1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
|
{-
(c) The University of Glasgow 2006
-}
{-# LANGUAGE RankNTypes, CPP, MultiWayIf, FlexibleContexts, BangPatterns,
ScopedTypeVariables #-}
-- | Module for (a) type kinds and (b) type coercions,
-- as used in System FC. See 'GHC.Core.Expr' for
-- more on System FC and how coercions fit into it.
--
module GHC.Core.Coercion (
-- * Main data type
Coercion, CoercionN, CoercionR, CoercionP, MCoercion(..), MCoercionR,
UnivCoProvenance, CoercionHole(..), BlockSubstFlag(..),
coHoleCoVar, setCoHoleCoVar,
LeftOrRight(..),
Var, CoVar, TyCoVar,
Role(..), ltRole,
-- ** Functions over coercions
coVarTypes, coVarKind, coVarKindsTypesRole, coVarRole,
coercionType, mkCoercionType,
coercionKind, coercionLKind, coercionRKind,coercionKinds,
coercionRole, coercionKindRole,
-- ** Constructing coercions
mkGReflCo, mkReflCo, mkRepReflCo, mkNomReflCo,
mkCoVarCo, mkCoVarCos,
mkAxInstCo, mkUnbranchedAxInstCo,
mkAxInstRHS, mkUnbranchedAxInstRHS,
mkAxInstLHS, mkUnbranchedAxInstLHS,
mkPiCo, mkPiCos, mkCoCast,
mkSymCo, mkTransCo, mkTransMCo,
mkNthCo, nthCoRole, mkLRCo,
mkInstCo, mkAppCo, mkAppCos, mkTyConAppCo, mkFunCo,
mkForAllCo, mkForAllCos, mkHomoForAllCos,
mkPhantomCo,
mkHoleCo, mkUnivCo, mkSubCo,
mkAxiomInstCo, mkProofIrrelCo,
downgradeRole, mkAxiomRuleCo,
mkGReflRightCo, mkGReflLeftCo, mkCoherenceLeftCo, mkCoherenceRightCo,
mkKindCo,
castCoercionKind, castCoercionKind1, castCoercionKind2,
mkFamilyTyConAppCo,
mkHeteroCoercionType,
mkPrimEqPred, mkReprPrimEqPred, mkPrimEqPredRole,
mkHeteroPrimEqPred, mkHeteroReprPrimEqPred,
-- ** Decomposition
instNewTyCon_maybe,
NormaliseStepper, NormaliseStepResult(..), composeSteppers,
mapStepResult, unwrapNewTypeStepper,
topNormaliseNewType_maybe, topNormaliseTypeX,
decomposeCo, decomposeFunCo, decomposePiCos, getCoVar_maybe,
splitTyConAppCo_maybe,
splitAppCo_maybe,
splitFunCo_maybe,
splitForAllCo_maybe,
splitForAllCo_ty_maybe, splitForAllCo_co_maybe,
nthRole, tyConRolesX, tyConRolesRepresentational, setNominalRole_maybe,
pickLR,
isGReflCo, isReflCo, isReflCo_maybe, isGReflCo_maybe, isReflexiveCo, isReflexiveCo_maybe,
isReflCoVar_maybe, isGReflMCo, coToMCo,
-- ** Coercion variables
mkCoVar, isCoVar, coVarName, setCoVarName, setCoVarUnique,
isCoVar_maybe,
-- ** Free variables
tyCoVarsOfCo, tyCoVarsOfCos, coVarsOfCo,
tyCoFVsOfCo, tyCoFVsOfCos, tyCoVarsOfCoDSet,
coercionSize,
-- ** Substitution
CvSubstEnv, emptyCvSubstEnv,
lookupCoVar,
substCo, substCos, substCoVar, substCoVars, substCoWith,
substCoVarBndr,
extendTvSubstAndInScope, getCvSubstEnv,
-- ** Lifting
liftCoSubst, liftCoSubstTyVar, liftCoSubstWith, liftCoSubstWithEx,
emptyLiftingContext, extendLiftingContext, extendLiftingContextAndInScope,
liftCoSubstVarBndrUsing, isMappedByLC,
mkSubstLiftingContext, zapLiftingContext,
substForAllCoBndrUsingLC, lcTCvSubst, lcInScopeSet,
LiftCoEnv, LiftingContext(..), liftEnvSubstLeft, liftEnvSubstRight,
substRightCo, substLeftCo, swapLiftCoEnv, lcSubstLeft, lcSubstRight,
-- ** Comparison
eqCoercion, eqCoercionX,
-- ** Forcing evaluation of coercions
seqCo,
-- * Pretty-printing
pprCo, pprParendCo,
pprCoAxiom, pprCoAxBranch, pprCoAxBranchLHS,
pprCoAxBranchUser, tidyCoAxBndrsForUser,
etaExpandCoAxBranch,
-- * Tidying
tidyCo, tidyCos,
-- * Other
promoteCoercion, buildCoercion,
multToCo,
simplifyArgsWorker,
badCoercionHole, badCoercionHoleCo
) where
#include "GhclibHsVersions.h"
import {-# SOURCE #-} GHC.CoreToIface (toIfaceTyCon, tidyToIfaceTcArgs)
import GHC.Prelude
import GHC.Iface.Type
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Ppr
import GHC.Core.TyCo.Subst
import GHC.Core.TyCo.Tidy
import GHC.Core.Type
import GHC.Core.TyCon
import GHC.Core.Coercion.Axiom
import {-# SOURCE #-} GHC.Core.Utils ( mkFunctionType )
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Name hiding ( varName )
import GHC.Utils.Misc
import GHC.Types.Basic
import GHC.Utils.Outputable
import GHC.Types.Unique
import GHC.Data.Pair
import GHC.Types.SrcLoc
import GHC.Builtin.Names
import GHC.Builtin.Types.Prim
import GHC.Data.List.SetOps
import GHC.Data.Maybe
import GHC.Types.Unique.FM
import Control.Monad (foldM, zipWithM)
import Data.Function ( on )
import Data.Char( isDigit )
import qualified Data.Monoid as Monoid
{-
%************************************************************************
%* *
-- The coercion arguments always *precisely* saturate
-- arity of (that branch of) the CoAxiom. If there are
-- any left over, we use AppCo. See
-- See [Coercion axioms applied to coercions] in GHC.Core.TyCo.Rep
\subsection{Coercion variables}
%* *
%************************************************************************
-}
coVarName :: CoVar -> Name
coVarName = varName
setCoVarUnique :: CoVar -> Unique -> CoVar
setCoVarUnique = setVarUnique
setCoVarName :: CoVar -> Name -> CoVar
setCoVarName = setVarName
{-
%************************************************************************
%* *
Pretty-printing CoAxioms
%* *
%************************************************************************
Defined here to avoid module loops. CoAxiom is loaded very early on.
-}
etaExpandCoAxBranch :: CoAxBranch -> ([TyVar], [Type], Type)
-- Return the (tvs,lhs,rhs) after eta-expanding,
-- to the way in which the axiom was originally written
-- See Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom
etaExpandCoAxBranch (CoAxBranch { cab_tvs = tvs
, cab_eta_tvs = eta_tvs
, cab_lhs = lhs
, cab_rhs = rhs })
-- ToDo: what about eta_cvs?
= (tvs ++ eta_tvs, lhs ++ eta_tys, mkAppTys rhs eta_tys)
where
eta_tys = mkTyVarTys eta_tvs
pprCoAxiom :: CoAxiom br -> SDoc
-- Used in debug-printing only
pprCoAxiom ax@(CoAxiom { co_ax_tc = tc, co_ax_branches = branches })
= hang (text "axiom" <+> ppr ax <+> dcolon)
2 (vcat (map (pprCoAxBranchUser tc) (fromBranches branches)))
pprCoAxBranchUser :: TyCon -> CoAxBranch -> SDoc
-- Used when printing injectivity errors (FamInst.reportInjectivityErrors)
-- and inaccessible branches (GHC.Tc.Validity.inaccessibleCoAxBranch)
-- This happens in error messages: don't print the RHS of a data
-- family axiom, which is meaningless to a user
pprCoAxBranchUser tc br
| isDataFamilyTyCon tc = pprCoAxBranchLHS tc br
| otherwise = pprCoAxBranch tc br
pprCoAxBranchLHS :: TyCon -> CoAxBranch -> SDoc
-- Print the family-instance equation when reporting
-- a conflict between equations (FamInst.conflictInstErr)
-- For type families the RHS is important; for data families not so.
-- Indeed for data families the RHS is a mysterious internal
-- type constructor, so we suppress it (#14179)
-- See FamInstEnv Note [Family instance overlap conflicts]
pprCoAxBranchLHS = ppr_co_ax_branch pp_rhs
where
pp_rhs _ _ = empty
pprCoAxBranch :: TyCon -> CoAxBranch -> SDoc
pprCoAxBranch = ppr_co_ax_branch ppr_rhs
where
ppr_rhs env rhs = equals <+> pprPrecTypeX env topPrec rhs
ppr_co_ax_branch :: (TidyEnv -> Type -> SDoc)
-> TyCon -> CoAxBranch -> SDoc
ppr_co_ax_branch ppr_rhs fam_tc branch
= foldr1 (flip hangNotEmpty 2)
[ pprUserForAll (mkTyCoVarBinders Inferred bndrs')
-- See Note [Printing foralls in type family instances] in GHC.Iface.Type
, pp_lhs <+> ppr_rhs tidy_env ee_rhs
, text "-- Defined" <+> pp_loc ]
where
loc = coAxBranchSpan branch
pp_loc | isGoodSrcSpan loc = text "at" <+> ppr (srcSpanStart loc)
| otherwise = text "in" <+> ppr loc
-- Eta-expand LHS and RHS types, because sometimes data family
-- instances are eta-reduced.
-- See Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom.
(ee_tvs, ee_lhs, ee_rhs) = etaExpandCoAxBranch branch
pp_lhs = pprIfaceTypeApp topPrec (toIfaceTyCon fam_tc)
(tidyToIfaceTcArgs tidy_env fam_tc ee_lhs)
(tidy_env, bndrs') = tidyCoAxBndrsForUser emptyTidyEnv ee_tvs
tidyCoAxBndrsForUser :: TidyEnv -> [Var] -> (TidyEnv, [Var])
-- Tidy wildcards "_1", "_2" to "_", and do not return them
-- in the list of binders to be printed
-- This is so that in error messages we see
-- forall a. F _ [a] _ = ...
-- rather than
-- forall a _1 _2. F _1 [a] _2 = ...
--
-- This is a rather disgusting function
-- See Note [Wildcard names] in GHC.Tc.Gen.HsType
tidyCoAxBndrsForUser init_env tcvs
= (tidy_env, reverse tidy_bndrs)
where
(tidy_env, tidy_bndrs) = foldl tidy_one (init_env, []) tcvs
tidy_one (env@(occ_env, subst), rev_bndrs') bndr
| is_wildcard bndr = (env_wild, rev_bndrs')
| otherwise = (env', bndr' : rev_bndrs')
where
(env', bndr') = tidyVarBndr env bndr
env_wild = (occ_env, extendVarEnv subst bndr wild_bndr)
wild_bndr = setVarName bndr $
tidyNameOcc (varName bndr) (mkTyVarOcc "_")
-- Tidy the binder to "_"
is_wildcard :: Var -> Bool
is_wildcard tv = case occNameString (getOccName tv) of
('_' : rest) -> all isDigit rest
_ -> False
{-
%************************************************************************
%* *
Destructing coercions
%* *
%************************************************************************
Note [Function coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~
Remember that
(->) :: forall {r1} {r2}. TYPE r1 -> TYPE r2 -> TYPE LiftedRep
whose `RuntimeRep' arguments are intentionally marked inferred to
avoid type application.
Hence
FunCo r mult co1 co2 :: (s1->t1) ~r (s2->t2)
is short for
TyConAppCo (->) mult co_rep1 co_rep2 co1 co2
where co_rep1, co_rep2 are the coercions on the representations.
-}
-- | This breaks a 'Coercion' with type @T A B C ~ T D E F@ into
-- a list of 'Coercion's of kinds @A ~ D@, @B ~ E@ and @E ~ F@. Hence:
--
-- > decomposeCo 3 c [r1, r2, r3] = [nth r1 0 c, nth r2 1 c, nth r3 2 c]
decomposeCo :: Arity -> Coercion
-> [Role] -- the roles of the output coercions
-- this must have at least as many
-- entries as the Arity provided
-> [Coercion]
decomposeCo arity co rs
= [mkNthCo r n co | (n,r) <- [0..(arity-1)] `zip` rs ]
-- Remember, Nth is zero-indexed
decomposeFunCo :: HasDebugCallStack
=> Role -- Role of the input coercion
-> Coercion -- Input coercion
-> (CoercionN, Coercion, Coercion)
-- Expects co :: (s1 -> t1) ~ (s2 -> t2)
-- Returns (co1 :: s1~s2, co2 :: t1~t2)
-- See Note [Function coercions] for the "3" and "4"
decomposeFunCo r co = ASSERT2( all_ok, ppr co )
(mkNthCo Nominal 0 co, mkNthCo r 3 co, mkNthCo r 4 co)
where
Pair s1t1 s2t2 = coercionKind co
all_ok = isFunTy s1t1 && isFunTy s2t2
{- Note [Pushing a coercion into a pi-type]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have this:
(f |> co) t1 .. tn
Then we want to push the coercion into the arguments, so as to make
progress. For example of why you might want to do so, see Note
[Respecting definitional equality] in GHC.Core.TyCo.Rep.
This is done by decomposePiCos. Specifically, if
decomposePiCos co [t1,..,tn] = ([co1,...,cok], cor)
then
(f |> co) t1 .. tn = (f (t1 |> co1) ... (tk |> cok)) |> cor) t(k+1) ... tn
Notes:
* k can be smaller than n! That is decomposePiCos can return *fewer*
coercions than there are arguments (ie k < n), if the kind provided
doesn't have enough binders.
* If there is a type error, we might see
(f |> co) t1
where co :: (forall a. ty) ~ (ty1 -> ty2)
Here 'co' is insoluble, but we don't want to crash in decoposePiCos.
So decomposePiCos carefully tests both sides of the coercion to check
they are both foralls or both arrows. Not doing this caused #15343.
-}
decomposePiCos :: HasDebugCallStack
=> CoercionN -> Pair Type -- Coercion and its kind
-> [Type]
-> ([CoercionN], CoercionN)
-- See Note [Pushing a coercion into a pi-type]
decomposePiCos orig_co (Pair orig_k1 orig_k2) orig_args
= go [] (orig_subst,orig_k1) orig_co (orig_subst,orig_k2) orig_args
where
orig_subst = mkEmptyTCvSubst $ mkInScopeSet $
tyCoVarsOfTypes orig_args `unionVarSet` tyCoVarsOfCo orig_co
go :: [CoercionN] -- accumulator for argument coercions, reversed
-> (TCvSubst,Kind) -- Lhs kind of coercion
-> CoercionN -- coercion originally applied to the function
-> (TCvSubst,Kind) -- Rhs kind of coercion
-> [Type] -- Arguments to that function
-> ([CoercionN], Coercion)
-- Invariant: co :: subst1(k2) ~ subst2(k2)
go acc_arg_cos (subst1,k1) co (subst2,k2) (ty:tys)
| Just (a, t1) <- splitForAllTy_maybe k1
, Just (b, t2) <- splitForAllTy_maybe k2
-- know co :: (forall a:s1.t1) ~ (forall b:s2.t2)
-- function :: forall a:s1.t1 (the function is not passed to decomposePiCos)
-- a :: s1
-- b :: s2
-- ty :: s2
-- need arg_co :: s2 ~ s1
-- res_co :: t1[ty |> arg_co / a] ~ t2[ty / b]
= let arg_co = mkNthCo Nominal 0 (mkSymCo co)
res_co = mkInstCo co (mkGReflLeftCo Nominal ty arg_co)
subst1' = extendTCvSubst subst1 a (ty `CastTy` arg_co)
subst2' = extendTCvSubst subst2 b ty
in
go (arg_co : acc_arg_cos) (subst1', t1) res_co (subst2', t2) tys
| Just (_w1, _s1, t1) <- splitFunTy_maybe k1
, Just (_w1, _s2, t2) <- splitFunTy_maybe k2
-- know co :: (s1 -> t1) ~ (s2 -> t2)
-- function :: s1 -> t1
-- ty :: s2
-- need arg_co :: s2 ~ s1
-- res_co :: t1 ~ t2
= let (_, sym_arg_co, res_co) = decomposeFunCo Nominal co
-- It should be fine to ignore the multiplicity bit of the coercion
-- for a Nominal coercion.
arg_co = mkSymCo sym_arg_co
in
go (arg_co : acc_arg_cos) (subst1,t1) res_co (subst2,t2) tys
| not (isEmptyTCvSubst subst1) || not (isEmptyTCvSubst subst2)
= go acc_arg_cos (zapTCvSubst subst1, substTy subst1 k1)
co
(zapTCvSubst subst2, substTy subst1 k2)
(ty:tys)
-- tys might not be empty, if the left-hand type of the original coercion
-- didn't have enough binders
go acc_arg_cos _ki1 co _ki2 _tys = (reverse acc_arg_cos, co)
-- | Attempts to obtain the type variable underlying a 'Coercion'
getCoVar_maybe :: Coercion -> Maybe CoVar
getCoVar_maybe (CoVarCo cv) = Just cv
getCoVar_maybe _ = Nothing
-- | Attempts to tease a coercion apart into a type constructor and the application
-- of a number of coercion arguments to that constructor
splitTyConAppCo_maybe :: Coercion -> Maybe (TyCon, [Coercion])
splitTyConAppCo_maybe co
| Just (ty, r) <- isReflCo_maybe co
= do { (tc, tys) <- splitTyConApp_maybe ty
; let args = zipWith mkReflCo (tyConRolesX r tc) tys
; return (tc, args) }
splitTyConAppCo_maybe (TyConAppCo _ tc cos) = Just (tc, cos)
splitTyConAppCo_maybe (FunCo _ w arg res) = Just (funTyCon, cos)
where cos = [w, mkRuntimeRepCo arg, mkRuntimeRepCo res, arg, res]
splitTyConAppCo_maybe _ = Nothing
multToCo :: Mult -> Coercion
multToCo r = mkNomReflCo r
-- first result has role equal to input; third result is Nominal
splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
-- ^ Attempt to take a coercion application apart.
splitAppCo_maybe (AppCo co arg) = Just (co, arg)
splitAppCo_maybe (TyConAppCo r tc args)
| args `lengthExceeds` tyConArity tc
, Just (args', arg') <- snocView args
= Just ( mkTyConAppCo r tc args', arg' )
| not (mustBeSaturated tc)
-- Never create unsaturated type family apps!
, Just (args', arg') <- snocView args
, Just arg'' <- setNominalRole_maybe (nthRole r tc (length args')) arg'
= Just ( mkTyConAppCo r tc args', arg'' )
-- Use mkTyConAppCo to preserve the invariant
-- that identity coercions are always represented by Refl
splitAppCo_maybe co
| Just (ty, r) <- isReflCo_maybe co
, Just (ty1, ty2) <- splitAppTy_maybe ty
= Just (mkReflCo r ty1, mkNomReflCo ty2)
splitAppCo_maybe _ = Nothing
-- Only used in specialise/Rules
splitFunCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
splitFunCo_maybe (FunCo _ _ arg res) = Just (arg, res)
splitFunCo_maybe _ = Nothing
splitForAllCo_maybe :: Coercion -> Maybe (TyCoVar, Coercion, Coercion)
splitForAllCo_maybe (ForAllCo tv k_co co) = Just (tv, k_co, co)
splitForAllCo_maybe _ = Nothing
-- | Like 'splitForAllCo_maybe', but only returns Just for tyvar binder
splitForAllCo_ty_maybe :: Coercion -> Maybe (TyVar, Coercion, Coercion)
splitForAllCo_ty_maybe (ForAllCo tv k_co co)
| isTyVar tv = Just (tv, k_co, co)
splitForAllCo_ty_maybe _ = Nothing
-- | Like 'splitForAllCo_maybe', but only returns Just for covar binder
splitForAllCo_co_maybe :: Coercion -> Maybe (CoVar, Coercion, Coercion)
splitForAllCo_co_maybe (ForAllCo cv k_co co)
| isCoVar cv = Just (cv, k_co, co)
splitForAllCo_co_maybe _ = Nothing
-------------------------------------------------------
-- and some coercion kind stuff
coVarLType, coVarRType :: HasDebugCallStack => CoVar -> Type
coVarLType cv | (_, _, ty1, _, _) <- coVarKindsTypesRole cv = ty1
coVarRType cv | (_, _, _, ty2, _) <- coVarKindsTypesRole cv = ty2
coVarTypes :: HasDebugCallStack => CoVar -> Pair Type
coVarTypes cv
| (_, _, ty1, ty2, _) <- coVarKindsTypesRole cv
= Pair ty1 ty2
coVarKindsTypesRole :: HasDebugCallStack => CoVar -> (Kind,Kind,Type,Type,Role)
coVarKindsTypesRole cv
| Just (tc, [k1,k2,ty1,ty2]) <- splitTyConApp_maybe (varType cv)
= (k1, k2, ty1, ty2, eqTyConRole tc)
| otherwise
= pprPanic "coVarKindsTypesRole, non coercion variable"
(ppr cv $$ ppr (varType cv))
coVarKind :: CoVar -> Type
coVarKind cv
= ASSERT( isCoVar cv )
varType cv
coVarRole :: CoVar -> Role
coVarRole cv
= eqTyConRole (case tyConAppTyCon_maybe (varType cv) of
Just tc0 -> tc0
Nothing -> pprPanic "coVarRole: not tyconapp" (ppr cv))
eqTyConRole :: TyCon -> Role
-- Given (~#) or (~R#) return the Nominal or Representational respectively
eqTyConRole tc
| tc `hasKey` eqPrimTyConKey
= Nominal
| tc `hasKey` eqReprPrimTyConKey
= Representational
| otherwise
= pprPanic "eqTyConRole: unknown tycon" (ppr tc)
-- | Given a coercion @co1 :: (a :: TYPE r1) ~ (b :: TYPE r2)@,
-- produce a coercion @rep_co :: r1 ~ r2@.
mkRuntimeRepCo :: HasDebugCallStack => Coercion -> Coercion
mkRuntimeRepCo co
= mkNthCo Nominal 0 kind_co
where
kind_co = mkKindCo co -- kind_co :: TYPE r1 ~ TYPE r2
-- (up to silliness with Constraint)
isReflCoVar_maybe :: Var -> Maybe Coercion
-- If cv :: t~t then isReflCoVar_maybe cv = Just (Refl t)
-- Works on all kinds of Vars, not just CoVars
isReflCoVar_maybe cv
| isCoVar cv
, Pair ty1 ty2 <- coVarTypes cv
, ty1 `eqType` ty2
= Just (mkReflCo (coVarRole cv) ty1)
| otherwise
= Nothing
-- | Tests if this coercion is obviously a generalized reflexive coercion.
-- Guaranteed to work very quickly.
isGReflCo :: Coercion -> Bool
isGReflCo (GRefl{}) = True
isGReflCo (Refl{}) = True -- Refl ty == GRefl N ty MRefl
isGReflCo _ = False
-- | Tests if this MCoercion is obviously generalized reflexive
-- Guaranteed to work very quickly.
isGReflMCo :: MCoercion -> Bool
isGReflMCo MRefl = True
isGReflMCo (MCo co) | isGReflCo co = True
isGReflMCo _ = False
-- | Tests if this coercion is obviously reflexive. Guaranteed to work
-- very quickly. Sometimes a coercion can be reflexive, but not obviously
-- so. c.f. 'isReflexiveCo'
isReflCo :: Coercion -> Bool
isReflCo (Refl{}) = True
isReflCo (GRefl _ _ mco) | isGReflMCo mco = True
isReflCo _ = False
-- | Returns the type coerced if this coercion is a generalized reflexive
-- coercion. Guaranteed to work very quickly.
isGReflCo_maybe :: Coercion -> Maybe (Type, Role)
isGReflCo_maybe (GRefl r ty _) = Just (ty, r)
isGReflCo_maybe (Refl ty) = Just (ty, Nominal)
isGReflCo_maybe _ = Nothing
-- | Returns the type coerced if this coercion is reflexive. Guaranteed
-- to work very quickly. Sometimes a coercion can be reflexive, but not
-- obviously so. c.f. 'isReflexiveCo_maybe'
isReflCo_maybe :: Coercion -> Maybe (Type, Role)
isReflCo_maybe (Refl ty) = Just (ty, Nominal)
isReflCo_maybe (GRefl r ty mco) | isGReflMCo mco = Just (ty, r)
isReflCo_maybe _ = Nothing
-- | Slowly checks if the coercion is reflexive. Don't call this in a loop,
-- as it walks over the entire coercion.
isReflexiveCo :: Coercion -> Bool
isReflexiveCo = isJust . isReflexiveCo_maybe
-- | Extracts the coerced type from a reflexive coercion. This potentially
-- walks over the entire coercion, so avoid doing this in a loop.
isReflexiveCo_maybe :: Coercion -> Maybe (Type, Role)
isReflexiveCo_maybe (Refl ty) = Just (ty, Nominal)
isReflexiveCo_maybe (GRefl r ty mco) | isGReflMCo mco = Just (ty, r)
isReflexiveCo_maybe co
| ty1 `eqType` ty2
= Just (ty1, r)
| otherwise
= Nothing
where (Pair ty1 ty2, r) = coercionKindRole co
coToMCo :: Coercion -> MCoercion
coToMCo c = if isReflCo c
then MRefl
else MCo c
{-
%************************************************************************
%* *
Building coercions
%* *
%************************************************************************
These "smart constructors" maintain the invariants listed in the definition
of Coercion, and they perform very basic optimizations.
Note [Role twiddling functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a plethora of functions for twiddling roles:
mkSubCo: Requires a nominal input coercion and always produces a
representational output. This is used when you (the programmer) are sure you
know exactly that role you have and what you want.
downgradeRole_maybe: This function takes both the input role and the output role
as parameters. (The *output* role comes first!) It can only *downgrade* a
role -- that is, change it from N to R or P, or from R to P. This one-way
behavior is why there is the "_maybe". If an upgrade is requested, this
function produces Nothing. This is used when you need to change the role of a
coercion, but you're not sure (as you're writing the code) of which roles are
involved.
This function could have been written using coercionRole to ascertain the role
of the input. But, that function is recursive, and the caller of downgradeRole_maybe
often knows the input role. So, this is more efficient.
downgradeRole: This is just like downgradeRole_maybe, but it panics if the
conversion isn't a downgrade.
setNominalRole_maybe: This is the only function that can *upgrade* a coercion.
The result (if it exists) is always Nominal. The input can be at any role. It
works on a "best effort" basis, as it should never be strictly necessary to
upgrade a coercion during compilation. It is currently only used within GHC in
splitAppCo_maybe. In order to be a proper inverse of mkAppCo, the second
coercion that splitAppCo_maybe returns must be nominal. But, it's conceivable
that splitAppCo_maybe is operating over a TyConAppCo that uses a
representational coercion. Hence the need for setNominalRole_maybe.
splitAppCo_maybe, in turn, is used only within coercion optimization -- thus,
it is not absolutely critical that setNominalRole_maybe be complete.
Note that setNominalRole_maybe will never upgrade a phantom UnivCo. Phantom
UnivCos are perfectly type-safe, whereas representational and nominal ones are
not. (Nominal ones are no worse than representational ones, so this function *will*
change a UnivCo Representational to a UnivCo Nominal.)
Conal Elliott also came across a need for this function while working with the
GHC API, as he was decomposing Core casts. The Core casts use representational
coercions, as they must, but his use case required nominal coercions (he was
building a GADT). So, that's why this function is exported from this module.
One might ask: shouldn't downgradeRole_maybe just use setNominalRole_maybe as
appropriate? I (Richard E.) have decided not to do this, because upgrading a
role is bizarre and a caller should have to ask for this behavior explicitly.
-}
-- | Make a generalized reflexive coercion
mkGReflCo :: Role -> Type -> MCoercionN -> Coercion
mkGReflCo r ty mco
| isGReflMCo mco = if r == Nominal then Refl ty
else GRefl r ty MRefl
| otherwise = GRefl r ty mco
-- | Make a reflexive coercion
mkReflCo :: Role -> Type -> Coercion
mkReflCo Nominal ty = Refl ty
mkReflCo r ty = GRefl r ty MRefl
-- | Make a representational reflexive coercion
mkRepReflCo :: Type -> Coercion
mkRepReflCo ty = GRefl Representational ty MRefl
-- | Make a nominal reflexive coercion
mkNomReflCo :: Type -> Coercion
mkNomReflCo = Refl
-- | Apply a type constructor to a list of coercions. It is the
-- caller's responsibility to get the roles correct on argument coercions.
mkTyConAppCo :: HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo r tc cos
| [w, _rep1, _rep2, co1, co2] <- cos -- See Note [Function coercions]
, isFunTyCon tc
= -- (a :: TYPE ra) -> (b :: TYPE rb) ~ (c :: TYPE rc) -> (d :: TYPE rd)
-- rep1 :: ra ~ rc rep2 :: rb ~ rd
-- co1 :: a ~ c co2 :: b ~ d
mkFunCo r w co1 co2
-- Expand type synonyms
| Just (tv_co_prs, rhs_ty, leftover_cos) <- expandSynTyCon_maybe tc cos
= mkAppCos (liftCoSubst r (mkLiftingContext tv_co_prs) rhs_ty) leftover_cos
| Just tys_roles <- traverse isReflCo_maybe cos
= mkReflCo r (mkTyConApp tc (map fst tys_roles))
-- See Note [Refl invariant]
| otherwise = TyConAppCo r tc cos
-- | Build a function 'Coercion' from two other 'Coercion's. That is,
-- given @co1 :: a ~ b@ and @co2 :: x ~ y@ produce @co :: (a -> x) ~ (b -> y)@.
mkFunCo :: Role -> CoercionN -> Coercion -> Coercion -> Coercion
mkFunCo r w co1 co2
-- See Note [Refl invariant]
| Just (ty1, _) <- isReflCo_maybe co1
, Just (ty2, _) <- isReflCo_maybe co2
, Just (w, _) <- isReflCo_maybe w
= mkReflCo r (mkVisFunTy w ty1 ty2)
| otherwise = FunCo r w co1 co2
-- | Apply a 'Coercion' to another 'Coercion'.
-- The second coercion must be Nominal, unless the first is Phantom.
-- If the first is Phantom, then the second can be either Phantom or Nominal.
mkAppCo :: Coercion -- ^ :: t1 ~r t2
-> Coercion -- ^ :: s1 ~N s2, where s1 :: k1, s2 :: k2
-> Coercion -- ^ :: t1 s1 ~r t2 s2
mkAppCo co arg
| Just (ty1, r) <- isReflCo_maybe co
, Just (ty2, _) <- isReflCo_maybe arg
= mkReflCo r (mkAppTy ty1 ty2)
| Just (ty1, r) <- isReflCo_maybe co
, Just (tc, tys) <- splitTyConApp_maybe ty1
-- Expand type synonyms; a TyConAppCo can't have a type synonym (#9102)
= mkTyConAppCo r tc (zip_roles (tyConRolesX r tc) tys)
where
zip_roles (r1:_) [] = [downgradeRole r1 Nominal arg]
zip_roles (r1:rs) (ty1:tys) = mkReflCo r1 ty1 : zip_roles rs tys
zip_roles _ _ = panic "zip_roles" -- but the roles are infinite...
mkAppCo (TyConAppCo r tc args) arg
= case r of
Nominal -> mkTyConAppCo Nominal tc (args ++ [arg])
Representational -> mkTyConAppCo Representational tc (args ++ [arg'])
where new_role = (tyConRolesRepresentational tc) !! (length args)
arg' = downgradeRole new_role Nominal arg
Phantom -> mkTyConAppCo Phantom tc (args ++ [toPhantomCo arg])
mkAppCo co arg = AppCo co arg
-- Note, mkAppCo is careful to maintain invariants regarding
-- where Refl constructors appear; see the comments in the definition
-- of Coercion and the Note [Refl invariant] in GHC.Core.TyCo.Rep.
-- | Applies multiple 'Coercion's to another 'Coercion', from left to right.
-- See also 'mkAppCo'.
mkAppCos :: Coercion
-> [Coercion]
-> Coercion
mkAppCos co1 cos = foldl' mkAppCo co1 cos
{- Note [Unused coercion variable in ForAllCo]
See Note [Unused coercion variable in ForAllTy] in GHC.Core.TyCo.Rep for the
motivation for checking coercion variable in types.
To lift the design choice to (ForAllCo cv kind_co body_co), we have two options:
(1) In mkForAllCo, we check whether cv is a coercion variable
and whether it is not used in body_co. If so we construct a FunCo.
(2) We don't do this check in mkForAllCo.
In coercionKind, we use mkTyCoForAllTy to perform the check and construct
a FunTy when necessary.
We chose (2) for two reasons:
* for a coercion, all that matters is its kind, So ForAllCo or FunCo does not
make a difference.
* even if cv occurs in body_co, it is possible that cv does not occur in the kind
of body_co. Therefore the check in coercionKind is inevitable.
The last wrinkle is that there are restrictions around the use of the cv in the
coercion, as described in Section 5.8.5.2 of Richard's thesis. The idea is that
we cannot prove that the type system is consistent with unrestricted use of this
cv; the consistency proof uses an untyped rewrite relation that works over types
with all coercions and casts removed. So, we can allow the cv to appear only in
positions that are erased. As an approximation of this (and keeping close to the
published theory), we currently allow the cv only within the type in a Refl node
and under a GRefl node (including in the Coercion stored in a GRefl). It's
possible other places are OK, too, but this is a safe approximation.
Sadly, with heterogeneous equality, this restriction might be able to be violated;
Richard's thesis is unable to prove that it isn't. Specifically, the liftCoSubst
function might create an invalid coercion. Because a violation of the
restriction might lead to a program that "goes wrong", it is checked all the time,
even in a production compiler and without -dcore-list. We *have* proved that the
problem does not occur with homogeneous equality, so this check can be dropped
once ~# is made to be homogeneous.
-}
-- | Make a Coercion from a tycovar, a kind coercion, and a body coercion.
-- The kind of the tycovar should be the left-hand kind of the kind coercion.
-- See Note [Unused coercion variable in ForAllCo]
mkForAllCo :: TyCoVar -> CoercionN -> Coercion -> Coercion
mkForAllCo v kind_co co
| ASSERT( varType v `eqType` (pFst $ coercionKind kind_co)) True
, ASSERT( isTyVar v || almostDevoidCoVarOfCo v co) True
, Just (ty, r) <- isReflCo_maybe co
, isGReflCo kind_co
= mkReflCo r (mkTyCoInvForAllTy v ty)
| otherwise
= ForAllCo v kind_co co
-- | Like 'mkForAllCo', but the inner coercion shouldn't be an obvious
-- reflexive coercion. For example, it is guaranteed in 'mkForAllCos'.
-- The kind of the tycovar should be the left-hand kind of the kind coercion.
mkForAllCo_NoRefl :: TyCoVar -> CoercionN -> Coercion -> Coercion
mkForAllCo_NoRefl v kind_co co
| ASSERT( varType v `eqType` (pFst $ coercionKind kind_co)) True
, ASSERT( isTyVar v || almostDevoidCoVarOfCo v co) True
, ASSERT( not (isReflCo co)) True
, isCoVar v
, not (v `elemVarSet` tyCoVarsOfCo co)
= FunCo (coercionRole co) (multToCo Many) kind_co co
-- Functions from coercions are always unrestricted
| otherwise
= ForAllCo v kind_co co
-- | Make nested ForAllCos
mkForAllCos :: [(TyCoVar, CoercionN)] -> Coercion -> Coercion
mkForAllCos bndrs co
| Just (ty, r ) <- isReflCo_maybe co
= let (refls_rev'd, non_refls_rev'd) = span (isReflCo . snd) (reverse bndrs) in
foldl' (flip $ uncurry mkForAllCo_NoRefl)
(mkReflCo r (mkTyCoInvForAllTys (reverse (map fst refls_rev'd)) ty))
non_refls_rev'd
| otherwise
= foldr (uncurry mkForAllCo_NoRefl) co bndrs
-- | Make a Coercion quantified over a type/coercion variable;
-- the variable has the same type in both sides of the coercion
mkHomoForAllCos :: [TyCoVar] -> Coercion -> Coercion
mkHomoForAllCos vs co
| Just (ty, r) <- isReflCo_maybe co
= mkReflCo r (mkTyCoInvForAllTys vs ty)
| otherwise
= mkHomoForAllCos_NoRefl vs co
-- | Like 'mkHomoForAllCos', but the inner coercion shouldn't be an obvious
-- reflexive coercion. For example, it is guaranteed in 'mkHomoForAllCos'.
mkHomoForAllCos_NoRefl :: [TyCoVar] -> Coercion -> Coercion
mkHomoForAllCos_NoRefl vs orig_co
= ASSERT( not (isReflCo orig_co))
foldr go orig_co vs
where
go v co = mkForAllCo_NoRefl v (mkNomReflCo (varType v)) co
mkCoVarCo :: CoVar -> Coercion
-- cv :: s ~# t
-- See Note [mkCoVarCo]
mkCoVarCo cv = CoVarCo cv
mkCoVarCos :: [CoVar] -> [Coercion]
mkCoVarCos = map mkCoVarCo
{- Note [mkCoVarCo]
~~~~~~~~~~~~~~~~~~~
In the past, mkCoVarCo optimised (c :: t~t) to (Refl t). That is
valid (although see Note [Unbound RULE binders] in GHC.Core.Rules), but
it's a relatively expensive test and perhaps better done in
optCoercion. Not a big deal either way.
-}
-- | Extract a covar, if possible. This check is dirty. Be ashamed
-- of yourself. (It's dirty because it cares about the structure of
-- a coercion, which is morally reprehensible.)
isCoVar_maybe :: Coercion -> Maybe CoVar
isCoVar_maybe (CoVarCo cv) = Just cv
isCoVar_maybe _ = Nothing
mkAxInstCo :: Role -> CoAxiom br -> BranchIndex -> [Type] -> [Coercion]
-> Coercion
-- mkAxInstCo can legitimately be called over-staturated;
-- i.e. with more type arguments than the coercion requires
mkAxInstCo role ax index tys cos
| arity == n_tys = downgradeRole role ax_role $
mkAxiomInstCo ax_br index (rtys `chkAppend` cos)
| otherwise = ASSERT( arity < n_tys )
downgradeRole role ax_role $
mkAppCos (mkAxiomInstCo ax_br index
(ax_args `chkAppend` cos))
leftover_args
where
n_tys = length tys
ax_br = toBranchedAxiom ax
branch = coAxiomNthBranch ax_br index
tvs = coAxBranchTyVars branch
arity = length tvs
arg_roles = coAxBranchRoles branch
rtys = zipWith mkReflCo (arg_roles ++ repeat Nominal) tys
(ax_args, leftover_args)
= splitAt arity rtys
ax_role = coAxiomRole ax
-- worker function
mkAxiomInstCo :: CoAxiom Branched -> BranchIndex -> [Coercion] -> Coercion
mkAxiomInstCo ax index args
= ASSERT( args `lengthIs` coAxiomArity ax index )
AxiomInstCo ax index args
-- to be used only with unbranched axioms
mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched
-> [Type] -> [Coercion] -> Coercion
mkUnbranchedAxInstCo role ax tys cos
= mkAxInstCo role ax 0 tys cos
mkAxInstRHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
-- Instantiate the axiom with specified types,
-- returning the instantiated RHS
-- A companion to mkAxInstCo:
-- mkAxInstRhs ax index tys = snd (coercionKind (mkAxInstCo ax index tys))
mkAxInstRHS ax index tys cos
= ASSERT( tvs `equalLength` tys1 )
mkAppTys rhs' tys2
where
branch = coAxiomNthBranch ax index
tvs = coAxBranchTyVars branch
cvs = coAxBranchCoVars branch
(tys1, tys2) = splitAtList tvs tys
rhs' = substTyWith tvs tys1 $
substTyWithCoVars cvs cos $
coAxBranchRHS branch
mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
mkUnbranchedAxInstRHS ax = mkAxInstRHS ax 0
-- | Return the left-hand type of the axiom, when the axiom is instantiated
-- at the types given.
mkAxInstLHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
mkAxInstLHS ax index tys cos
= ASSERT( tvs `equalLength` tys1 )
mkTyConApp fam_tc (lhs_tys `chkAppend` tys2)
where
branch = coAxiomNthBranch ax index
tvs = coAxBranchTyVars branch
cvs = coAxBranchCoVars branch
(tys1, tys2) = splitAtList tvs tys
lhs_tys = substTysWith tvs tys1 $
substTysWithCoVars cvs cos $
coAxBranchLHS branch
fam_tc = coAxiomTyCon ax
-- | Instantiate the left-hand side of an unbranched axiom
mkUnbranchedAxInstLHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
mkUnbranchedAxInstLHS ax = mkAxInstLHS ax 0
-- | Make a coercion from a coercion hole
mkHoleCo :: CoercionHole -> Coercion
mkHoleCo h = HoleCo h
-- | Make a universal coercion between two arbitrary types.
mkUnivCo :: UnivCoProvenance
-> Role -- ^ role of the built coercion, "r"
-> Type -- ^ t1 :: k1
-> Type -- ^ t2 :: k2
-> Coercion -- ^ :: t1 ~r t2
mkUnivCo prov role ty1 ty2
| ty1 `eqType` ty2 = mkReflCo role ty1
| otherwise = UnivCo prov role ty1 ty2
-- | Create a symmetric version of the given 'Coercion' that asserts
-- equality between the same types but in the other "direction", so
-- a kind of @t1 ~ t2@ becomes the kind @t2 ~ t1@.
mkSymCo :: Coercion -> Coercion
-- Do a few simple optimizations, but don't bother pushing occurrences
-- of symmetry to the leaves; the optimizer will take care of that.
mkSymCo co | isReflCo co = co
mkSymCo (SymCo co) = co
mkSymCo (SubCo (SymCo co)) = SubCo co
mkSymCo co = SymCo co
-- | Create a new 'Coercion' by composing the two given 'Coercion's transitively.
-- (co1 ; co2)
mkTransCo :: Coercion -> Coercion -> Coercion
mkTransCo co1 co2 | isReflCo co1 = co2
| isReflCo co2 = co1
mkTransCo (GRefl r t1 (MCo co1)) (GRefl _ _ (MCo co2))
= GRefl r t1 (MCo $ mkTransCo co1 co2)
mkTransCo co1 co2 = TransCo co1 co2
-- | Compose two MCoercions via transitivity
mkTransMCo :: MCoercion -> MCoercion -> MCoercion
mkTransMCo MRefl co2 = co2
mkTransMCo co1 MRefl = co1
mkTransMCo (MCo co1) (MCo co2) = MCo (mkTransCo co1 co2)
mkNthCo :: HasDebugCallStack
=> Role -- The role of the coercion you're creating
-> Int -- Zero-indexed
-> Coercion
-> Coercion
mkNthCo r n co
= ASSERT2( good_call, bad_call_msg )
go r n co
where
Pair ty1 ty2 = coercionKind co
go r 0 co
| Just (ty, _) <- isReflCo_maybe co
, Just (tv, _) <- splitForAllTy_maybe ty
= -- works for both tyvar and covar
ASSERT( r == Nominal )
mkNomReflCo (varType tv)
go r n co
| Just (ty, r0) <- isReflCo_maybe co
, let tc = tyConAppTyCon ty
= ASSERT2( ok_tc_app ty n, ppr n $$ ppr ty )
ASSERT( nthRole r0 tc n == r )
mkReflCo r (tyConAppArgN n ty)
where ok_tc_app :: Type -> Int -> Bool
ok_tc_app ty n
| Just (_, tys) <- splitTyConApp_maybe ty
= tys `lengthExceeds` n
| isForAllTy ty -- nth:0 pulls out a kind coercion from a hetero forall
= n == 0
| otherwise
= False
go r 0 (ForAllCo _ kind_co _)
= ASSERT( r == Nominal )
kind_co
-- If co :: (forall a1:k1. t1) ~ (forall a2:k2. t2)
-- then (nth 0 co :: k1 ~N k2)
-- If co :: (forall a1:t1 ~ t2. t1) ~ (forall a2:t3 ~ t4. t2)
-- then (nth 0 co :: (t1 ~ t2) ~N (t3 ~ t4))
go r n co@(FunCo r0 w arg res)
-- See Note [Function coercions]
-- If FunCo _ mult arg_co res_co :: (s1:TYPE sk1 :mult-> s2:TYPE sk2)
-- ~ (t1:TYPE tk1 :mult-> t2:TYPE tk2)
-- Then we want to behave as if co was
-- TyConAppCo mult argk_co resk_co arg_co res_co
-- where
-- argk_co :: sk1 ~ tk1 = mkNthCo 0 (mkKindCo arg_co)
-- resk_co :: sk2 ~ tk2 = mkNthCo 0 (mkKindCo res_co)
-- i.e. mkRuntimeRepCo
= case n of
0 -> ASSERT( r == Nominal ) w
1 -> ASSERT( r == Nominal ) mkRuntimeRepCo arg
2 -> ASSERT( r == Nominal ) mkRuntimeRepCo res
3 -> ASSERT( r == r0 ) arg
4 -> ASSERT( r == r0 ) res
_ -> pprPanic "mkNthCo(FunCo)" (ppr n $$ ppr co)
go r n (TyConAppCo r0 tc arg_cos) = ASSERT2( r == nthRole r0 tc n
, (vcat [ ppr tc
, ppr arg_cos
, ppr r0
, ppr n
, ppr r ]) )
arg_cos `getNth` n
go r n co =
NthCo r n co
-- Assertion checking
bad_call_msg = vcat [ text "Coercion =" <+> ppr co
, text "LHS ty =" <+> ppr ty1
, text "RHS ty =" <+> ppr ty2
, text "n =" <+> ppr n, text "r =" <+> ppr r
, text "coercion role =" <+> ppr (coercionRole co) ]
good_call
-- If the Coercion passed in is between forall-types, then the Int must
-- be 0 and the role must be Nominal.
| Just (_tv1, _) <- splitForAllTy_maybe ty1
, Just (_tv2, _) <- splitForAllTy_maybe ty2
= n == 0 && r == Nominal
-- If the Coercion passed in is between T tys and T tys', then the Int
-- must be less than the length of tys/tys' (which must be the same
-- lengths).
--
-- If the role of the Coercion is nominal, then the role passed in must
-- be nominal. If the role of the Coercion is representational, then the
-- role passed in must be tyConRolesRepresentational T !! n. If the role
-- of the Coercion is Phantom, then the role passed in must be Phantom.
--
-- See also Note [NthCo Cached Roles] if you're wondering why it's
-- blaringly obvious that we should be *computing* this role instead of
-- passing it in.
| Just (tc1, tys1) <- splitTyConApp_maybe ty1
, Just (tc2, tys2) <- splitTyConApp_maybe ty2
, tc1 == tc2
= let len1 = length tys1
len2 = length tys2
good_role = case coercionRole co of
Nominal -> r == Nominal
Representational -> r == (tyConRolesRepresentational tc1 !! n)
Phantom -> r == Phantom
in len1 == len2 && n < len1 && good_role
| otherwise
= True
-- | If you're about to call @mkNthCo r n co@, then @r@ should be
-- whatever @nthCoRole n co@ returns.
nthCoRole :: Int -> Coercion -> Role
nthCoRole n co
| Just (tc, _) <- splitTyConApp_maybe lty
= nthRole r tc n
| Just _ <- splitForAllTy_maybe lty
= Nominal
| otherwise
= pprPanic "nthCoRole" (ppr co)
where
lty = coercionLKind co
r = coercionRole co
mkLRCo :: LeftOrRight -> Coercion -> Coercion
mkLRCo lr co
| Just (ty, eq) <- isReflCo_maybe co
= mkReflCo eq (pickLR lr (splitAppTy ty))
| otherwise
= LRCo lr co
-- | Instantiates a 'Coercion'.
mkInstCo :: Coercion -> Coercion -> Coercion
mkInstCo (ForAllCo tcv _kind_co body_co) co
| Just (arg, _) <- isReflCo_maybe co
-- works for both tyvar and covar
= substCoUnchecked (zipTCvSubst [tcv] [arg]) body_co
mkInstCo co arg = InstCo co arg
-- | Given @ty :: k1@, @co :: k1 ~ k2@,
-- produces @co' :: ty ~r (ty |> co)@
mkGReflRightCo :: Role -> Type -> CoercionN -> Coercion
mkGReflRightCo r ty co
| isGReflCo co = mkReflCo r ty
-- the kinds of @k1@ and @k2@ are the same, thus @isGReflCo@
-- instead of @isReflCo@
| otherwise = GRefl r ty (MCo co)
-- | Given @ty :: k1@, @co :: k1 ~ k2@,
-- produces @co' :: (ty |> co) ~r ty@
mkGReflLeftCo :: Role -> Type -> CoercionN -> Coercion
mkGReflLeftCo r ty co
| isGReflCo co = mkReflCo r ty
-- the kinds of @k1@ and @k2@ are the same, thus @isGReflCo@
-- instead of @isReflCo@
| otherwise = mkSymCo $ GRefl r ty (MCo co)
-- | Given @ty :: k1@, @co :: k1 ~ k2@, @co2:: ty ~r ty'@,
-- produces @co' :: (ty |> co) ~r ty'
-- It is not only a utility function, but it saves allocation when co
-- is a GRefl coercion.
mkCoherenceLeftCo :: Role -> Type -> CoercionN -> Coercion -> Coercion
mkCoherenceLeftCo r ty co co2
| isGReflCo co = co2
| otherwise = (mkSymCo $ GRefl r ty (MCo co)) `mkTransCo` co2
-- | Given @ty :: k1@, @co :: k1 ~ k2@, @co2:: ty' ~r ty@,
-- produces @co' :: ty' ~r (ty |> co)
-- It is not only a utility function, but it saves allocation when co
-- is a GRefl coercion.
mkCoherenceRightCo :: Role -> Type -> CoercionN -> Coercion -> Coercion
mkCoherenceRightCo r ty co co2
| isGReflCo co = co2
| otherwise = co2 `mkTransCo` GRefl r ty (MCo co)
-- | Given @co :: (a :: k) ~ (b :: k')@ produce @co' :: k ~ k'@.
mkKindCo :: Coercion -> Coercion
mkKindCo co | Just (ty, _) <- isReflCo_maybe co = Refl (typeKind ty)
mkKindCo (GRefl _ _ (MCo co)) = co
mkKindCo (UnivCo (PhantomProv h) _ _ _) = h
mkKindCo (UnivCo (ProofIrrelProv h) _ _ _) = h
mkKindCo co
| Pair ty1 ty2 <- coercionKind co
-- generally, calling coercionKind during coercion creation is a bad idea,
-- as it can lead to exponential behavior. But, we don't have nested mkKindCos,
-- so it's OK here.
, let tk1 = typeKind ty1
tk2 = typeKind ty2
, tk1 `eqType` tk2
= Refl tk1
| otherwise
= KindCo co
mkSubCo :: Coercion -> Coercion
-- Input coercion is Nominal, result is Representational
-- see also Note [Role twiddling functions]
mkSubCo (Refl ty) = GRefl Representational ty MRefl
mkSubCo (GRefl Nominal ty co) = GRefl Representational ty co
mkSubCo (TyConAppCo Nominal tc cos)
= TyConAppCo Representational tc (applyRoles tc cos)
mkSubCo (FunCo Nominal w arg res)
= FunCo Representational w
(downgradeRole Representational Nominal arg)
(downgradeRole Representational Nominal res)
mkSubCo co = ASSERT2( coercionRole co == Nominal, ppr co <+> ppr (coercionRole co) )
SubCo co
-- | Changes a role, but only a downgrade. See Note [Role twiddling functions]
downgradeRole_maybe :: Role -- ^ desired role
-> Role -- ^ current role
-> Coercion -> Maybe Coercion
-- In (downgradeRole_maybe dr cr co) it's a precondition that
-- cr = coercionRole co
downgradeRole_maybe Nominal Nominal co = Just co
downgradeRole_maybe Nominal _ _ = Nothing
downgradeRole_maybe Representational Nominal co = Just (mkSubCo co)
downgradeRole_maybe Representational Representational co = Just co
downgradeRole_maybe Representational Phantom _ = Nothing
downgradeRole_maybe Phantom Phantom co = Just co
downgradeRole_maybe Phantom _ co = Just (toPhantomCo co)
-- | Like 'downgradeRole_maybe', but panics if the change isn't a downgrade.
-- See Note [Role twiddling functions]
downgradeRole :: Role -- desired role
-> Role -- current role
-> Coercion -> Coercion
downgradeRole r1 r2 co
= case downgradeRole_maybe r1 r2 co of
Just co' -> co'
Nothing -> pprPanic "downgradeRole" (ppr co)
mkAxiomRuleCo :: CoAxiomRule -> [Coercion] -> Coercion
mkAxiomRuleCo = AxiomRuleCo
-- | Make a "coercion between coercions".
mkProofIrrelCo :: Role -- ^ role of the created coercion, "r"
-> Coercion -- ^ :: phi1 ~N phi2
-> Coercion -- ^ g1 :: phi1
-> Coercion -- ^ g2 :: phi2
-> Coercion -- ^ :: g1 ~r g2
-- if the two coercion prove the same fact, I just don't care what
-- the individual coercions are.
mkProofIrrelCo r co g _ | isGReflCo co = mkReflCo r (mkCoercionTy g)
-- kco is a kind coercion, thus @isGReflCo@ rather than @isReflCo@
mkProofIrrelCo r kco g1 g2 = mkUnivCo (ProofIrrelProv kco) r
(mkCoercionTy g1) (mkCoercionTy g2)
{-
%************************************************************************
%* *
Roles
%* *
%************************************************************************
-}
-- | Converts a coercion to be nominal, if possible.
-- See Note [Role twiddling functions]
setNominalRole_maybe :: Role -- of input coercion
-> Coercion -> Maybe Coercion
setNominalRole_maybe r co
| r == Nominal = Just co
| otherwise = setNominalRole_maybe_helper co
where
setNominalRole_maybe_helper (SubCo co) = Just co
setNominalRole_maybe_helper co@(Refl _) = Just co
setNominalRole_maybe_helper (GRefl _ ty co) = Just $ GRefl Nominal ty co
setNominalRole_maybe_helper (TyConAppCo Representational tc cos)
= do { cos' <- zipWithM setNominalRole_maybe (tyConRolesX Representational tc) cos
; return $ TyConAppCo Nominal tc cos' }
setNominalRole_maybe_helper (FunCo Representational w co1 co2)
= do { co1' <- setNominalRole_maybe Representational co1
; co2' <- setNominalRole_maybe Representational co2
; return $ FunCo Nominal w co1' co2'
}
setNominalRole_maybe_helper (SymCo co)
= SymCo <$> setNominalRole_maybe_helper co
setNominalRole_maybe_helper (TransCo co1 co2)
= TransCo <$> setNominalRole_maybe_helper co1 <*> setNominalRole_maybe_helper co2
setNominalRole_maybe_helper (AppCo co1 co2)
= AppCo <$> setNominalRole_maybe_helper co1 <*> pure co2
setNominalRole_maybe_helper (ForAllCo tv kind_co co)
= ForAllCo tv kind_co <$> setNominalRole_maybe_helper co
setNominalRole_maybe_helper (NthCo _r n co)
-- NB, this case recurses via setNominalRole_maybe, not
-- setNominalRole_maybe_helper!
= NthCo Nominal n <$> setNominalRole_maybe (coercionRole co) co
setNominalRole_maybe_helper (InstCo co arg)
= InstCo <$> setNominalRole_maybe_helper co <*> pure arg
setNominalRole_maybe_helper (UnivCo prov _ co1 co2)
| case prov of PhantomProv _ -> False -- should always be phantom
ProofIrrelProv _ -> True -- it's always safe
PluginProv _ -> False -- who knows? This choice is conservative.
CorePrepProv -> True
= Just $ UnivCo prov Nominal co1 co2
setNominalRole_maybe_helper _ = Nothing
-- | Make a phantom coercion between two types. The coercion passed
-- in must be a nominal coercion between the kinds of the
-- types.
mkPhantomCo :: Coercion -> Type -> Type -> Coercion
mkPhantomCo h t1 t2
= mkUnivCo (PhantomProv h) Phantom t1 t2
-- takes any coercion and turns it into a Phantom coercion
toPhantomCo :: Coercion -> Coercion
toPhantomCo co
= mkPhantomCo (mkKindCo co) ty1 ty2
where Pair ty1 ty2 = coercionKind co
-- Convert args to a TyConAppCo Nominal to the same TyConAppCo Representational
applyRoles :: TyCon -> [Coercion] -> [Coercion]
applyRoles tc cos
= zipWith (\r -> downgradeRole r Nominal) (tyConRolesRepresentational tc) cos
-- the Role parameter is the Role of the TyConAppCo
-- defined here because this is intimately concerned with the implementation
-- of TyConAppCo
-- Always returns an infinite list (with a infinite tail of Nominal)
tyConRolesX :: Role -> TyCon -> [Role]
tyConRolesX Representational tc = tyConRolesRepresentational tc
tyConRolesX role _ = repeat role
-- Returns the roles of the parameters of a tycon, with an infinite tail
-- of Nominal
tyConRolesRepresentational :: TyCon -> [Role]
tyConRolesRepresentational tc = tyConRoles tc ++ repeat Nominal
nthRole :: Role -> TyCon -> Int -> Role
nthRole Nominal _ _ = Nominal
nthRole Phantom _ _ = Phantom
nthRole Representational tc n
= (tyConRolesRepresentational tc) `getNth` n
ltRole :: Role -> Role -> Bool
-- Is one role "less" than another?
-- Nominal < Representational < Phantom
ltRole Phantom _ = False
ltRole Representational Phantom = True
ltRole Representational _ = False
ltRole Nominal Nominal = False
ltRole Nominal _ = True
-------------------------------
-- | like mkKindCo, but aggressively & recursively optimizes to avoid using
-- a KindCo constructor. The output role is nominal.
promoteCoercion :: Coercion -> CoercionN
-- First cases handles anything that should yield refl.
promoteCoercion co = case co of
_ | ki1 `eqType` ki2
-> mkNomReflCo (typeKind ty1)
-- no later branch should return refl
-- The ASSERT( False )s throughout
-- are these cases explicitly, but they should never fire.
Refl _ -> ASSERT( False )
mkNomReflCo ki1
GRefl _ _ MRefl -> ASSERT( False )
mkNomReflCo ki1
GRefl _ _ (MCo co) -> co
TyConAppCo _ tc args
| Just co' <- instCoercions (mkNomReflCo (tyConKind tc)) args
-> co'
| otherwise
-> mkKindCo co
AppCo co1 arg
| Just co' <- instCoercion (coercionKind (mkKindCo co1))
(promoteCoercion co1) arg
-> co'
| otherwise
-> mkKindCo co
ForAllCo tv _ g
| isTyVar tv
-> promoteCoercion g
ForAllCo _ _ _
-> ASSERT( False )
mkNomReflCo liftedTypeKind
-- See Note [Weird typing rule for ForAllTy] in GHC.Core.TyCo.Rep
FunCo _ _ _ _
-> ASSERT( False )
mkNomReflCo liftedTypeKind
CoVarCo {} -> mkKindCo co
HoleCo {} -> mkKindCo co
AxiomInstCo {} -> mkKindCo co
AxiomRuleCo {} -> mkKindCo co
UnivCo (PhantomProv kco) _ _ _ -> kco
UnivCo (ProofIrrelProv kco) _ _ _ -> kco
UnivCo (PluginProv _) _ _ _ -> mkKindCo co
UnivCo CorePrepProv _ _ _ -> mkKindCo co
SymCo g
-> mkSymCo (promoteCoercion g)
TransCo co1 co2
-> mkTransCo (promoteCoercion co1) (promoteCoercion co2)
NthCo _ n co1
| Just (_, args) <- splitTyConAppCo_maybe co1
, args `lengthExceeds` n
-> promoteCoercion (args !! n)
| Just _ <- splitForAllCo_maybe co
, n == 0
-> ASSERT( False ) mkNomReflCo liftedTypeKind
| otherwise
-> mkKindCo co
LRCo lr co1
| Just (lco, rco) <- splitAppCo_maybe co1
-> case lr of
CLeft -> promoteCoercion lco
CRight -> promoteCoercion rco
| otherwise
-> mkKindCo co
InstCo g _
| isForAllTy_ty ty1
-> ASSERT( isForAllTy_ty ty2 )
promoteCoercion g
| otherwise
-> ASSERT( False)
mkNomReflCo liftedTypeKind
-- See Note [Weird typing rule for ForAllTy] in GHC.Core.TyCo.Rep
KindCo _
-> ASSERT( False )
mkNomReflCo liftedTypeKind
SubCo g
-> promoteCoercion g
where
Pair ty1 ty2 = coercionKind co
ki1 = typeKind ty1
ki2 = typeKind ty2
-- | say @g = promoteCoercion h@. Then, @instCoercion g w@ yields @Just g'@,
-- where @g' = promoteCoercion (h w)@.
-- fails if this is not possible, if @g@ coerces between a forall and an ->
-- or if second parameter has a representational role and can't be used
-- with an InstCo.
instCoercion :: Pair Type -- g :: lty ~ rty
-> CoercionN -- ^ must be nominal
-> Coercion
-> Maybe CoercionN
instCoercion (Pair lty rty) g w
| (isForAllTy_ty lty && isForAllTy_ty rty)
|| (isForAllTy_co lty && isForAllTy_co rty)
, Just w' <- setNominalRole_maybe (coercionRole w) w
-- g :: (forall t1. t2) ~ (forall t1. t3)
-- w :: s1 ~ s2
-- returns mkInstCo g w' :: t2 [t1 |-> s1 ] ~ t3 [t1 |-> s2]
= Just $ mkInstCo g w'
| isFunTy lty && isFunTy rty
-- g :: (t1 -> t2) ~ (t3 -> t4)
-- returns t2 ~ t4
= Just $ mkNthCo Nominal 4 g -- extract result type, which is the 5th argument to (->)
| otherwise -- one forall, one funty...
= Nothing
-- | Repeated use of 'instCoercion'
instCoercions :: CoercionN -> [Coercion] -> Maybe CoercionN
instCoercions g ws
= let arg_ty_pairs = map coercionKind ws in
snd <$> foldM go (coercionKind g, g) (zip arg_ty_pairs ws)
where
go :: (Pair Type, Coercion) -> (Pair Type, Coercion)
-> Maybe (Pair Type, Coercion)
go (g_tys, g) (w_tys, w)
= do { g' <- instCoercion g_tys g w
; return (piResultTy <$> g_tys <*> w_tys, g') }
-- | Creates a new coercion with both of its types casted by different casts
-- @castCoercionKind2 g r t1 t2 h1 h2@, where @g :: t1 ~r t2@,
-- has type @(t1 |> h1) ~r (t2 |> h2)@.
-- @h1@ and @h2@ must be nominal.
castCoercionKind2 :: Coercion -> Role -> Type -> Type
-> CoercionN -> CoercionN -> Coercion
castCoercionKind2 g r t1 t2 h1 h2
= mkCoherenceRightCo r t2 h2 (mkCoherenceLeftCo r t1 h1 g)
-- | @castCoercionKind1 g r t1 t2 h@ = @coercionKind g r t1 t2 h h@
-- That is, it's a specialised form of castCoercionKind, where the two
-- kind coercions are identical
-- @castCoercionKind1 g r t1 t2 h@, where @g :: t1 ~r t2@,
-- has type @(t1 |> h) ~r (t2 |> h)@.
-- @h@ must be nominal.
-- See Note [castCoercionKind1]
castCoercionKind1 :: Coercion -> Role -> Type -> Type
-> CoercionN -> Coercion
castCoercionKind1 g r t1 t2 h
= case g of
Refl {} -> ASSERT( r == Nominal ) -- Refl is always Nominal
mkNomReflCo (mkCastTy t2 h)
GRefl _ _ mco -> case mco of
MRefl -> mkReflCo r (mkCastTy t2 h)
MCo kind_co -> GRefl r (mkCastTy t1 h) $
MCo (mkSymCo h `mkTransCo` kind_co `mkTransCo` h)
_ -> castCoercionKind2 g r t1 t2 h h
-- | Creates a new coercion with both of its types casted by different casts
-- @castCoercionKind g h1 h2@, where @g :: t1 ~r t2@,
-- has type @(t1 |> h1) ~r (t2 |> h2)@.
-- @h1@ and @h2@ must be nominal.
-- It calls @coercionKindRole@, so it's quite inefficient (which 'I' stands for)
-- Use @castCoercionKind2@ instead if @t1@, @t2@, and @r@ are known beforehand.
castCoercionKind :: Coercion -> CoercionN -> CoercionN -> Coercion
castCoercionKind g h1 h2
= castCoercionKind2 g r t1 t2 h1 h2
where
(Pair t1 t2, r) = coercionKindRole g
mkFamilyTyConAppCo :: TyCon -> [CoercionN] -> CoercionN
-- ^ Given a family instance 'TyCon' and its arg 'Coercion's, return the
-- corresponding family 'Coercion'. E.g:
--
-- > data family T a
-- > data instance T (Maybe b) = MkT b
--
-- Where the instance 'TyCon' is :RTL, so:
--
-- > mkFamilyTyConAppCo :RTL (co :: a ~# Int) = T (Maybe a) ~# T (Maybe Int)
--
-- cf. 'mkFamilyTyConApp'
mkFamilyTyConAppCo tc cos
| Just (fam_tc, fam_tys) <- tyConFamInst_maybe tc
, let tvs = tyConTyVars tc
fam_cos = ASSERT2( tvs `equalLength` cos, ppr tc <+> ppr cos )
map (liftCoSubstWith Nominal tvs cos) fam_tys
= mkTyConAppCo Nominal fam_tc fam_cos
| otherwise
= mkTyConAppCo Nominal tc cos
-- See note [Newtype coercions] in GHC.Core.TyCon
mkPiCos :: Role -> [Var] -> Coercion -> Coercion
mkPiCos r vs co = foldr (mkPiCo r) co vs
-- | Make a forall 'Coercion', where both types related by the coercion
-- are quantified over the same variable.
mkPiCo :: Role -> Var -> Coercion -> Coercion
mkPiCo r v co | isTyVar v = mkHomoForAllCos [v] co
| isCoVar v = ASSERT( not (v `elemVarSet` tyCoVarsOfCo co) )
-- We didn't call mkForAllCo here because if v does not appear
-- in co, the argement coercion will be nominal. But here we
-- want it to be r. It is only called in 'mkPiCos', which is
-- only used in GHC.Core.Opt.Simplify.Utils, where we are sure for
-- now (Aug 2018) v won't occur in co.
mkFunCo r (multToCo (varMult v)) (mkReflCo r (varType v)) co
| otherwise = mkFunCo r (multToCo (varMult v)) (mkReflCo r (varType v)) co
-- mkCoCast (c :: s1 ~?r t1) (g :: (s1 ~?r t1) ~#R (s2 ~?r t2)) :: s2 ~?r t2
-- The first coercion might be lifted or unlifted; thus the ~? above
-- Lifted and unlifted equalities take different numbers of arguments,
-- so we have to make sure to supply the right parameter to decomposeCo.
-- Also, note that the role of the first coercion is the same as the role of
-- the equalities related by the second coercion. The second coercion is
-- itself always representational.
mkCoCast :: Coercion -> CoercionR -> Coercion
mkCoCast c g
| (g2:g1:_) <- reverse co_list
= mkSymCo g1 `mkTransCo` c `mkTransCo` g2
| otherwise
= pprPanic "mkCoCast" (ppr g $$ ppr (coercionKind g))
where
-- g :: (s1 ~# t1) ~# (s2 ~# t2)
-- g1 :: s1 ~# s2
-- g2 :: t1 ~# t2
(tc, _) = splitTyConApp (coercionLKind g)
co_list = decomposeCo (tyConArity tc) g (tyConRolesRepresentational tc)
{- Note [castCoercionKind1]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
castCoercionKind1 deals with the very important special case of castCoercionKind2
where the two kind coercions are identical. In that case we can exploit the
situation where the main coercion is reflexive, via the special cases for Refl
and GRefl.
This is important when flattening (ty |> co). We flatten ty, yielding
fco :: ty ~ ty'
and now we want a coercion xco between
xco :: (ty |> co) ~ (ty' |> co)
That's exactly what castCoercionKind1 does. And it's very very common for
fco to be Refl. In that case we do NOT want to get some terrible composition
of mkLeftCoherenceCo and mkRightCoherenceCo, which is what castCoercionKind2
has to do in its full generality. See #18413.
-}
{-
%************************************************************************
%* *
Newtypes
%* *
%************************************************************************
-}
-- | If @co :: T ts ~ rep_ty@ then:
--
-- > instNewTyCon_maybe T ts = Just (rep_ty, co)
--
-- Checks for a newtype, and for being saturated
instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion)
instNewTyCon_maybe tc tys
| Just (tvs, ty, co_tc) <- unwrapNewTyConEtad_maybe tc -- Check for newtype
, tvs `leLength` tys -- Check saturated enough
= Just (applyTysX tvs ty tys, mkUnbranchedAxInstCo Representational co_tc tys [])
| otherwise
= Nothing
{-
************************************************************************
* *
Type normalisation
* *
************************************************************************
-}
-- | A function to check if we can reduce a type by one step. Used
-- with 'topNormaliseTypeX'.
type NormaliseStepper ev = RecTcChecker
-> TyCon -- tc
-> [Type] -- tys
-> NormaliseStepResult ev
-- | The result of stepping in a normalisation function.
-- See 'topNormaliseTypeX'.
data NormaliseStepResult ev
= NS_Done -- ^ Nothing more to do
| NS_Abort -- ^ Utter failure. The outer function should fail too.
| NS_Step RecTcChecker Type ev -- ^ We stepped, yielding new bits;
-- ^ ev is evidence;
-- Usually a co :: old type ~ new type
mapStepResult :: (ev1 -> ev2)
-> NormaliseStepResult ev1 -> NormaliseStepResult ev2
mapStepResult f (NS_Step rec_nts ty ev) = NS_Step rec_nts ty (f ev)
mapStepResult _ NS_Done = NS_Done
mapStepResult _ NS_Abort = NS_Abort
-- | Try one stepper and then try the next, if the first doesn't make
-- progress.
-- So if it returns NS_Done, it means that both steppers are satisfied
composeSteppers :: NormaliseStepper ev -> NormaliseStepper ev
-> NormaliseStepper ev
composeSteppers step1 step2 rec_nts tc tys
= case step1 rec_nts tc tys of
success@(NS_Step {}) -> success
NS_Done -> step2 rec_nts tc tys
NS_Abort -> NS_Abort
-- | A 'NormaliseStepper' that unwraps newtypes, careful not to fall into
-- a loop. If it would fall into a loop, it produces 'NS_Abort'.
unwrapNewTypeStepper :: NormaliseStepper Coercion
unwrapNewTypeStepper rec_nts tc tys
| Just (ty', co) <- instNewTyCon_maybe tc tys
= case checkRecTc rec_nts tc of
Just rec_nts' -> NS_Step rec_nts' ty' co
Nothing -> NS_Abort
| otherwise
= NS_Done
-- | A general function for normalising the top-level of a type. It continues
-- to use the provided 'NormaliseStepper' until that function fails, and then
-- this function returns. The roles of the coercions produced by the
-- 'NormaliseStepper' must all be the same, which is the role returned from
-- the call to 'topNormaliseTypeX'.
--
-- Typically ev is Coercion.
--
-- If topNormaliseTypeX step plus ty = Just (ev, ty')
-- then ty ~ev1~ t1 ~ev2~ t2 ... ~evn~ ty'
-- and ev = ev1 `plus` ev2 `plus` ... `plus` evn
-- If it returns Nothing then no newtype unwrapping could happen
topNormaliseTypeX :: NormaliseStepper ev -> (ev -> ev -> ev)
-> Type -> Maybe (ev, Type)
topNormaliseTypeX stepper plus ty
| Just (tc, tys) <- splitTyConApp_maybe ty
, NS_Step rec_nts ty' ev <- stepper initRecTc tc tys
= go rec_nts ev ty'
| otherwise
= Nothing
where
go rec_nts ev ty
| Just (tc, tys) <- splitTyConApp_maybe ty
= case stepper rec_nts tc tys of
NS_Step rec_nts' ty' ev' -> go rec_nts' (ev `plus` ev') ty'
NS_Done -> Just (ev, ty)
NS_Abort -> Nothing
| otherwise
= Just (ev, ty)
topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type)
-- ^ Sometimes we want to look through a @newtype@ and get its associated coercion.
-- This function strips off @newtype@ layers enough to reveal something that isn't
-- a @newtype@. Specifically, here's the invariant:
--
-- > topNormaliseNewType_maybe rec_nts ty = Just (co, ty')
--
-- then (a) @co : ty0 ~ ty'@.
-- (b) ty' is not a newtype.
--
-- The function returns @Nothing@ for non-@newtypes@,
-- or unsaturated applications
--
-- This function does *not* look through type families, because it has no access to
-- the type family environment. If you do have that at hand, consider to use
-- topNormaliseType_maybe, which should be a drop-in replacement for
-- topNormaliseNewType_maybe
-- If topNormliseNewType_maybe ty = Just (co, ty'), then co : ty ~R ty'
topNormaliseNewType_maybe ty
= topNormaliseTypeX unwrapNewTypeStepper mkTransCo ty
{-
%************************************************************************
%* *
Comparison of coercions
%* *
%************************************************************************
-}
-- | Syntactic equality of coercions
eqCoercion :: Coercion -> Coercion -> Bool
eqCoercion = eqType `on` coercionType
-- | Compare two 'Coercion's, with respect to an RnEnv2
eqCoercionX :: RnEnv2 -> Coercion -> Coercion -> Bool
eqCoercionX env = eqTypeX env `on` coercionType
{-
%************************************************************************
%* *
"Lifting" substitution
[(TyCoVar,Coercion)] -> Type -> Coercion
%* *
%************************************************************************
Note [Lifting coercions over types: liftCoSubst]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The KPUSH rule deals with this situation
data T a = K (a -> Maybe a)
g :: T t1 ~ T t2
x :: t1 -> Maybe t1
case (K @t1 x) |> g of
K (y:t2 -> Maybe t2) -> rhs
We want to push the coercion inside the constructor application.
So we do this
g' :: t1~t2 = Nth 0 g
case K @t2 (x |> g' -> Maybe g') of
K (y:t2 -> Maybe t2) -> rhs
The crucial operation is that we
* take the type of K's argument: a -> Maybe a
* and substitute g' for a
thus giving *coercion*. This is what liftCoSubst does.
In the presence of kind coercions, this is a bit
of a hairy operation. So, we refer you to the paper introducing kind coercions,
available at www.cis.upenn.edu/~sweirich/papers/fckinds-extended.pdf
Note [extendLiftingContextEx]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider we have datatype
K :: \/k. \/a::k. P -> T k -- P be some type
g :: T k1 ~ T k2
case (K @k1 @t1 x) |> g of
K y -> rhs
We want to push the coercion inside the constructor application.
We first get the coercion mapped by the universal type variable k:
lc = k |-> Nth 0 g :: k1~k2
Here, the important point is that the kind of a is coerced, and P might be
dependent on the existential type variable a.
Thus we first get the coercion of a's kind
g2 = liftCoSubst lc k :: k1 ~ k2
Then we store a new mapping into the lifting context
lc2 = a |-> (t1 ~ t1 |> g2), lc
So later when we can correctly deal with the argument type P
liftCoSubst lc2 P :: P [k|->k1][a|->t1] ~ P[k|->k2][a |-> (t1|>g2)]
This is exactly what extendLiftingContextEx does.
* For each (tyvar:k, ty) pair, we product the mapping
tyvar |-> (ty ~ ty |> (liftCoSubst lc k))
* For each (covar:s1~s2, ty) pair, we produce the mapping
covar |-> (co ~ co')
co' = Sym (liftCoSubst lc s1) ;; covar ;; liftCoSubst lc s2 :: s1'~s2'
This follows the lifting context extension definition in the
"FC with Explicit Kind Equality" paper.
-}
-- ----------------------------------------------------
-- See Note [Lifting coercions over types: liftCoSubst]
-- ----------------------------------------------------
data LiftingContext = LC TCvSubst LiftCoEnv
-- in optCoercion, we need to lift when optimizing InstCo.
-- See Note [Optimising InstCo] in GHC.Core.Coercion.Opt
-- We thus propagate the substitution from GHC.Core.Coercion.Opt here.
instance Outputable LiftingContext where
ppr (LC _ env) = hang (text "LiftingContext:") 2 (ppr env)
type LiftCoEnv = VarEnv Coercion
-- Maps *type variables* to *coercions*.
-- That's the whole point of this function!
-- Also maps coercion variables to ProofIrrelCos.
-- like liftCoSubstWith, but allows for existentially-bound types as well
liftCoSubstWithEx :: Role -- desired role for output coercion
-> [TyVar] -- universally quantified tyvars
-> [Coercion] -- coercions to substitute for those
-> [TyCoVar] -- existentially quantified tycovars
-> [Type] -- types and coercions to be bound to ex vars
-> (Type -> Coercion, [Type]) -- (lifting function, converted ex args)
liftCoSubstWithEx role univs omegas exs rhos
= let theta = mkLiftingContext (zipEqual "liftCoSubstWithExU" univs omegas)
psi = extendLiftingContextEx theta (zipEqual "liftCoSubstWithExX" exs rhos)
in (ty_co_subst psi role, substTys (lcSubstRight psi) (mkTyCoVarTys exs))
liftCoSubstWith :: Role -> [TyCoVar] -> [Coercion] -> Type -> Coercion
liftCoSubstWith r tvs cos ty
= liftCoSubst r (mkLiftingContext $ zipEqual "liftCoSubstWith" tvs cos) ty
-- | @liftCoSubst role lc ty@ produces a coercion (at role @role@)
-- that coerces between @lc_left(ty)@ and @lc_right(ty)@, where
-- @lc_left@ is a substitution mapping type variables to the left-hand
-- types of the mapped coercions in @lc@, and similar for @lc_right@.
liftCoSubst :: HasDebugCallStack => Role -> LiftingContext -> Type -> Coercion
{-# INLINE liftCoSubst #-}
-- Inlining this function is worth 2% of allocation in T9872d,
liftCoSubst r lc@(LC subst env) ty
| isEmptyVarEnv env = mkReflCo r (substTy subst ty)
| otherwise = ty_co_subst lc r ty
emptyLiftingContext :: InScopeSet -> LiftingContext
emptyLiftingContext in_scope = LC (mkEmptyTCvSubst in_scope) emptyVarEnv
mkLiftingContext :: [(TyCoVar,Coercion)] -> LiftingContext
mkLiftingContext pairs
= LC (mkEmptyTCvSubst $ mkInScopeSet $ tyCoVarsOfCos (map snd pairs))
(mkVarEnv pairs)
mkSubstLiftingContext :: TCvSubst -> LiftingContext
mkSubstLiftingContext subst = LC subst emptyVarEnv
-- | Extend a lifting context with a new mapping.
extendLiftingContext :: LiftingContext -- ^ original LC
-> TyCoVar -- ^ new variable to map...
-> Coercion -- ^ ...to this lifted version
-> LiftingContext
-- mappings to reflexive coercions are just substitutions
extendLiftingContext (LC subst env) tv arg
| Just (ty, _) <- isReflCo_maybe arg
= LC (extendTCvSubst subst tv ty) env
| otherwise
= LC subst (extendVarEnv env tv arg)
-- | Extend a lifting context with a new mapping, and extend the in-scope set
extendLiftingContextAndInScope :: LiftingContext -- ^ Original LC
-> TyCoVar -- ^ new variable to map...
-> Coercion -- ^ to this coercion
-> LiftingContext
extendLiftingContextAndInScope (LC subst env) tv co
= extendLiftingContext (LC (extendTCvInScopeSet subst (tyCoVarsOfCo co)) env) tv co
-- | Extend a lifting context with existential-variable bindings.
-- See Note [extendLiftingContextEx]
extendLiftingContextEx :: LiftingContext -- ^ original lifting context
-> [(TyCoVar,Type)] -- ^ ex. var / value pairs
-> LiftingContext
-- Note that this is more involved than extendLiftingContext. That function
-- takes a coercion to extend with, so it's assumed that the caller has taken
-- into account any of the kind-changing stuff worried about here.
extendLiftingContextEx lc [] = lc
extendLiftingContextEx lc@(LC subst env) ((v,ty):rest)
-- This function adds bindings for *Nominal* coercions. Why? Because it
-- works with existentially bound variables, which are considered to have
-- nominal roles.
| isTyVar v
= let lc' = LC (subst `extendTCvInScopeSet` tyCoVarsOfType ty)
(extendVarEnv env v $
mkGReflRightCo Nominal
ty
(ty_co_subst lc Nominal (tyVarKind v)))
in extendLiftingContextEx lc' rest
| CoercionTy co <- ty
= -- co :: s1 ~r s2
-- lift_s1 :: s1 ~r s1'
-- lift_s2 :: s2 ~r s2'
-- kco :: (s1 ~r s2) ~N (s1' ~r s2')
ASSERT( isCoVar v )
let (_, _, s1, s2, r) = coVarKindsTypesRole v
lift_s1 = ty_co_subst lc r s1
lift_s2 = ty_co_subst lc r s2
kco = mkTyConAppCo Nominal (equalityTyCon r)
[ mkKindCo lift_s1, mkKindCo lift_s2
, lift_s1 , lift_s2 ]
lc' = LC (subst `extendTCvInScopeSet` tyCoVarsOfCo co)
(extendVarEnv env v
(mkProofIrrelCo Nominal kco co $
(mkSymCo lift_s1) `mkTransCo` co `mkTransCo` lift_s2))
in extendLiftingContextEx lc' rest
| otherwise
= pprPanic "extendLiftingContextEx" (ppr v <+> text "|->" <+> ppr ty)
-- | Erase the environments in a lifting context
zapLiftingContext :: LiftingContext -> LiftingContext
zapLiftingContext (LC subst _) = LC (zapTCvSubst subst) emptyVarEnv
-- | Like 'substForAllCoBndr', but works on a lifting context
substForAllCoBndrUsingLC :: Bool
-> (Coercion -> Coercion)
-> LiftingContext -> TyCoVar -> Coercion
-> (LiftingContext, TyCoVar, Coercion)
substForAllCoBndrUsingLC sym sco (LC subst lc_env) tv co
= (LC subst' lc_env, tv', co')
where
(subst', tv', co') = substForAllCoBndrUsing sym sco subst tv co
-- | The \"lifting\" operation which substitutes coercions for type
-- variables in a type to produce a coercion.
--
-- For the inverse operation, see 'liftCoMatch'
ty_co_subst :: LiftingContext -> Role -> Type -> Coercion
ty_co_subst !lc role ty
-- !lc: making this function strict in lc allows callers to
-- pass its two components separately, rather than boxing them
= go role ty
where
go :: Role -> Type -> Coercion
go r ty | Just ty' <- coreView ty
= go r ty'
go Phantom ty = lift_phantom ty
go r (TyVarTy tv) = expectJust "ty_co_subst bad roles" $
liftCoSubstTyVar lc r tv
go r (AppTy ty1 ty2) = mkAppCo (go r ty1) (go Nominal ty2)
go r (TyConApp tc tys) = mkTyConAppCo r tc (zipWith go (tyConRolesX r tc) tys)
go r (FunTy _ w ty1 ty2) = mkFunCo r (go Nominal w) (go r ty1) (go r ty2)
go r t@(ForAllTy (Bndr v _) ty)
= let (lc', v', h) = liftCoSubstVarBndr lc v
body_co = ty_co_subst lc' r ty in
if isTyVar v' || almostDevoidCoVarOfCo v' body_co
-- Lifting a ForAllTy over a coercion variable could fail as ForAllCo
-- imposes an extra restriction on where a covar can appear. See last
-- wrinkle in Note [Unused coercion variable in ForAllCo].
-- We specifically check for this and panic because we know that
-- there's a hole in the type system here, and we'd rather panic than
-- fall into it.
then mkForAllCo v' h body_co
else pprPanic "ty_co_subst: covar is not almost devoid" (ppr t)
go r ty@(LitTy {}) = ASSERT( r == Nominal )
mkNomReflCo ty
go r (CastTy ty co) = castCoercionKind (go r ty) (substLeftCo lc co)
(substRightCo lc co)
go r (CoercionTy co) = mkProofIrrelCo r kco (substLeftCo lc co)
(substRightCo lc co)
where kco = go Nominal (coercionType co)
lift_phantom ty = mkPhantomCo (go Nominal (typeKind ty))
(substTy (lcSubstLeft lc) ty)
(substTy (lcSubstRight lc) ty)
{-
Note [liftCoSubstTyVar]
~~~~~~~~~~~~~~~~~~~~~~~~~
This function can fail if a coercion in the environment is of too low a role.
liftCoSubstTyVar is called from two places: in liftCoSubst (naturally), and
also in matchAxiom in GHC.Core.Coercion.Opt. From liftCoSubst, the so-called lifting
lemma guarantees that the roles work out. If we fail in this
case, we really should panic -- something is deeply wrong. But, in matchAxiom,
failing is fine. matchAxiom is trying to find a set of coercions
that match, but it may fail, and this is healthy behavior.
-}
-- See Note [liftCoSubstTyVar]
liftCoSubstTyVar :: LiftingContext -> Role -> TyVar -> Maybe Coercion
liftCoSubstTyVar (LC subst env) r v
| Just co_arg <- lookupVarEnv env v
= downgradeRole_maybe r (coercionRole co_arg) co_arg
| otherwise
= Just $ mkReflCo r (substTyVar subst v)
{- Note [liftCoSubstVarBndr]
callback:
We want 'liftCoSubstVarBndrUsing' to be general enough to be reused in
FamInstEnv, therefore the input arg 'fun' returns a pair with polymorphic type
in snd.
However in 'liftCoSubstVarBndr', we don't need the snd, so we use unit and
ignore the fourth component of the return value.
liftCoSubstTyVarBndrUsing:
Given
forall tv:k. t
We want to get
forall (tv:k1) (kind_co :: k1 ~ k2) body_co
We lift the kind k to get the kind_co
kind_co = ty_co_subst k :: k1 ~ k2
Now in the LiftingContext, we add the new mapping
tv |-> (tv :: k1) ~ ((tv |> kind_co) :: k2)
liftCoSubstCoVarBndrUsing:
Given
forall cv:(s1 ~ s2). t
We want to get
forall (cv:s1'~s2') (kind_co :: (s1'~s2') ~ (t1 ~ t2)) body_co
We lift s1 and s2 respectively to get
eta1 :: s1' ~ t1
eta2 :: s2' ~ t2
And
kind_co = TyConAppCo Nominal (~#) eta1 eta2
Now in the liftingContext, we add the new mapping
cv |-> (cv :: s1' ~ s2') ~ ((sym eta1;cv;eta2) :: t1 ~ t2)
-}
-- See Note [liftCoSubstVarBndr]
liftCoSubstVarBndr :: LiftingContext -> TyCoVar
-> (LiftingContext, TyCoVar, Coercion)
liftCoSubstVarBndr lc tv
= let (lc', tv', h, _) = liftCoSubstVarBndrUsing callback lc tv in
(lc', tv', h)
where
callback lc' ty' = (ty_co_subst lc' Nominal ty', ())
-- the callback must produce a nominal coercion
liftCoSubstVarBndrUsing :: (LiftingContext -> Type -> (CoercionN, a))
-> LiftingContext -> TyCoVar
-> (LiftingContext, TyCoVar, CoercionN, a)
liftCoSubstVarBndrUsing fun lc old_var
| isTyVar old_var
= liftCoSubstTyVarBndrUsing fun lc old_var
| otherwise
= liftCoSubstCoVarBndrUsing fun lc old_var
-- Works for tyvar binder
liftCoSubstTyVarBndrUsing :: (LiftingContext -> Type -> (CoercionN, a))
-> LiftingContext -> TyVar
-> (LiftingContext, TyVar, CoercionN, a)
liftCoSubstTyVarBndrUsing fun lc@(LC subst cenv) old_var
= ASSERT( isTyVar old_var )
( LC (subst `extendTCvInScope` new_var) new_cenv
, new_var, eta, stuff )
where
old_kind = tyVarKind old_var
(eta, stuff) = fun lc old_kind
k1 = coercionLKind eta
new_var = uniqAway (getTCvInScope subst) (setVarType old_var k1)
lifted = mkGReflRightCo Nominal (TyVarTy new_var) eta
-- :: new_var ~ new_var |> eta
new_cenv = extendVarEnv cenv old_var lifted
-- Works for covar binder
liftCoSubstCoVarBndrUsing :: (LiftingContext -> Type -> (CoercionN, a))
-> LiftingContext -> CoVar
-> (LiftingContext, CoVar, CoercionN, a)
liftCoSubstCoVarBndrUsing fun lc@(LC subst cenv) old_var
= ASSERT( isCoVar old_var )
( LC (subst `extendTCvInScope` new_var) new_cenv
, new_var, kind_co, stuff )
where
old_kind = coVarKind old_var
(eta, stuff) = fun lc old_kind
k1 = coercionLKind eta
new_var = uniqAway (getTCvInScope subst) (setVarType old_var k1)
-- old_var :: s1 ~r s2
-- eta :: (s1' ~r s2') ~N (t1 ~r t2)
-- eta1 :: s1' ~r t1
-- eta2 :: s2' ~r t2
-- co1 :: s1' ~r s2'
-- co2 :: t1 ~r t2
-- kind_co :: (s1' ~r s2') ~N (t1 ~r t2)
-- lifted :: co1 ~N co2
role = coVarRole old_var
eta' = downgradeRole role Nominal eta
eta1 = mkNthCo role 2 eta'
eta2 = mkNthCo role 3 eta'
co1 = mkCoVarCo new_var
co2 = mkSymCo eta1 `mkTransCo` co1 `mkTransCo` eta2
kind_co = mkTyConAppCo Nominal (equalityTyCon role)
[ mkKindCo co1, mkKindCo co2
, co1 , co2 ]
lifted = mkProofIrrelCo Nominal kind_co co1 co2
new_cenv = extendVarEnv cenv old_var lifted
-- | Is a var in the domain of a lifting context?
isMappedByLC :: TyCoVar -> LiftingContext -> Bool
isMappedByLC tv (LC _ env) = tv `elemVarEnv` env
-- If [a |-> g] is in the substitution and g :: t1 ~ t2, substitute a for t1
-- If [a |-> (g1, g2)] is in the substitution, substitute a for g1
substLeftCo :: LiftingContext -> Coercion -> Coercion
substLeftCo lc co
= substCo (lcSubstLeft lc) co
-- Ditto, but for t2 and g2
substRightCo :: LiftingContext -> Coercion -> Coercion
substRightCo lc co
= substCo (lcSubstRight lc) co
-- | Apply "sym" to all coercions in a 'LiftCoEnv'
swapLiftCoEnv :: LiftCoEnv -> LiftCoEnv
swapLiftCoEnv = mapVarEnv mkSymCo
lcSubstLeft :: LiftingContext -> TCvSubst
lcSubstLeft (LC subst lc_env) = liftEnvSubstLeft subst lc_env
lcSubstRight :: LiftingContext -> TCvSubst
lcSubstRight (LC subst lc_env) = liftEnvSubstRight subst lc_env
liftEnvSubstLeft :: TCvSubst -> LiftCoEnv -> TCvSubst
liftEnvSubstLeft = liftEnvSubst pFst
liftEnvSubstRight :: TCvSubst -> LiftCoEnv -> TCvSubst
liftEnvSubstRight = liftEnvSubst pSnd
liftEnvSubst :: (forall a. Pair a -> a) -> TCvSubst -> LiftCoEnv -> TCvSubst
liftEnvSubst selector subst lc_env
= composeTCvSubst (TCvSubst emptyInScopeSet tenv cenv) subst
where
pairs = nonDetUFMToList lc_env
-- It's OK to use nonDetUFMToList here because we
-- immediately forget the ordering by creating
-- a VarEnv
(tpairs, cpairs) = partitionWith ty_or_co pairs
tenv = mkVarEnv_Directly tpairs
cenv = mkVarEnv_Directly cpairs
ty_or_co :: (Unique, Coercion) -> Either (Unique, Type) (Unique, Coercion)
ty_or_co (u, co)
| Just equality_co <- isCoercionTy_maybe equality_ty
= Right (u, equality_co)
| otherwise
= Left (u, equality_ty)
where
equality_ty = selector (coercionKind co)
-- | Extract the underlying substitution from the LiftingContext
lcTCvSubst :: LiftingContext -> TCvSubst
lcTCvSubst (LC subst _) = subst
-- | Get the 'InScopeSet' from a 'LiftingContext'
lcInScopeSet :: LiftingContext -> InScopeSet
lcInScopeSet (LC subst _) = getTCvInScope subst
{-
%************************************************************************
%* *
Sequencing on coercions
%* *
%************************************************************************
-}
seqMCo :: MCoercion -> ()
seqMCo MRefl = ()
seqMCo (MCo co) = seqCo co
seqCo :: Coercion -> ()
seqCo (Refl ty) = seqType ty
seqCo (GRefl r ty mco) = r `seq` seqType ty `seq` seqMCo mco
seqCo (TyConAppCo r tc cos) = r `seq` tc `seq` seqCos cos
seqCo (AppCo co1 co2) = seqCo co1 `seq` seqCo co2
seqCo (ForAllCo tv k co) = seqType (varType tv) `seq` seqCo k
`seq` seqCo co
seqCo (FunCo r w co1 co2) = r `seq` seqCo w `seq` seqCo co1 `seq` seqCo co2
seqCo (CoVarCo cv) = cv `seq` ()
seqCo (HoleCo h) = coHoleCoVar h `seq` ()
seqCo (AxiomInstCo con ind cos) = con `seq` ind `seq` seqCos cos
seqCo (UnivCo p r t1 t2)
= seqProv p `seq` r `seq` seqType t1 `seq` seqType t2
seqCo (SymCo co) = seqCo co
seqCo (TransCo co1 co2) = seqCo co1 `seq` seqCo co2
seqCo (NthCo r n co) = r `seq` n `seq` seqCo co
seqCo (LRCo lr co) = lr `seq` seqCo co
seqCo (InstCo co arg) = seqCo co `seq` seqCo arg
seqCo (KindCo co) = seqCo co
seqCo (SubCo co) = seqCo co
seqCo (AxiomRuleCo _ cs) = seqCos cs
seqProv :: UnivCoProvenance -> ()
seqProv (PhantomProv co) = seqCo co
seqProv (ProofIrrelProv co) = seqCo co
seqProv (PluginProv _) = ()
seqProv CorePrepProv = ()
seqCos :: [Coercion] -> ()
seqCos [] = ()
seqCos (co:cos) = seqCo co `seq` seqCos cos
{-
%************************************************************************
%* *
The kind of a type, and of a coercion
%* *
%************************************************************************
-}
-- | Apply 'coercionKind' to multiple 'Coercion's
coercionKinds :: [Coercion] -> Pair [Type]
coercionKinds tys = sequenceA $ map coercionKind tys
-- | Get a coercion's kind and role.
coercionKindRole :: Coercion -> (Pair Type, Role)
coercionKindRole co = (coercionKind co, coercionRole co)
coercionType :: Coercion -> Type
coercionType co = case coercionKindRole co of
(Pair ty1 ty2, r) -> mkCoercionType r ty1 ty2
------------------
-- | If it is the case that
--
-- > c :: (t1 ~ t2)
--
-- i.e. the kind of @c@ relates @t1@ and @t2@, then @coercionKind c = Pair t1 t2@.
coercionKind :: Coercion -> Pair Type
coercionKind co = Pair (coercionLKind co) (coercionRKind co)
coercionLKind :: Coercion -> Type
coercionLKind co
= go co
where
go (Refl ty) = ty
go (GRefl _ ty _) = ty
go (TyConAppCo _ tc cos) = mkTyConApp tc (map go cos)
go (AppCo co1 co2) = mkAppTy (go co1) (go co2)
go (ForAllCo tv1 _ co1) = mkTyCoInvForAllTy tv1 (go co1)
go (FunCo _ w co1 co2) = mkFunctionType (go w) (go co1) (go co2)
go (CoVarCo cv) = coVarLType cv
go (HoleCo h) = coVarLType (coHoleCoVar h)
go (UnivCo _ _ ty1 _) = ty1
go (SymCo co) = coercionRKind co
go (TransCo co1 _) = go co1
go (LRCo lr co) = pickLR lr (splitAppTy (go co))
go (InstCo aco arg) = go_app aco [go arg]
go (KindCo co) = typeKind (go co)
go (SubCo co) = go co
go (NthCo _ d co) = go_nth d (go co)
go (AxiomInstCo ax ind cos) = go_ax_inst ax ind (map go cos)
go (AxiomRuleCo ax cos) = pFst $ expectJust "coercionKind" $
coaxrProves ax $ map coercionKind cos
go_ax_inst ax ind tys
| CoAxBranch { cab_tvs = tvs, cab_cvs = cvs
, cab_lhs = lhs } <- coAxiomNthBranch ax ind
, let (tys1, cotys1) = splitAtList tvs tys
cos1 = map stripCoercionTy cotys1
= ASSERT( tys `equalLength` (tvs ++ cvs) )
-- Invariant of AxiomInstCo: cos should
-- exactly saturate the axiom branch
substTyWith tvs tys1 $
substTyWithCoVars cvs cos1 $
mkTyConApp (coAxiomTyCon ax) lhs
go_app :: Coercion -> [Type] -> Type
-- Collect up all the arguments and apply all at once
-- See Note [Nested InstCos]
go_app (InstCo co arg) args = go_app co (go arg:args)
go_app co args = piResultTys (go co) args
go_nth :: Int -> Type -> Type
go_nth d ty
| Just args <- tyConAppArgs_maybe ty
= ASSERT( args `lengthExceeds` d )
args `getNth` d
| d == 0
, Just (tv,_) <- splitForAllTy_maybe ty
= tyVarKind tv
| otherwise
= pprPanic "coercionLKind:nth" (ppr d <+> ppr ty)
coercionRKind :: Coercion -> Type
coercionRKind co
= go co
where
go (Refl ty) = ty
go (GRefl _ ty MRefl) = ty
go (GRefl _ ty (MCo co1)) = mkCastTy ty co1
go (TyConAppCo _ tc cos) = mkTyConApp tc (map go cos)
go (AppCo co1 co2) = mkAppTy (go co1) (go co2)
go (CoVarCo cv) = coVarRType cv
go (HoleCo h) = coVarRType (coHoleCoVar h)
go (FunCo _ w co1 co2) = mkFunctionType (go w) (go co1) (go co2)
go (UnivCo _ _ _ ty2) = ty2
go (SymCo co) = coercionLKind co
go (TransCo _ co2) = go co2
go (LRCo lr co) = pickLR lr (splitAppTy (go co))
go (InstCo aco arg) = go_app aco [go arg]
go (KindCo co) = typeKind (go co)
go (SubCo co) = go co
go (NthCo _ d co) = go_nth d (go co)
go (AxiomInstCo ax ind cos) = go_ax_inst ax ind (map go cos)
go (AxiomRuleCo ax cos) = pSnd $ expectJust "coercionKind" $
coaxrProves ax $ map coercionKind cos
go co@(ForAllCo tv1 k_co co1) -- works for both tyvar and covar
| isGReflCo k_co = mkTyCoInvForAllTy tv1 (go co1)
-- kind_co always has kind @Type@, thus @isGReflCo@
| otherwise = go_forall empty_subst co
where
empty_subst = mkEmptyTCvSubst (mkInScopeSet $ tyCoVarsOfCo co)
go_ax_inst ax ind tys
| CoAxBranch { cab_tvs = tvs, cab_cvs = cvs
, cab_rhs = rhs } <- coAxiomNthBranch ax ind
, let (tys2, cotys2) = splitAtList tvs tys
cos2 = map stripCoercionTy cotys2
= ASSERT( tys `equalLength` (tvs ++ cvs) )
-- Invariant of AxiomInstCo: cos should
-- exactly saturate the axiom branch
substTyWith tvs tys2 $
substTyWithCoVars cvs cos2 rhs
go_app :: Coercion -> [Type] -> Type
-- Collect up all the arguments and apply all at once
-- See Note [Nested InstCos]
go_app (InstCo co arg) args = go_app co (go arg:args)
go_app co args = piResultTys (go co) args
go_forall subst (ForAllCo tv1 k_co co)
-- See Note [Nested ForAllCos]
| isTyVar tv1
= mkInfForAllTy tv2 (go_forall subst' co)
where
k2 = coercionRKind k_co
tv2 = setTyVarKind tv1 (substTy subst k2)
subst' | isGReflCo k_co = extendTCvInScope subst tv1
-- kind_co always has kind @Type@, thus @isGReflCo@
| otherwise = extendTvSubst (extendTCvInScope subst tv2) tv1 $
TyVarTy tv2 `mkCastTy` mkSymCo k_co
go_forall subst (ForAllCo cv1 k_co co)
| isCoVar cv1
= mkTyCoInvForAllTy cv2 (go_forall subst' co)
where
k2 = coercionRKind k_co
r = coVarRole cv1
eta1 = mkNthCo r 2 (downgradeRole r Nominal k_co)
eta2 = mkNthCo r 3 (downgradeRole r Nominal k_co)
-- k_co :: (t1 ~r t2) ~N (s1 ~r s2)
-- k1 = t1 ~r t2
-- k2 = s1 ~r s2
-- cv1 :: t1 ~r t2
-- cv2 :: s1 ~r s2
-- eta1 :: t1 ~r s1
-- eta2 :: t2 ~r s2
-- n_subst = (eta1 ; cv2 ; sym eta2) :: t1 ~r t2
cv2 = setVarType cv1 (substTy subst k2)
n_subst = eta1 `mkTransCo` (mkCoVarCo cv2) `mkTransCo` (mkSymCo eta2)
subst' | isReflCo k_co = extendTCvInScope subst cv1
| otherwise = extendCvSubst (extendTCvInScope subst cv2)
cv1 n_subst
go_forall subst other_co
-- when other_co is not a ForAllCo
= substTy subst (go other_co)
{-
Note [Nested ForAllCos]
~~~~~~~~~~~~~~~~~~~~~~~
Suppose we need `coercionKind (ForAllCo a1 (ForAllCo a2 ... (ForAllCo an
co)...) )`. We do not want to perform `n` single-type-variable
substitutions over the kind of `co`; rather we want to do one substitution
which substitutes for all of `a1`, `a2` ... simultaneously. If we do one
at a time we get the performance hole reported in #11735.
Solution: gather up the type variables for nested `ForAllCos`, and
substitute for them all at once. Remarkably, for #11735 this single
change reduces /total/ compile time by a factor of more than ten.
-}
-- | Retrieve the role from a coercion.
coercionRole :: Coercion -> Role
coercionRole = go
where
go (Refl _) = Nominal
go (GRefl r _ _) = r
go (TyConAppCo r _ _) = r
go (AppCo co1 _) = go co1
go (ForAllCo _ _ co) = go co
go (FunCo r _ _ _) = r
go (CoVarCo cv) = coVarRole cv
go (HoleCo h) = coVarRole (coHoleCoVar h)
go (AxiomInstCo ax _ _) = coAxiomRole ax
go (UnivCo _ r _ _) = r
go (SymCo co) = go co
go (TransCo co1 _co2) = go co1
go (NthCo r _d _co) = r
go (LRCo {}) = Nominal
go (InstCo co _) = go co
go (KindCo {}) = Nominal
go (SubCo _) = Representational
go (AxiomRuleCo ax _) = coaxrRole ax
{-
Note [Nested InstCos]
~~~~~~~~~~~~~~~~~~~~~
In #5631 we found that 70% of the entire compilation time was
being spent in coercionKind! The reason was that we had
(g @ ty1 @ ty2 .. @ ty100) -- The "@s" are InstCos
where
g :: forall a1 a2 .. a100. phi
If we deal with the InstCos one at a time, we'll do this:
1. Find the kind of (g @ ty1 .. @ ty99) : forall a100. phi'
2. Substitute phi'[ ty100/a100 ], a single tyvar->type subst
But this is a *quadratic* algorithm, and the blew up #5631.
So it's very important to do the substitution simultaneously;
cf Type.piResultTys (which in fact we call here).
-}
-- | Makes a coercion type from two types: the types whose equality
-- is proven by the relevant 'Coercion'
mkCoercionType :: Role -> Type -> Type -> Type
mkCoercionType Nominal = mkPrimEqPred
mkCoercionType Representational = mkReprPrimEqPred
mkCoercionType Phantom = \ty1 ty2 ->
let ki1 = typeKind ty1
ki2 = typeKind ty2
in
TyConApp eqPhantPrimTyCon [ki1, ki2, ty1, ty2]
mkHeteroCoercionType :: Role -> Kind -> Kind -> Type -> Type -> Type
mkHeteroCoercionType Nominal = mkHeteroPrimEqPred
mkHeteroCoercionType Representational = mkHeteroReprPrimEqPred
mkHeteroCoercionType Phantom = panic "mkHeteroCoercionType"
-- | Creates a primitive type equality predicate.
-- Invariant: the types are not Coercions
mkPrimEqPred :: Type -> Type -> Type
mkPrimEqPred ty1 ty2
= mkTyConApp eqPrimTyCon [k1, k2, ty1, ty2]
where
k1 = typeKind ty1
k2 = typeKind ty2
-- | Makes a lifted equality predicate at the given role
mkPrimEqPredRole :: Role -> Type -> Type -> PredType
mkPrimEqPredRole Nominal = mkPrimEqPred
mkPrimEqPredRole Representational = mkReprPrimEqPred
mkPrimEqPredRole Phantom = panic "mkPrimEqPredRole phantom"
-- | Creates a primitive type equality predicate with explicit kinds
mkHeteroPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
mkHeteroPrimEqPred k1 k2 ty1 ty2 = mkTyConApp eqPrimTyCon [k1, k2, ty1, ty2]
-- | Creates a primitive representational type equality predicate
-- with explicit kinds
mkHeteroReprPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
mkHeteroReprPrimEqPred k1 k2 ty1 ty2
= mkTyConApp eqReprPrimTyCon [k1, k2, ty1, ty2]
mkReprPrimEqPred :: Type -> Type -> Type
mkReprPrimEqPred ty1 ty2
= mkTyConApp eqReprPrimTyCon [k1, k2, ty1, ty2]
where
k1 = typeKind ty1
k2 = typeKind ty2
-- | Assuming that two types are the same, ignoring coercions, find
-- a nominal coercion between the types. This is useful when optimizing
-- transitivity over coercion applications, where splitting two
-- AppCos might yield different kinds. See Note [EtaAppCo] in
-- "GHC.Core.Coercion.Opt".
buildCoercion :: Type -> Type -> CoercionN
buildCoercion orig_ty1 orig_ty2 = go orig_ty1 orig_ty2
where
go ty1 ty2 | Just ty1' <- coreView ty1 = go ty1' ty2
| Just ty2' <- coreView ty2 = go ty1 ty2'
go (CastTy ty1 co) ty2
= let co' = go ty1 ty2
r = coercionRole co'
in mkCoherenceLeftCo r ty1 co co'
go ty1 (CastTy ty2 co)
= let co' = go ty1 ty2
r = coercionRole co'
in mkCoherenceRightCo r ty2 co co'
go ty1@(TyVarTy tv1) _tyvarty
= ASSERT( case _tyvarty of
{ TyVarTy tv2 -> tv1 == tv2
; _ -> False } )
mkNomReflCo ty1
go (FunTy { ft_mult = w1, ft_arg = arg1, ft_res = res1 })
(FunTy { ft_mult = w2, ft_arg = arg2, ft_res = res2 })
= mkFunCo Nominal (go w1 w2) (go arg1 arg2) (go res1 res2)
go (TyConApp tc1 args1) (TyConApp tc2 args2)
= ASSERT( tc1 == tc2 )
mkTyConAppCo Nominal tc1 (zipWith go args1 args2)
go (AppTy ty1a ty1b) ty2
| Just (ty2a, ty2b) <- repSplitAppTy_maybe ty2
= mkAppCo (go ty1a ty2a) (go ty1b ty2b)
go ty1 (AppTy ty2a ty2b)
| Just (ty1a, ty1b) <- repSplitAppTy_maybe ty1
= mkAppCo (go ty1a ty2a) (go ty1b ty2b)
go (ForAllTy (Bndr tv1 _flag1) ty1) (ForAllTy (Bndr tv2 _flag2) ty2)
| isTyVar tv1
= ASSERT( isTyVar tv2 )
mkForAllCo tv1 kind_co (go ty1 ty2')
where kind_co = go (tyVarKind tv1) (tyVarKind tv2)
in_scope = mkInScopeSet $ tyCoVarsOfType ty2 `unionVarSet` tyCoVarsOfCo kind_co
ty2' = substTyWithInScope in_scope [tv2]
[mkTyVarTy tv1 `mkCastTy` kind_co]
ty2
go (ForAllTy (Bndr cv1 _flag1) ty1) (ForAllTy (Bndr cv2 _flag2) ty2)
= ASSERT( isCoVar cv1 && isCoVar cv2 )
mkForAllCo cv1 kind_co (go ty1 ty2')
where s1 = varType cv1
s2 = varType cv2
kind_co = go s1 s2
-- s1 = t1 ~r t2
-- s2 = t3 ~r t4
-- kind_co :: (t1 ~r t2) ~N (t3 ~r t4)
-- eta1 :: t1 ~r t3
-- eta2 :: t2 ~r t4
r = coVarRole cv1
kind_co' = downgradeRole r Nominal kind_co
eta1 = mkNthCo r 2 kind_co'
eta2 = mkNthCo r 3 kind_co'
subst = mkEmptyTCvSubst $ mkInScopeSet $
tyCoVarsOfType ty2 `unionVarSet` tyCoVarsOfCo kind_co
ty2' = substTy (extendCvSubst subst cv2 $ mkSymCo eta1 `mkTransCo`
mkCoVarCo cv1 `mkTransCo`
eta2)
ty2
go ty1@(LitTy lit1) _lit2
= ASSERT( case _lit2 of
{ LitTy lit2 -> lit1 == lit2
; _ -> False } )
mkNomReflCo ty1
go (CoercionTy co1) (CoercionTy co2)
= mkProofIrrelCo Nominal kind_co co1 co2
where
kind_co = go (coercionType co1) (coercionType co2)
go ty1 ty2
= pprPanic "buildKindCoercion" (vcat [ ppr orig_ty1, ppr orig_ty2
, ppr ty1, ppr ty2 ])
{-
%************************************************************************
%* *
Simplifying types
%* *
%************************************************************************
The function below morally belongs in GHC.Tc.Solver.Flatten, but it is used also in
FamInstEnv, and so lives here.
Note [simplifyArgsWorker]
~~~~~~~~~~~~~~~~~~~~~~~~~
Invariant (F2) of Note [Flattening] says that flattening is homogeneous.
This causes some trouble when flattening a function applied to a telescope
of arguments, perhaps with dependency. For example, suppose
type family F :: forall (j :: Type) (k :: Type). Maybe j -> Either j k -> Bool -> [k]
and we wish to flatten the args of (with kind applications explicit)
F a b (Just a c) (Right a b d) False
where all variables are skolems and
a :: Type
b :: Type
c :: a
d :: k
[G] aco :: a ~ fa
[G] bco :: b ~ fb
[G] cco :: c ~ fc
[G] dco :: d ~ fd
The first step is to flatten all the arguments. This is done before calling
simplifyArgsWorker. We start from
a
b
Just a c
Right a b d
False
and get
(fa, co1 :: fa ~ a)
(fb, co2 :: fb ~ b)
(Just fa (fc |> aco) |> co6, co3 :: (Just fa (fc |> aco) |> co6) ~ (Just a c))
(Right fa fb (fd |> bco) |> co7, co4 :: (Right fa fb (fd |> bco) |> co7) ~ (Right a b d))
(False, co5 :: False ~ False)
where
co6 :: Maybe fa ~ Maybe a
co7 :: Either fa fb ~ Either a b
We now process the flattened args in left-to-right order. The first two args
need no further processing. But now consider the third argument. Let f3 = the flattened
result, Just fa (fc |> aco) |> co6.
This f3 flattened argument has kind (Maybe a), due to
(F2). And yet, when we build the application (F fa fb ...), we need this
argument to have kind (Maybe fa), not (Maybe a). We must cast this argument.
The coercion to use is
determined by the kind of F: we see in F's kind that the third argument has
kind Maybe j. Critically, we also know that the argument corresponding to j
(in our example, a) flattened with a coercion co1. We can thus know the
coercion needed for the 3rd argument is (Maybe (sym co1)), thus building
(f3 |> Maybe (sym co1))
More generally, we must use the Lifting Lemma, as implemented in
Coercion.liftCoSubst. As we work left-to-right, any variable that is a
dependent parameter (j and k, in our example) gets mapped in a lifting context
to the coercion that is output from flattening the corresponding argument (co1
and co2, in our example). Then, after flattening later arguments, we lift the
kind of these arguments in the lifting context that we've be building up.
This coercion is then used to keep the result of flattening well-kinded.
Working through our example, this is what happens:
1. Extend the (empty) LC with [j |-> co1]. No new casting must be done,
because the binder associated with the first argument has a closed type (no
variables).
2. Extend the LC with [k |-> co2]. No casting to do.
3. Lifting the kind (Maybe j) with our LC
yields co8 :: Maybe fa ~ Maybe a. Use (f3 |> sym co8) as the argument to
F.
4. Lifting the kind (Either j k) with our LC
yields co9 :: Either fa fb ~ Either a b. Use (f4 |> sym co9) as the 4th
argument to F, where f4 is the flattened form of argument 4, written above.
5. We lift Bool with our LC, getting <Bool>;
casting has no effect.
We're now almost done, but the new application (F fa fb (f3 |> sym co8) (f4 > sym co9) False)
has the wrong kind. Its kind is [fb], instead of the original [b].
So we must use our LC one last time to lift the result kind [k],
getting res_co :: [fb] ~ [b], and we cast our result.
Accordingly, the final result is
F fa fb (Just fa (fc |> aco) |> Maybe (sym aco) |> sym (Maybe (sym aco)))
(Right fa fb (fd |> bco) |> Either (sym aco) (sym bco) |> sym (Either (sym aco) (sym bco)))
False
|> [sym bco]
The res_co (in this case, [sym bco])
is returned as the third return value from simplifyArgsWorker.
Note [Last case in simplifyArgsWorker]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In writing simplifyArgsWorker's `go`, we know here that args cannot be empty,
because that case is first. We've run out of
binders. But perhaps inner_ki is a tyvar that has been instantiated with a
Π-type.
Here is an example.
a :: forall (k :: Type). k -> k
type family Star
Proxy :: forall j. j -> Type
axStar :: Star ~ Type
type family NoWay :: Bool
axNoWay :: NoWay ~ False
bo :: Type
[G] bc :: bo ~ Bool (in inert set)
co :: (forall j. j -> Type) ~ (forall (j :: Star). (j |> axStar) -> Star)
co = forall (j :: sym axStar). (<j> -> sym axStar)
We are flattening:
a (forall (j :: Star). (j |> axStar) -> Star) -- 1
(Proxy |> co) -- 2
(bo |> sym axStar) -- 3
(NoWay |> sym bc) -- 4
:: Star
First, we flatten all the arguments (before simplifyArgsWorker), like so:
(forall j. j -> Type, co1 :: (forall j. j -> Type) ~
(forall (j :: Star). (j |> axStar) -> Star)) -- 1
(Proxy |> co, co2 :: (Proxy |> co) ~ (Proxy |> co)) -- 2
(Bool |> sym axStar, co3 :: (Bool |> sym axStar) ~ (bo |> sym axStar)) -- 3
(False |> sym bc, co4 :: (False |> sym bc) ~ (NoWay |> sym bc)) -- 4
Then we do the process described in Note [simplifyArgsWorker].
1. Lifting Type (the kind of the first arg) gives us a reflexive coercion, so we
don't use it. But we do build a lifting context [k -> co1] (where co1 is a
result of flattening an argument, written above).
2. Lifting k gives us co1, so the second argument becomes (Proxy |> co |> sym co1).
This is not a dependent argument, so we don't extend the lifting context.
Now we need to deal with argument (3).
The way we normally proceed is to lift the kind of the binder, to see whether
it's dependent.
But here, the remainder of the kind of `a` that we're left with
after processing two arguments is just `k`.
The way forward is look up k in the lifting context, getting co1. If we're at
all well-typed, co1 will be a coercion between Π-types, with at least one binder.
So, let's
decompose co1 with decomposePiCos. This decomposition needs arguments to use
to instantiate any kind parameters. Look at the type of co1. If we just
decomposed it, we would end up with coercions whose types include j, which is
out of scope here. Accordingly, decomposePiCos takes a list of types whose
kinds are the *right-hand* types in the decomposed coercion. (See comments on
decomposePiCos.) Because the flattened types have unflattened kinds (because
flattening is homogeneous), passing the list of flattened types to decomposePiCos
just won't do: later arguments' kinds won't be as expected. So we need to get
the *unflattened* types to pass to decomposePiCos. We can do this easily enough
by taking the kind of the argument coercions, passed in originally.
(Alternative 1: We could re-engineer decomposePiCos to deal with this situation.
But that function is already gnarly, and taking the right-hand types is correct
at its other call sites, which are much more common than this one.)
(Alternative 2: We could avoid calling decomposePiCos entirely, integrating its
behavior into simplifyArgsWorker. This would work, I think, but then all of the
complication of decomposePiCos would end up layered on top of all the complication
here. Please, no.)
(Alternative 3: We could pass the unflattened arguments into simplifyArgsWorker
so that we don't have to recreate them. But that would complicate the interface
of this function to handle a very dark, dark corner case. Better to keep our
demons to ourselves here instead of exposing them to callers. This decision is
easily reversed if there is ever any performance trouble due to the call of
coercionKind.)
So we now call
decomposePiCos co1
(Pair (forall j. j -> Type) (forall (j :: Star). (j |> axStar) -> Star))
[bo |> sym axStar, NoWay |> sym bc]
to get
co5 :: Star ~ Type
co6 :: (j |> axStar) ~ (j |> co5), substituted to
(bo |> sym axStar |> axStar) ~ (bo |> sym axStar |> co5)
== bo ~ bo
res_co :: Type ~ Star
We then use these casts on (the flattened) (3) and (4) to get
(Bool |> sym axStar |> co5 :: Type) -- (C3)
(False |> sym bc |> co6 :: bo) -- (C4)
We can simplify to
Bool -- (C3)
(False |> sym bc :: bo) -- (C4)
Of course, we still must do the processing in Note [simplifyArgsWorker] to finish
the job. We thus want to recur. Our new function kind is the left-hand type of
co1 (gotten, recall, by lifting the variable k that was the return kind of the
original function). Why the left-hand type (as opposed to the right-hand type)?
Because we have casted all the arguments according to decomposePiCos, which gets
us from the right-hand type to the left-hand one. We thus recur with that new
function kind, zapping our lifting context, because we have essentially applied
it.
This recursive call returns ([Bool, False], [...], Refl). The Bool and False
are the correct arguments we wish to return. But we must be careful about the
result coercion: our new, flattened application will have kind Type, but we
want to make sure that the result coercion casts this back to Star. (Why?
Because we started with an application of kind Star, and flattening is homogeneous.)
So, we have to twiddle the result coercion appropriately.
Let's check whether this is well-typed. We know
a :: forall (k :: Type). k -> k
a (forall j. j -> Type) :: (forall j. j -> Type) -> forall j. j -> Type
a (forall j. j -> Type)
Proxy
:: forall j. j -> Type
a (forall j. j -> Type)
Proxy
Bool
:: Bool -> Type
a (forall j. j -> Type)
Proxy
Bool
False
:: Type
a (forall j. j -> Type)
Proxy
Bool
False
|> res_co
:: Star
as desired.
Whew.
Historical note: I (Richard E) once thought that the final part of the kind
had to be a variable k (as in the example above). But it might not be: it could
be an application of a variable. Here is the example:
let f :: forall (a :: Type) (b :: a -> Type). b (Any @a)
k :: Type
x :: k
flatten (f @Type @((->) k) x)
After instantiating [a |-> Type, b |-> ((->) k)], we see that `b (Any @a)`
is `k -> Any @a`, and thus the third argument of `x :: k` is well-kinded.
-}
-- This is shared between the flattener and the normaliser in GHC.Core.FamInstEnv.
-- See Note [simplifyArgsWorker]
{-# INLINE simplifyArgsWorker #-}
simplifyArgsWorker :: [TyCoBinder] -> Kind
-- the binders & result kind (not a Π-type) of the function applied to the args
-- list of binders can be shorter or longer than the list of args
-> TyCoVarSet -- free vars of the args
-> [Role] -- list of roles, r
-> [(Type, Coercion)] -- flattened type arguments, arg
-- each comes with the coercion used to flatten it,
-- with co :: flattened_type ~ original_type
-> ([Type], [Coercion], CoercionN)
-- Returns (xis, cos, res_co), where each co :: xi ~ arg,
-- and res_co :: kind (f xis) ~ kind (f tys), where f is the function applied to the args
-- Precondition: if f :: forall bndrs. inner_ki (where bndrs and inner_ki are passed in),
-- then (f orig_tys) is well kinded. Note that (f flattened_tys) might *not* be well-kinded.
-- Massaging the flattened_tys in order to make (f flattened_tys) well-kinded is what this
-- function is all about. That is, (f xis), where xis are the returned arguments, *is*
-- well kinded.
simplifyArgsWorker orig_ki_binders orig_inner_ki orig_fvs
orig_roles orig_simplified_args
= go [] [] orig_lc orig_ki_binders orig_inner_ki orig_roles orig_simplified_args
where
orig_lc = emptyLiftingContext $ mkInScopeSet $ orig_fvs
go :: [Type] -- Xis accumulator, in reverse order
-> [Coercion] -- Coercions accumulator, in reverse order
-- These are in 1-to-1 correspondence
-> LiftingContext -- mapping from tyvars to flattening coercions
-> [TyCoBinder] -- Unsubsted binders of function's kind
-> Kind -- Unsubsted result kind of function (not a Pi-type)
-> [Role] -- Roles at which to flatten these ...
-> [(Type, Coercion)] -- flattened arguments, with their flattening coercions
-> ([Type], [Coercion], CoercionN)
go acc_xis acc_cos !lc binders inner_ki _ []
-- The !lc makes the function strict in the lifting context
-- which means GHC can unbox that pair. A modest win.
= (reverse acc_xis, reverse acc_cos, kind_co)
where
final_kind = mkPiTys binders inner_ki
kind_co = liftCoSubst Nominal lc final_kind
go acc_xis acc_cos lc (binder:binders) inner_ki (role:roles) ((xi,co):args)
= -- By Note [Flattening] in GHC.Tc.Solver.Flatten invariant (F2),
-- tcTypeKind(xi) = tcTypeKind(ty). But, it's possible that xi will be
-- used as an argument to a function whose kind is different, if
-- earlier arguments have been flattened to new types. We thus
-- need a coercion (kind_co :: old_kind ~ new_kind).
--
-- The bangs here have been observed to improve performance
-- significantly in optimized builds; see #18502
let !kind_co = mkSymCo $
liftCoSubst Nominal lc (tyCoBinderType binder)
!casted_xi = xi `mkCastTy` kind_co
casted_co = mkCoherenceLeftCo role xi kind_co co
-- now, extend the lifting context with the new binding
!new_lc | Just tv <- tyCoBinderVar_maybe binder
= extendLiftingContextAndInScope lc tv casted_co
| otherwise
= lc
in
go (casted_xi : acc_xis)
(casted_co : acc_cos)
new_lc
binders
inner_ki
roles
args
-- See Note [Last case in simplifyArgsWorker]
go acc_xis acc_cos lc [] inner_ki roles args
= let co1 = liftCoSubst Nominal lc inner_ki
co1_kind = coercionKind co1
unflattened_tys = map (coercionRKind . snd) args
(arg_cos, res_co) = decomposePiCos co1 co1_kind unflattened_tys
casted_args = ASSERT2( equalLength args arg_cos
, ppr args $$ ppr arg_cos )
[ (casted_xi, casted_co)
| ((xi, co), arg_co, role) <- zip3 args arg_cos roles
, let casted_xi = xi `mkCastTy` arg_co
casted_co = mkCoherenceLeftCo role xi arg_co co ]
-- In general decomposePiCos can return fewer cos than tys,
-- but not here; because we're well typed, there will be enough
-- binders. Note that decomposePiCos does substitutions, so even
-- if the original substitution results in something ending with
-- ... -> k, that k will be substituted to perhaps reveal more
-- binders.
zapped_lc = zapLiftingContext lc
Pair flattened_kind _ = co1_kind
(bndrs, new_inner) = splitPiTys flattened_kind
(xis_out, cos_out, res_co_out)
= go acc_xis acc_cos zapped_lc bndrs new_inner roles casted_args
in
(xis_out, cos_out, res_co_out `mkTransCo` res_co)
go _ _ _ _ _ _ _ = panic
"simplifyArgsWorker wandered into deeper water than usual"
-- This debug information is commented out because leaving it in
-- causes a ~2% increase in allocations in T9872d.
-- That's independent of the analogous case in flatten_args_fast
-- in GHC.Tc.Solver.Flatten:
-- each of these causes a 2% increase on its own, so commenting them
-- both out gives a 4% decrease in T9872d.
{-
(vcat [ppr orig_binders,
ppr orig_inner_ki,
ppr (take 10 orig_roles), -- often infinite!
ppr orig_tys])
-}
{-
%************************************************************************
%* *
Coercion holes
%* *
%************************************************************************
-}
bad_co_hole_ty :: Type -> Monoid.Any
bad_co_hole_co :: Coercion -> Monoid.Any
(bad_co_hole_ty, _, bad_co_hole_co, _)
= foldTyCo folder ()
where
folder = TyCoFolder { tcf_view = const Nothing
, tcf_tyvar = const2 (Monoid.Any False)
, tcf_covar = const2 (Monoid.Any False)
, tcf_hole = const hole
, tcf_tycobinder = const2
}
const2 :: a -> b -> c -> a
const2 x _ _ = x
hole :: CoercionHole -> Monoid.Any
hole (CoercionHole { ch_blocker = YesBlockSubst }) = Monoid.Any True
hole _ = Monoid.Any False
-- | Is there a blocking coercion hole in this type? See
-- "GHC.Tc.Solver.Canonical" Note [Equalities with incompatible kinds]
badCoercionHole :: Type -> Bool
badCoercionHole = Monoid.getAny . bad_co_hole_ty
-- | Is there a blocking coercion hole in this coercion? See
-- GHC.Tc.Solver.Canonical Note [Equalities with incompatible kinds]
badCoercionHoleCo :: Coercion -> Bool
badCoercionHoleCo = Monoid.getAny . bad_co_hole_co
|