity tuple_con
BoxedTuple flavour
tc_binders = mkTemplateAnonTyConBinders (replicate arity liftedTypeKind)
tc_res_kind = liftedTypeKind
tc_arity = arity
flavour = VanillaAlgTyCon (mkPrelTyConRepName tc_name)
dc_tvs = binderVars tc_binders
dc_arg_tys = mkTyVarTys dc_tvs
tuple_con = pcDataCon dc_name dc_tvs dc_arg_tys tycon
boxity = Boxed
modu = gHC_TUPLE
tc_name = mkWiredInName modu (mkTupleOcc tcName boxity arity) tc_uniq
(ATyCon tycon) BuiltInSyntax
dc_name = mkWiredInName modu (mkTupleOcc dataName boxity arity) dc_uniq
(AConLike (RealDataCon tuple_con)) BuiltInSyntax
tc_uniq = mkTupleTyConUnique boxity arity
dc_uniq = mkTupleDataConUnique boxity arity
mk_tuple Unboxed arity = (tycon, tuple_con)
where
tycon = mkTupleTyCon tc_name tc_binders tc_res_kind tc_arity tuple_con
UnboxedTuple flavour
-- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
-- Kind: forall (k1:RuntimeRep) (k2:RuntimeRep). TYPE k1 -> TYPE k2 -> #
tc_binders = mkTemplateTyConBinders (replicate arity runtimeRepTy)
(\ks -> map tYPE ks)
tc_res_kind = unboxedTupleKind rr_tys
tc_arity = arity * 2
flavour = UnboxedAlgTyCon $ Just (mkPrelTyConRepName tc_name)
dc_tvs = binderVars tc_binders
(rr_tys, dc_arg_tys) = splitAt arity (mkTyVarTys dc_tvs)
tuple_con = pcDataCon dc_name dc_tvs dc_arg_tys tycon
boxity = Unboxed
modu = gHC_PRIM
tc_name = mkWiredInName modu (mkTupleOcc tcName boxity arity) tc_uniq
(ATyCon tycon) BuiltInSyntax
dc_name = mkWiredInName modu (mkTupleOcc dataName boxity arity) dc_uniq
(AConLike (RealDataCon tuple_con)) BuiltInSyntax
tc_uniq = mkTupleTyConUnique boxity arity
dc_uniq = mkTupleDataConUnique boxity arity
unitTyCon :: TyCon
unitTyCon = tupleTyCon Boxed 0
unitTyConKey :: Unique
unitTyConKey = getUnique unitTyCon
unitDataCon :: DataCon
unitDataCon = head (tyConDataCons unitTyCon)
unitDataConId :: Id
unitDataConId = dataConWorkId unitDataCon
pairTyCon :: TyCon
pairTyCon = tupleTyCon Boxed 2
unboxedUnitTyCon :: TyCon
unboxedUnitTyCon = tupleTyCon Unboxed 0
unboxedUnitDataCon :: DataCon
unboxedUnitDataCon = tupleDataCon Unboxed 0
{- *********************************************************************
* *
Unboxed sums
* *
********************************************************************* -}
-- | OccName for n-ary unboxed sum type constructor.
mkSumTyConOcc :: Arity -> OccName
mkSumTyConOcc n = mkOccName tcName str
where
-- No need to cache these, the caching is done in mk_sum
str = '(' : '#' : bars ++ "#)"
bars = replicate (n-1) '|'
-- | OccName for i-th alternative of n-ary unboxed sum data constructor.
mkSumDataConOcc :: ConTag -> Arity -> OccName
mkSumDataConOcc alt n = mkOccName dataName str
where
-- No need to cache these, the caching is done in mk_sum
str = '(' : '#' : bars alt ++ '_' : bars (n - alt - 1) ++ "#)"
bars i = replicate i '|'
-- | Type constructor for n-ary unboxed sum.
sumTyCon :: Arity -> TyCon
sumTyCon arity
| arity > mAX_SUM_SIZE
= fst (mk_sum arity) -- Build one specially
| arity < 2
= panic ("sumTyCon: Arity starts from 2. (arity: " ++ show arity ++ ")")
| otherwise
= fst (unboxedSumArr ! arity)
-- | Data constructor for i-th alternative of a n-ary unboxed sum.
sumDataCon :: ConTag -- Alternative
-> Arity -- Arity
-> DataCon
sumDataCon alt arity
| alt > arity
= panic ("sumDataCon: index out of bounds: alt: "
++ show alt ++ " > arity " ++ show arity)
| alt <= 0
= panic ("sumDataCon: Alts start from 1. (alt: " ++ show alt
++ ", arity: " ++ show arity ++ ")")
| arity < 2
= panic ("sumDataCon: Arity starts from 2. (alt: " ++ show alt
++ ", arity: " ++ show arity ++ ")")
| arity > mAX_SUM_SIZE
= snd (mk_sum arity) ! (alt - 1) -- Build one specially
| otherwise
= snd (unboxedSumArr ! arity) ! (alt - 1)
-- | Cached type and data constructors for sums. The outer array is
-- indexed by the arity of the sum and the inner array is indexed by
-- the alternative.
unboxedSumArr :: Array Int (TyCon, Array Int DataCon)
unboxedSumArr = listArray (2,mAX_SUM_SIZE) [mk_sum i | i <- [2..mAX_SUM_SIZE]]
-- | Specialization of 'unboxedTupleSumKind' for sums
unboxedSumKind :: [Type] -> Kind
unboxedSumKind = unboxedTupleSumKind sumRepDataConTyCon
-- | Create type constructor and data constructors for n-ary unboxed sum.
mk_sum :: Arity -> (TyCon, Array ConTagZ DataCon)
mk_sum arity = (tycon, sum_cons)
where
tycon = mkSumTyCon tc_name tc_binders tc_res_kind (arity * 2) tyvars (elems sum_cons)
(UnboxedAlgTyCon rep_name)
-- Unboxed sums are currently not Typeable due to efficiency concerns. See #13276.
rep_name = Nothing -- Just $ mkPrelTyConRepName tc_name
tc_binders = mkTemplateTyConBinders (replicate arity runtimeRepTy)
(\ks -> map tYPE ks)
tyvars = binderVars tc_binders
tc_res_kind = unboxedSumKind rr_tys
(rr_tys, tyvar_tys) = splitAt arity (mkTyVarTys tyvars)
tc_name = mkWiredInName gHC_PRIM (mkSumTyConOcc arity) tc_uniq
(ATyCon tycon) BuiltInSyntax
sum_cons = listArray (0,arity-1) [sum_con i | i <- [0..arity-1]]
sum_con i = let dc = pcDataCon dc_name
tyvars -- univ tyvars
[tyvar_tys !! i] -- arg types
tycon
dc_name = mkWiredInName gHC_PRIM
(mkSumDataConOcc i arity)
(dc_uniq i)
(AConLike (RealDataCon dc))
BuiltInSyntax
in dc
tc_uniq = mkSumTyConUnique arity
dc_uniq i = mkSumDataConUnique i arity
{-
************************************************************************
* *
Equality types and classes
* *
********************************************************************* -}
-- See Note [The equality types story] in GHC.Builtin.Types.Prim
-- ((~~) :: forall k1 k2 (a :: k1) (b :: k2). a -> b -> Constraint)
--
-- It's tempting to put functional dependencies on (~~), but it's not
-- necessary because the functional-dependency coverage check looks
-- through superclasses, and (~#) is handled in that check.
eqTyCon, heqTyCon, coercibleTyCon :: TyCon
eqClass, heqClass, coercibleClass :: Class
eqDataCon, heqDataCon, coercibleDataCon :: DataCon
eqSCSelId, heqSCSelId, coercibleSCSelId :: Id
(eqTyCon, eqClass, eqDataCon, eqSCSelId)
= (tycon, klass, datacon, sc_sel_id)
where
tycon = mkClassTyCon eqTyConName binders roles
rhs klass
(mkPrelTyConRepName eqTyConName)
klass = mk_class tycon sc_pred sc_sel_id
datacon = pcDataConW eqDataConName tvs [unrestricted sc_pred] tycon
-- Kind: forall k. k -> k -> Constraint
binders = mkTemplateTyConBinders [liftedTypeKind] (\[k] -> [k,k])
roles = [Nominal, Nominal, Nominal]
rhs = mkDataTyConRhs [datacon]
tvs@[k,a,b] = binderVars binders
sc_pred = mkTyConApp eqPrimTyCon (mkTyVarTys [k,k,a,b])
sc_sel_id = mkDictSelId eqSCSelIdName klass
(heqTyCon, heqClass, heqDataCon, heqSCSelId)
= (tycon, klass, datacon, sc_sel_id)
where
tycon = mkClassTyCon heqTyConName binders roles
rhs klass
(mkPrelTyConRepName heqTyConName)
klass = mk_class tycon sc_pred sc_sel_id
datacon = pcDataConW heqDataConName tvs [unrestricted sc_pred] tycon
-- Kind: forall k1 k2. k1 -> k2 -> Constraint
binders = mkTemplateTyConBinders [liftedTypeKind, liftedTypeKind] id
roles = [Nominal, Nominal, Nominal, Nominal]
rhs = mkDataTyConRhs [datacon]
tvs = binderVars binders
sc_pred = mkTyConApp eqPrimTyCon (mkTyVarTys tvs)
sc_sel_id = mkDictSelId heqSCSelIdName klass
(coercibleTyCon, coercibleClass, coercibleDataCon, coercibleSCSelId)
= (tycon, klass, datacon, sc_sel_id)
where
tycon = mkClassTyCon coercibleTyConName binders roles
rhs klass
(mkPrelTyConRepName coercibleTyConName)
klass = mk_class tycon sc_pred sc_sel_id
datacon = pcDataConW coercibleDataConName tvs [unrestricted sc_pred] tycon
-- Kind: forall k. k -> k -> Constraint
binders = mkTemplateTyConBinders [liftedTypeKind] (\[k] -> [k,k])
roles = [Nominal, Representational, Representational]
rhs = mkDataTyConRhs [datacon]
tvs@[k,a,b] = binderVars binders
sc_pred = mkTyConApp eqReprPrimTyCon (mkTyVarTys [k, k, a, b])
sc_sel_id = mkDictSelId coercibleSCSelIdName klass
mk_class :: TyCon -> PredType -> Id -> Class
mk_class tycon sc_pred sc_sel_id
= mkClass (tyConName tycon) (tyConTyVars tycon) [] [sc_pred] [sc_sel_id]
[] [] (mkAnd []) tycon
{- *********************************************************************
* *
Multiplicity Polymorphism
* *
********************************************************************* -}
{- Multiplicity polymorphism is implemented very similarly to levity
polymorphism. We write in the multiplicity kind and the One and Many
types which can appear in user programs. These are defined properly in GHC.Types.
data Multiplicity = One | Many
-}
multiplicityTy :: Type
multiplicityTy = mkTyConTy multiplicityTyCon
multiplicityTyCon :: TyCon
multiplicityTyCon = pcTyCon multiplicityTyConName Nothing []
[oneDataCon, manyDataCon]
oneDataCon, manyDataCon :: DataCon
oneDataCon = pcDataCon oneDataConName [] [] multiplicityTyCon
manyDataCon = pcDataCon manyDataConName [] [] multiplicityTyCon
oneDataConTy, manyDataConTy :: Type
oneDataConTy = mkTyConTy oneDataConTyCon
manyDataConTy = mkTyConTy manyDataConTyCon
oneDataConTyCon, manyDataConTyCon :: TyCon
oneDataConTyCon = promoteDataCon oneDataCon
manyDataConTyCon = promoteDataCon manyDataCon
multMulTyConName :: Name
multMulTyConName =
mkWiredInTyConName UserSyntax gHC_TYPES (fsLit "MultMul") multMulTyConKey multMulTyCon
multMulTyCon :: TyCon
multMulTyCon = mkFamilyTyCon multMulTyConName binders multiplicityTy Nothing
(BuiltInSynFamTyCon trivialBuiltInFamily)
Nothing
NotInjective
where
binders = mkTemplateAnonTyConBinders [multiplicityTy, multiplicityTy]
unrestrictedFunTy :: Type
unrestrictedFunTy = functionWithMultiplicity manyDataConTy
unrestrictedFunTyCon :: TyCon
unrestrictedFunTyCon = buildSynTyCon unrestrictedFunTyConName [] arrowKind [] unrestrictedFunTy
where arrowKind = mkTyConKind binders liftedTypeKind
-- See also funTyCon
binders = [ Bndr runtimeRep1TyVar (NamedTCB Inferred)
, Bndr runtimeRep2TyVar (NamedTCB Inferred)
]
++ mkTemplateAnonTyConBinders [ tYPE runtimeRep1Ty
, tYPE runtimeRep2Ty
]
unrestrictedFunTyConName :: Name
unrestrictedFunTyConName = mkWiredInTyConName BuiltInSyntax gHC_TYPES (fsLit "->") unrestrictedFunTyConKey unrestrictedFunTyCon
{- *********************************************************************
* *
Kinds and RuntimeRep
* *
********************************************************************* -}
-- For information about the usage of the following type,
-- see Note [TYPE and RuntimeRep] in module GHC.Builtin.Types.Prim
runtimeRepTy :: Type
runtimeRepTy = mkTyConTy runtimeRepTyCon
-- Type synonyms; see Note [TYPE and RuntimeRep] in GHC.Builtin.Types.Prim
-- type Type = tYPE 'LiftedRep
liftedTypeKindTyCon :: TyCon
liftedTypeKindTyCon = buildSynTyCon liftedTypeKindTyConName
[] liftedTypeKind []
(tYPE liftedRepTy)
runtimeRepTyCon :: TyCon
runtimeRepTyCon = pcTyCon runtimeRepTyConName Nothing []
(vecRepDataCon : tupleRepDataCon :
sumRepDataCon : runtimeRepSimpleDataCons)
vecRepDataCon :: DataCon
vecRepDataCon = pcSpecialDataCon vecRepDataConName [ mkTyConTy vecCountTyCon
, mkTyConTy vecElemTyCon ]
runtimeRepTyCon
(RuntimeRep prim_rep_fun)
where
-- See Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType
prim_rep_fun [count, elem]
| VecCount n <- tyConRuntimeRepInfo (tyConAppTyCon count)
, VecElem e <- tyConRuntimeRepInfo (tyConAppTyCon elem)
= [VecRep n e]
prim_rep_fun args
= pprPanic "vecRepDataCon" (ppr args)
vecRepDataConTyCon :: TyCon
vecRepDataConTyCon = promoteDataCon vecRepDataCon
tupleRepDataCon :: DataCon
tupleRepDataCon = pcSpecialDataCon tupleRepDataConName [ mkListTy runtimeRepTy ]
runtimeRepTyCon (RuntimeRep prim_rep_fun)
where
-- See Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType
prim_rep_fun [rr_ty_list]
= concatMap (runtimeRepPrimRep doc) rr_tys
where
rr_tys = extractPromotedList rr_ty_list
doc = text "tupleRepDataCon" <+> ppr rr_tys
prim_rep_fun args
= pprPanic "tupleRepDataCon" (ppr args)
tupleRepDataConTyCon :: TyCon
tupleRepDataConTyCon = promoteDataCon tupleRepDataCon
sumRepDataCon :: DataCon
sumRepDataCon = pcSpecialDataCon sumRepDataConName [ mkListTy runtimeRepTy ]
runtimeRepTyCon (RuntimeRep prim_rep_fun)
where
-- See Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType
prim_rep_fun [rr_ty_list]
= map slotPrimRep (ubxSumRepType prim_repss)
where
rr_tys = extractPromotedList rr_ty_list
doc = text "sumRepDataCon" <+> ppr rr_tys
prim_repss = map (runtimeRepPrimRep doc) rr_tys
prim_rep_fun args
= pprPanic "sumRepDataCon" (ppr args)
sumRepDataConTyCon :: TyCon
sumRepDataConTyCon = promoteDataCon sumRepDataCon
-- See Note [Wiring in RuntimeRep]
-- See Note [Getting from RuntimeRep to PrimRep] in GHC.Types.RepType
runtimeRepSimpleDataCons :: [DataCon]
liftedRepDataCon :: DataCon
runtimeRepSimpleDataCons@(liftedRepDataCon : _)
= zipWithLazy mk_runtime_rep_dc
[ LiftedRep, UnliftedRep
, IntRep
, Int8Rep, Int16Rep, Int32Rep, Int64Rep
, WordRep
, Word8Rep, Word16Rep, Word32Rep, Word64Rep
, AddrRep
, FloatRep, DoubleRep
]
runtimeRepSimpleDataConNames
where
mk_runtime_rep_dc primrep name
= pcSpecialDataCon name [] runtimeRepTyCon (RuntimeRep (\_ -> [primrep]))
-- See Note [Wiring in RuntimeRep]
liftedRepDataConTy, unliftedRepDataConTy,
intRepDataConTy,
int8RepDataConTy, int16RepDataConTy, int32RepDataConTy, int64RepDataConTy,
wordRepDataConTy,
word8RepDataConTy, word16RepDataConTy, word32RepDataConTy, word64RepDataConTy,
addrRepDataConTy,
floatRepDataConTy, doubleRepDataConTy :: Type
[liftedRepDataConTy, unliftedRepDataConTy,
intRepDataConTy,
int8RepDataConTy, int16RepDataConTy, int32RepDataConTy, int64RepDataConTy,
wordRepDataConTy,
word8RepDataConTy, word16RepDataConTy, word32RepDataConTy, word64RepDataConTy,
addrRepDataConTy,
floatRepDataConTy, doubleRepDataConTy
]
= map (mkTyConTy . promoteDataCon) runtimeRepSimpleDataCons
vecCountTyCon :: TyCon
vecCountTyCon = pcTyCon vecCountTyConName Nothing [] vecCountDataCons
-- See Note [Wiring in RuntimeRep]
vecCountDataCons :: [DataCon]
vecCountDataCons = zipWithLazy mk_vec_count_dc
[ 2, 4, 8, 16, 32, 64 ]
vecCountDataConNames
where
mk_vec_count_dc n name
= pcSpecialDataCon name [] vecCountTyCon (VecCount n)
-- See Note [Wiring in RuntimeRep]
vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy,
vec64DataConTy :: Type
[vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy,
vec64DataConTy] = map (mkTyConTy . promoteDataCon) vecCountDataCons
vecElemTyCon :: TyCon
vecElemTyCon = pcTyCon vecElemTyConName Nothing [] vecElemDataCons
-- See Note [Wiring in RuntimeRep]
vecElemDataCons :: [DataCon]
vecElemDataCons = zipWithLazy mk_vec_elem_dc
[ Int8ElemRep, Int16ElemRep, Int32ElemRep, Int64ElemRep
, Word8ElemRep, Word16ElemRep, Word32ElemRep, Word64ElemRep
, FloatElemRep, DoubleElemRep ]
vecElemDataConNames
where
mk_vec_elem_dc elem name
= pcSpecialDataCon name [] vecElemTyCon (VecElem elem)
-- See Note [Wiring in RuntimeRep]
int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy,
int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy,
word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy,
doubleElemRepDataConTy :: Type
[int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy,
int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy,
word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy,
doubleElemRepDataConTy] = map (mkTyConTy . promoteDataCon)
vecElemDataCons
liftedRepDataConTyCon :: TyCon
liftedRepDataConTyCon = promoteDataCon liftedRepDataCon
-- The type ('LiftedRep)
liftedRepTy :: Type
liftedRepTy = liftedRepDataConTy
{- *********************************************************************
* *
The boxed primitive types: Char, Int, etc
* *
********************************************************************* -}
boxingDataCon_maybe :: TyCon -> Maybe DataCon
-- boxingDataCon_maybe Char# = C#
-- boxingDataCon_maybe Int# = I#
-- ... etc ...
-- See Note [Boxing primitive types]
boxingDataCon_maybe tc
= lookupNameEnv boxing_constr_env (tyConName tc)
boxing_constr_env :: NameEnv DataCon
boxing_constr_env
= mkNameEnv [(charPrimTyConName , charDataCon )
,(intPrimTyConName , intDataCon )
,(wordPrimTyConName , wordDataCon )
,(floatPrimTyConName , floatDataCon )
,(doublePrimTyConName, doubleDataCon) ]
{- Note [Boxing primitive types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For a handful of primitive types (Int, Char, Word, Float, Double),
we can readily box and an unboxed version (Int#, Char# etc) using
the corresponding data constructor. This is useful in a couple
of places, notably let-floating -}
charTy :: Type
charTy = mkTyConTy charTyCon
charTyCon :: TyCon
charTyCon = pcTyCon charTyConName
(Just (CType NoSourceText Nothing
(NoSourceText,fsLit "HsChar")))
[] [charDataCon]
charDataCon :: DataCon
charDataCon = pcDataCon charDataConName [] [charPrimTy] charTyCon
stringTy :: Type
stringTy = mkTyConApp stringTyCon []
stringTyCon :: TyCon
-- We have this wired-in so that Haskell literal strings
-- get type String (in hsLitType), which in turn influences
-- inferred types and error messages
stringTyCon = buildSynTyCon stringTyConName
[] liftedTypeKind []
(mkListTy charTy)
intTy :: Type
intTy = mkTyConTy intTyCon
intTyCon :: TyCon
intTyCon = pcTyCon intTyConName
(Just (CType NoSourceText Nothing (NoSourceText,fsLit "HsInt")))
[] [intDataCon]
intDataCon :: DataCon
intDataCon = pcDataCon intDataConName [] [intPrimTy] intTyCon
wordTy :: Type
wordTy = mkTyConTy wordTyCon
wordTyCon :: TyCon
wordTyCon = pcTyCon wordTyConName
(Just (CType NoSourceText Nothing (NoSourceText, fsLit "HsWord")))
[] [wordDataCon]
wordDataCon :: DataCon
wordDataCon = pcDataCon wordDataConName [] [wordPrimTy] wordTyCon
word8Ty :: Type
word8Ty = mkTyConTy word8TyCon
word8TyCon :: TyCon
word8TyCon = pcTyCon word8TyConName
(Just (CType NoSourceText Nothing
(NoSourceText, fsLit "HsWord8"))) []
[word8DataCon]
word8DataCon :: DataCon
word8DataCon = pcDataCon word8DataConName [] [wordPrimTy] word8TyCon
floatTy :: Type
floatTy = mkTyConTy floatTyCon
floatTyCon :: TyCon
floatTyCon = pcTyCon floatTyConName
(Just (CType NoSourceText Nothing
(NoSourceText, fsLit "HsFloat"))) []
[floatDataCon]
floatDataCon :: DataCon
floatDataCon = pcDataCon floatDataConName [] [floatPrimTy] floatTyCon
doubleTy :: Type
doubleTy = mkTyConTy doubleTyCon
doubleTyCon :: TyCon
doubleTyCon = pcTyCon doubleTyConName
(Just (CType NoSourceText Nothing
(NoSourceText,fsLit "HsDouble"))) []
[doubleDataCon]
doubleDataCon :: DataCon
doubleDataCon = pcDataCon doubleDataConName [] [doublePrimTy] doubleTyCon
{-
************************************************************************
* *
The Bool type
* *
************************************************************************
An ordinary enumeration type, but deeply wired in. There are no
magical operations on @Bool@ (just the regular Prelude code).
{\em BEGIN IDLE SPECULATION BY SIMON}
This is not the only way to encode @Bool@. A more obvious coding makes
@Bool@ just a boxed up version of @Bool#@, like this:
\begin{verbatim}
type Bool# = Int#
data Bool = MkBool Bool#
\end{verbatim}
Unfortunately, this doesn't correspond to what the Report says @Bool@
looks like! Furthermore, we get slightly less efficient code (I
think) with this coding. @gtInt@ would look like this:
\begin{verbatim}
gtInt :: Int -> Int -> Bool
gtInt x y = case x of I# x# ->
case y of I# y# ->
case (gtIntPrim x# y#) of
b# -> MkBool b#
\end{verbatim}
Notice that the result of the @gtIntPrim@ comparison has to be turned
into an integer (here called @b#@), and returned in a @MkBool@ box.
The @if@ expression would compile to this:
\begin{verbatim}
case (gtInt x y) of
MkBool b# -> case b# of { 1# -> e1; 0# -> e2 }
\end{verbatim}
I think this code is a little less efficient than the previous code,
but I'm not certain. At all events, corresponding with the Report is
important. The interesting thing is that the language is expressive
enough to describe more than one alternative; and that a type doesn't
necessarily need to be a straightforwardly boxed version of its
primitive counterpart.
{\em END IDLE SPECULATION BY SIMON}
-}
boolTy :: Type
boolTy = mkTyConTy boolTyCon
boolTyCon :: TyCon
boolTyCon = pcTyCon boolTyConName
(Just (CType NoSourceText Nothing
(NoSourceText, fsLit "HsBool")))
[] [falseDataCon, trueDataCon]
falseDataCon, trueDataCon :: DataCon
falseDataCon = pcDataCon falseDataConName [] [] boolTyCon
trueDataCon = pcDataCon trueDataConName [] [] boolTyCon
falseDataConId, trueDataConId :: Id
falseDataConId = dataConWorkId falseDataCon
trueDataConId = dataConWorkId trueDataCon
orderingTyCon :: TyCon
orderingTyCon = pcTyCon orderingTyConName Nothing
[] [ordLTDataCon, ordEQDataCon, ordGTDataCon]
ordLTDataCon, ordEQDataCon, ordGTDataCon :: DataCon
ordLTDataCon = pcDataCon ordLTDataConName [] [] orderingTyCon
ordEQDataCon = pcDataCon ordEQDataConName [] [] orderingTyCon
ordGTDataCon = pcDataCon ordGTDataConName [] [] orderingTyCon
ordLTDataConId, ordEQDataConId, ordGTDataConId :: Id
ordLTDataConId = dataConWorkId ordLTDataCon
ordEQDataConId = dataConWorkId ordEQDataCon
ordGTDataConId = dataConWorkId ordGTDataCon
{-
************************************************************************
* *
The List type
Special syntax, deeply wired in,
but otherwise an ordinary algebraic data type
* *
************************************************************************
data [] a = [] | a : (List a)
-}
mkListTy :: Type -> Type
mkListTy ty = mkTyConApp listTyCon [ty]
listTyCon :: TyCon
listTyCon = pcTyCon listTyConName Nothing [alphaTyVar] [nilDataCon, consDataCon]
-- See also Note [Empty lists] in GHC.Hs.Expr.
nilDataCon :: DataCon
nilDataCon = pcDataCon nilDataConName alpha_tyvar [] listTyCon
consDataCon :: DataCon
consDataCon = pcDataConWithFixity True {- Declared infix -}
consDataConName
alpha_tyvar [] alpha_tyvar
(map linear [alphaTy, mkTyConApp listTyCon alpha_ty]) listTyCon
-- Interesting: polymorphic recursion would help here.
-- We can't use (mkListTy alphaTy) in the defn of consDataCon, else mkListTy
-- gets the over-specific type (Type -> Type)
-- Wired-in type Maybe
maybeTyCon :: TyCon
maybeTyCon = pcTyCon maybeTyConName Nothing alpha_tyvar
[nothingDataCon, justDataCon]
nothingDataCon :: DataCon
nothingDataCon = pcDataCon nothingDataConName alpha_tyvar [] maybeTyCon
justDataCon :: DataCon
justDataCon = pcDataCon justDataConName alpha_tyvar [alphaTy] maybeTyCon
{-
** *********************************************************************
* *
The tuple types
* *
************************************************************************
The tuple types are definitely magic, because they form an infinite
family.
\begin{itemize}
\item
They have a special family of type constructors, of type @TyCon@
These contain the tycon arity, but don't require a Unique.
\item
They have a special family of constructors, of type
@Id@. Again these contain their arity but don't need a Unique.
\item
There should be a magic way of generating the info tables and
entry code for all tuples.
But at the moment we just compile a Haskell source
file\srcloc{lib/prelude/...} containing declarations like:
\begin{verbatim}
data Tuple0 = Tup0
data Tuple2 a b = Tup2 a b
data Tuple3 a b c = Tup3 a b c
data Tuple4 a b c d = Tup4 a b c d
...
\end{verbatim}
The print-names associated with the magic @Id@s for tuple constructors
``just happen'' to be the same as those generated by these
declarations.
\item
The instance environment should have a magic way to know
that each tuple type is an instances of classes @Eq@, @Ix@, @Ord@ and
so on. \ToDo{Not implemented yet.}
\item
There should also be a way to generate the appropriate code for each
of these instances, but (like the info tables and entry code) it is
done by enumeration\srcloc{lib/prelude/InTup?.hs}.
\end{itemize}
-}
-- | Make a tuple type. The list of types should /not/ include any
-- RuntimeRep specifications. Boxed 1-tuples are flattened.
-- See Note [One-tuples]
mkTupleTy :: Boxity -> [Type] -> Type
-- Special case for *boxed* 1-tuples, which are represented by the type itself
mkTupleTy Boxed [ty] = ty
mkTupleTy boxity tys = mkTupleTy1 boxity tys
-- | Make a tuple type. The list of types should /not/ include any
-- RuntimeRep specifications. Boxed 1-tuples are *not* flattened.
-- See Note [One-tuples] and Note [Don't flatten tuples from HsSyn]
-- in "GHC.Core.Make"
mkTupleTy1 :: Boxity -> [Type] -> Type
mkTupleTy1 Boxed tys = mkTyConApp (tupleTyCon Boxed (length tys)) tys
mkTupleTy1 Unboxed tys = mkTyConApp (tupleTyCon Unboxed (length tys))
(map getRuntimeRep tys ++ tys)
-- | Build the type of a small tuple that holds the specified type of thing
-- Flattens 1-tuples. See Note [One-tuples].
mkBoxedTupleTy :: [Type] -> Type
mkBoxedTupleTy tys = mkTupleTy Boxed tys
unitTy :: Type
unitTy = mkTupleTy Boxed []
{- *********************************************************************
* *
The sum types
* *
************************************************************************
-}
mkSumTy :: [Type] -> Type
mkSumTy tys = mkTyConApp (sumTyCon (length tys))
(map getRuntimeRep tys ++ tys)
-- Promoted Booleans
promotedFalseDataCon, promotedTrueDataCon :: TyCon
promotedTrueDataCon = promoteDataCon trueDataCon
promotedFalseDataCon = promoteDataCon falseDataCon
-- Promoted Maybe
promotedNothingDataCon, promotedJustDataCon :: TyCon
promotedNothingDataCon = promoteDataCon nothingDataCon
promotedJustDataCon = promoteDataCon justDataCon
-- Promoted Ordering
promotedLTDataCon
, promotedEQDataCon
, promotedGTDataCon
:: TyCon
promotedLTDataCon = promoteDataCon ordLTDataCon
promotedEQDataCon = promoteDataCon ordEQDataCon
promotedGTDataCon = promoteDataCon ordGTDataCon
-- Promoted List
promotedConsDataCon, promotedNilDataCon :: TyCon
promotedConsDataCon = promoteDataCon consDataCon
promotedNilDataCon = promoteDataCon nilDataCon
-- | Make a *promoted* list.
mkPromotedListTy :: Kind -- ^ of the elements of the list
-> [Type] -- ^ elements
-> Type
mkPromotedListTy k tys
= foldr cons nil tys
where
cons :: Type -- element
-> Type -- list
-> Type
cons elt list = mkTyConApp promotedConsDataCon [k, elt, list]
nil :: Type
nil = mkTyConApp promotedNilDataCon [k]
-- | Extract the elements of a promoted list. Panics if the type is not a
-- promoted list
extractPromotedList :: Type -- ^ The promoted list
-> [Type]
extractPromotedList tys = go tys
where
go list_ty
| Just (tc, [_k, t, ts]) <- splitTyConApp_maybe list_ty
= ASSERT( tc `hasKey` consDataConKey )
t : go ts
| Just (tc, [_k]) <- splitTyConApp_maybe list_ty
= ASSERT( tc `hasKey` nilDataConKey )
[]
| otherwise
= pprPanic "extractPromotedList" (ppr tys)
---------------------------------------
-- ghc-bignum
---------------------------------------
integerTyConName
, integerISDataConName
, integerIPDataConName
, integerINDataConName
:: Name
integerTyConName
= mkWiredInTyConName
UserSyntax
gHC_NUM_INTEGER
(fsLit "Integer")
integerTyConKey
integerTyCon
integerISDataConName
= mkWiredInDataConName
UserSyntax
gHC_NUM_INTEGER
(fsLit "IS")
integerISDataConKey
integerISDataCon
integerIPDataConName
= mkWiredInDataConName
UserSyntax
gHC_NUM_INTEGER
(fsLit "IP")
integerIPDataConKey
integerIPDataCon
integerINDataConName
= mkWiredInDataConName
UserSyntax
gHC_NUM_INTEGER
(fsLit "IN")
integerINDataConKey
integerINDataCon
integerTy :: Type
integerTy = mkTyConTy integerTyCon
integerTyCon :: TyCon
integerTyCon = pcTyCon integerTyConName Nothing []
[integerISDataCon, integerIPDataCon, integerINDataCon]
integerISDataCon :: DataCon
integerISDataCon = pcDataCon integerISDataConName [] [intPrimTy] integerTyCon
integerIPDataCon :: DataCon
integerIPDataCon = pcDataCon integerIPDataConName [] [byteArrayPrimTy] integerTyCon
integerINDataCon :: DataCon
integerINDataCon = pcDataCon integerINDataConName [] [byteArrayPrimTy] integerTyCon
naturalTyConName
, naturalNSDataConName
, naturalNBDataConName
:: Name
naturalTyConName
= mkWiredInTyConName
UserSyntax
gHC_NUM_NATURAL
(fsLit "Natural")
naturalTyConKey
naturalTyCon
naturalNSDataConName
= mkWiredInDataConName
UserSyntax
gHC_NUM_NATURAL
(fsLit "NS")
naturalNSDataConKey
naturalNSDataCon
naturalNBDataConName
= mkWiredInDataConName
UserSyntax
gHC_NUM_NATURAL
(fsLit "NB")
naturalNBDataConKey
naturalNBDataCon
naturalTy :: Type
naturalTy = mkTyConTy naturalTyCon
naturalTyCon :: TyCon
naturalTyCon = pcTyCon naturalTyConName Nothing []
[naturalNSDataCon, naturalNBDataCon]
naturalNSDataCon :: DataCon
naturalNSDataCon = pcDataCon naturalNSDataConName [] [wordPrimTy] naturalTyCon
naturalNBDataCon :: DataCon
naturalNBDataCon = pcDataCon naturalNBDataConName [] [byteArrayPrimTy] naturalTyCon
|