1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
|
-- (c) The University of Glasgow 2006
{-# LANGUAGE CPP #-}
module GHC.Core.Coercion.Opt ( optCoercion, checkAxInstCo ) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import GHC.Driver.Session
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Subst
import GHC.Core.Coercion
import GHC.Core.Type as Type hiding( substTyVarBndr, substTy )
import GHC.Tc.Utils.TcType ( exactTyCoVarsOfType )
import GHC.Core.TyCon
import GHC.Core.Coercion.Axiom
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Utils.Outputable
import GHC.Core.FamInstEnv ( flattenTys )
import GHC.Data.Pair
import GHC.Data.List.SetOps ( getNth )
import GHC.Utils.Misc
import GHC.Core.Unify
import GHC.Core.InstEnv
import Control.Monad ( zipWithM )
{-
%************************************************************************
%* *
Optimising coercions
%* *
%************************************************************************
Note [Optimising coercion optimisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Looking up a coercion's role or kind is linear in the size of the
coercion. Thus, doing this repeatedly during the recursive descent
of coercion optimisation is disastrous. We must be careful to avoid
doing this if at all possible.
Because it is generally easy to know a coercion's components' roles
from the role of the outer coercion, we pass down the known role of
the input in the algorithm below. We also keep functions opt_co2
and opt_co3 separate from opt_co4, so that the former two do Phantom
checks that opt_co4 can avoid. This is a big win because Phantom coercions
rarely appear within non-phantom coercions -- only in some TyConAppCos
and some AxiomInstCos. We handle these cases specially by calling
opt_co2.
Note [Optimising InstCo]
~~~~~~~~~~~~~~~~~~~~~~~~
(1) tv is a type variable
When we have (InstCo (ForAllCo tv h g) g2), we want to optimise.
Let's look at the typing rules.
h : k1 ~ k2
tv:k1 |- g : t1 ~ t2
-----------------------------
ForAllCo tv h g : (all tv:k1.t1) ~ (all tv:k2.t2[tv |-> tv |> sym h])
g1 : (all tv:k1.t1') ~ (all tv:k2.t2')
g2 : s1 ~ s2
--------------------
InstCo g1 g2 : t1'[tv |-> s1] ~ t2'[tv |-> s2]
We thus want some coercion proving this:
(t1[tv |-> s1]) ~ (t2[tv |-> s2 |> sym h])
If we substitute the *type* tv for the *coercion*
(g2 ; t2 ~ t2 |> sym h) in g, we'll get this result exactly.
This is bizarre,
though, because we're substituting a type variable with a coercion. However,
this operation already exists: it's called *lifting*, and defined in GHC.Core.Coercion.
We just need to enhance the lifting operation to be able to deal with
an ambient substitution, which is why a LiftingContext stores a TCvSubst.
(2) cv is a coercion variable
Now consider we have (InstCo (ForAllCo cv h g) g2), we want to optimise.
h : (t1 ~r t2) ~N (t3 ~r t4)
cv : t1 ~r t2 |- g : t1' ~r2 t2'
n1 = nth r 2 (downgradeRole r N h) :: t1 ~r t3
n2 = nth r 3 (downgradeRole r N h) :: t2 ~r t4
------------------------------------------------
ForAllCo cv h g : (all cv:t1 ~r t2. t1') ~r2
(all cv:t3 ~r t4. t2'[cv |-> n1 ; cv ; sym n2])
g1 : (all cv:t1 ~r t2. t1') ~ (all cv: t3 ~r t4. t2')
g2 : h1 ~N h2
h1 : t1 ~r t2
h2 : t3 ~r t4
------------------------------------------------
InstCo g1 g2 : t1'[cv |-> h1] ~ t2'[cv |-> h2]
We thus want some coercion proving this:
t1'[cv |-> h1] ~ t2'[cv |-> n1 ; h2; sym n2]
So we substitute the coercion variable c for the coercion
(h1 ~N (n1; h2; sym n2)) in g.
-}
optCoercion :: DynFlags -> TCvSubst -> Coercion -> NormalCo
-- ^ optCoercion applies a substitution to a coercion,
-- *and* optimises it to reduce its size
optCoercion dflags env co
| hasNoOptCoercion dflags = substCo env co
| otherwise = optCoercion' env co
optCoercion' :: TCvSubst -> Coercion -> NormalCo
optCoercion' env co
| debugIsOn
= let out_co = opt_co1 lc False co
(Pair in_ty1 in_ty2, in_role) = coercionKindRole co
(Pair out_ty1 out_ty2, out_role) = coercionKindRole out_co
in
ASSERT2( substTyUnchecked env in_ty1 `eqType` out_ty1 &&
substTyUnchecked env in_ty2 `eqType` out_ty2 &&
in_role == out_role
, text "optCoercion changed types!"
$$ hang (text "in_co:") 2 (ppr co)
$$ hang (text "in_ty1:") 2 (ppr in_ty1)
$$ hang (text "in_ty2:") 2 (ppr in_ty2)
$$ hang (text "out_co:") 2 (ppr out_co)
$$ hang (text "out_ty1:") 2 (ppr out_ty1)
$$ hang (text "out_ty2:") 2 (ppr out_ty2)
$$ hang (text "subst:") 2 (ppr env) )
out_co
| otherwise = opt_co1 lc False co
where
lc = mkSubstLiftingContext env
type NormalCo = Coercion
-- Invariants:
-- * The substitution has been fully applied
-- * For trans coercions (co1 `trans` co2)
-- co1 is not a trans, and neither co1 nor co2 is identity
type NormalNonIdCo = NormalCo -- Extra invariant: not the identity
-- | Do we apply a @sym@ to the result?
type SymFlag = Bool
-- | Do we force the result to be representational?
type ReprFlag = Bool
-- | Optimize a coercion, making no assumptions. All coercions in
-- the lifting context are already optimized (and sym'd if nec'y)
opt_co1 :: LiftingContext
-> SymFlag
-> Coercion -> NormalCo
opt_co1 env sym co = opt_co2 env sym (coercionRole co) co
-- See Note [Optimising coercion optimisation]
-- | Optimize a coercion, knowing the coercion's role. No other assumptions.
opt_co2 :: LiftingContext
-> SymFlag
-> Role -- ^ The role of the input coercion
-> Coercion -> NormalCo
opt_co2 env sym Phantom co = opt_phantom env sym co
opt_co2 env sym r co = opt_co3 env sym Nothing r co
-- See Note [Optimising coercion optimisation]
-- | Optimize a coercion, knowing the coercion's non-Phantom role.
opt_co3 :: LiftingContext -> SymFlag -> Maybe Role -> Role -> Coercion -> NormalCo
opt_co3 env sym (Just Phantom) _ co = opt_phantom env sym co
opt_co3 env sym (Just Representational) r co = opt_co4_wrap env sym True r co
-- if mrole is Just Nominal, that can't be a downgrade, so we can ignore
opt_co3 env sym _ r co = opt_co4_wrap env sym False r co
-- See Note [Optimising coercion optimisation]
-- | Optimize a non-phantom coercion.
opt_co4, opt_co4_wrap :: LiftingContext -> SymFlag -> ReprFlag -> Role -> Coercion -> NormalCo
opt_co4_wrap = opt_co4
{-
opt_co4_wrap env sym rep r co
= pprTrace "opt_co4_wrap {"
( vcat [ text "Sym:" <+> ppr sym
, text "Rep:" <+> ppr rep
, text "Role:" <+> ppr r
, text "Co:" <+> ppr co ]) $
ASSERT( r == coercionRole co )
let result = opt_co4 env sym rep r co in
pprTrace "opt_co4_wrap }" (ppr co $$ text "---" $$ ppr result) $
result
-}
opt_co4 env _ rep r (Refl ty)
= ASSERT2( r == Nominal, text "Expected role:" <+> ppr r $$
text "Found role:" <+> ppr Nominal $$
text "Type:" <+> ppr ty )
liftCoSubst (chooseRole rep r) env ty
opt_co4 env _ rep r (GRefl _r ty MRefl)
= ASSERT2( r == _r, text "Expected role:" <+> ppr r $$
text "Found role:" <+> ppr _r $$
text "Type:" <+> ppr ty )
liftCoSubst (chooseRole rep r) env ty
opt_co4 env sym rep r (GRefl _r ty (MCo co))
= ASSERT2( r == _r, text "Expected role:" <+> ppr r $$
text "Found role:" <+> ppr _r $$
text "Type:" <+> ppr ty )
if isGReflCo co || isGReflCo co'
then liftCoSubst r' env ty
else wrapSym sym $ mkCoherenceRightCo r' ty' co' (liftCoSubst r' env ty)
where
r' = chooseRole rep r
ty' = substTy (lcSubstLeft env) ty
co' = opt_co4 env False False Nominal co
opt_co4 env sym rep r (SymCo co) = opt_co4_wrap env (not sym) rep r co
-- surprisingly, we don't have to do anything to the env here. This is
-- because any "lifting" substitutions in the env are tied to ForAllCos,
-- which treat their left and right sides differently. We don't want to
-- exchange them.
opt_co4 env sym rep r g@(TyConAppCo _r tc cos)
= ASSERT( r == _r )
case (rep, r) of
(True, Nominal) ->
mkTyConAppCo Representational tc
(zipWith3 (opt_co3 env sym)
(map Just (tyConRolesRepresentational tc))
(repeat Nominal)
cos)
(False, Nominal) ->
mkTyConAppCo Nominal tc (map (opt_co4_wrap env sym False Nominal) cos)
(_, Representational) ->
-- must use opt_co2 here, because some roles may be P
-- See Note [Optimising coercion optimisation]
mkTyConAppCo r tc (zipWith (opt_co2 env sym)
(tyConRolesRepresentational tc) -- the current roles
cos)
(_, Phantom) -> pprPanic "opt_co4 sees a phantom!" (ppr g)
opt_co4 env sym rep r (AppCo co1 co2)
= mkAppCo (opt_co4_wrap env sym rep r co1)
(opt_co4_wrap env sym False Nominal co2)
opt_co4 env sym rep r (ForAllCo tv k_co co)
= case optForAllCoBndr env sym tv k_co of
(env', tv', k_co') -> mkForAllCo tv' k_co' $
opt_co4_wrap env' sym rep r co
-- Use the "mk" functions to check for nested Refls
opt_co4 env sym rep r (FunCo _r cow co1 co2)
= ASSERT( r == _r )
if rep
then mkFunCo Representational cow' co1' co2'
else mkFunCo r cow' co1' co2'
where
co1' = opt_co4_wrap env sym rep r co1
co2' = opt_co4_wrap env sym rep r co2
cow' = opt_co1 env sym cow
opt_co4 env sym rep r (CoVarCo cv)
| Just co <- lookupCoVar (lcTCvSubst env) cv
= opt_co4_wrap (zapLiftingContext env) sym rep r co
| ty1 `eqType` ty2 -- See Note [Optimise CoVarCo to Refl]
= mkReflCo (chooseRole rep r) ty1
| otherwise
= ASSERT( isCoVar cv1 )
wrapRole rep r $ wrapSym sym $
CoVarCo cv1
where
Pair ty1 ty2 = coVarTypes cv1
cv1 = case lookupInScope (lcInScopeSet env) cv of
Just cv1 -> cv1
Nothing -> WARN( True, text "opt_co: not in scope:"
<+> ppr cv $$ ppr env)
cv
-- cv1 might have a substituted kind!
opt_co4 _ _ _ _ (HoleCo h)
= pprPanic "opt_univ fell into a hole" (ppr h)
opt_co4 env sym rep r (AxiomInstCo con ind cos)
-- Do *not* push sym inside top-level axioms
-- e.g. if g is a top-level axiom
-- g a : f a ~ a
-- then (sym (g ty)) /= g (sym ty) !!
= ASSERT( r == coAxiomRole con )
wrapRole rep (coAxiomRole con) $
wrapSym sym $
-- some sub-cos might be P: use opt_co2
-- See Note [Optimising coercion optimisation]
AxiomInstCo con ind (zipWith (opt_co2 env False)
(coAxBranchRoles (coAxiomNthBranch con ind))
cos)
-- Note that the_co does *not* have sym pushed into it
opt_co4 env sym rep r (UnivCo prov _r t1 t2)
= ASSERT( r == _r )
opt_univ env sym prov (chooseRole rep r) t1 t2
opt_co4 env sym rep r (TransCo co1 co2)
-- sym (g `o` h) = sym h `o` sym g
| sym = opt_trans in_scope co2' co1'
| otherwise = opt_trans in_scope co1' co2'
where
co1' = opt_co4_wrap env sym rep r co1
co2' = opt_co4_wrap env sym rep r co2
in_scope = lcInScopeSet env
opt_co4 env _sym rep r (NthCo _r n co)
| Just (ty, _) <- isReflCo_maybe co
, Just (_tc, args) <- ASSERT( r == _r )
splitTyConApp_maybe ty
= liftCoSubst (chooseRole rep r) env (args `getNth` n)
| Just (ty, _) <- isReflCo_maybe co
, n == 0
, Just (tv, _) <- splitForAllTy_maybe ty
-- works for both tyvar and covar
= liftCoSubst (chooseRole rep r) env (varType tv)
opt_co4 env sym rep r (NthCo r1 n (TyConAppCo _ _ cos))
= ASSERT( r == r1 )
opt_co4_wrap env sym rep r (cos `getNth` n)
opt_co4 env sym rep r (NthCo _r n (ForAllCo _ eta _))
-- works for both tyvar and covar
= ASSERT( r == _r )
ASSERT( n == 0 )
opt_co4_wrap env sym rep Nominal eta
opt_co4 env sym rep r (NthCo _r n co)
| TyConAppCo _ _ cos <- co'
, let nth_co = cos `getNth` n
= if rep && (r == Nominal)
-- keep propagating the SubCo
then opt_co4_wrap (zapLiftingContext env) False True Nominal nth_co
else nth_co
| ForAllCo _ eta _ <- co'
= if rep
then opt_co4_wrap (zapLiftingContext env) False True Nominal eta
else eta
| otherwise
= wrapRole rep r $ NthCo r n co'
where
co' = opt_co1 env sym co
opt_co4 env sym rep r (LRCo lr co)
| Just pr_co <- splitAppCo_maybe co
= ASSERT( r == Nominal )
opt_co4_wrap env sym rep Nominal (pick_lr lr pr_co)
| Just pr_co <- splitAppCo_maybe co'
= ASSERT( r == Nominal )
if rep
then opt_co4_wrap (zapLiftingContext env) False True Nominal (pick_lr lr pr_co)
else pick_lr lr pr_co
| otherwise
= wrapRole rep Nominal $ LRCo lr co'
where
co' = opt_co4_wrap env sym False Nominal co
pick_lr CLeft (l, _) = l
pick_lr CRight (_, r) = r
-- See Note [Optimising InstCo]
opt_co4 env sym rep r (InstCo co1 arg)
-- forall over type...
| Just (tv, kind_co, co_body) <- splitForAllCo_ty_maybe co1
= opt_co4_wrap (extendLiftingContext env tv
(mkCoherenceRightCo Nominal t2 (mkSymCo kind_co) sym_arg))
-- mkSymCo kind_co :: k1 ~ k2
-- sym_arg :: (t1 :: k1) ~ (t2 :: k2)
-- tv |-> (t1 :: k1) ~ (((t2 :: k2) |> (sym kind_co)) :: k1)
sym rep r co_body
-- forall over coercion...
| Just (cv, kind_co, co_body) <- splitForAllCo_co_maybe co1
, CoercionTy h1 <- t1
, CoercionTy h2 <- t2
= let new_co = mk_new_co cv (opt_co4_wrap env sym False Nominal kind_co) h1 h2
in opt_co4_wrap (extendLiftingContext env cv new_co) sym rep r co_body
-- See if it is a forall after optimization
-- If so, do an inefficient one-variable substitution, then re-optimize
-- forall over type...
| Just (tv', kind_co', co_body') <- splitForAllCo_ty_maybe co1'
= opt_co4_wrap (extendLiftingContext (zapLiftingContext env) tv'
(mkCoherenceRightCo Nominal t2' (mkSymCo kind_co') arg'))
False False r' co_body'
-- forall over coercion...
| Just (cv', kind_co', co_body') <- splitForAllCo_co_maybe co1'
, CoercionTy h1' <- t1'
, CoercionTy h2' <- t2'
= let new_co = mk_new_co cv' kind_co' h1' h2'
in opt_co4_wrap (extendLiftingContext (zapLiftingContext env) cv' new_co)
False False r' co_body'
| otherwise = InstCo co1' arg'
where
co1' = opt_co4_wrap env sym rep r co1
r' = chooseRole rep r
arg' = opt_co4_wrap env sym False Nominal arg
sym_arg = wrapSym sym arg'
-- Performance note: don't be alarmed by the two calls to coercionKind
-- here, as only one call to coercionKind is actually demanded per guard.
-- t1/t2 are used when checking if co1 is a forall, and t1'/t2' are used
-- when checking if co1' (i.e., co1 post-optimization) is a forall.
--
-- t1/t2 must come from sym_arg, not arg', since it's possible that arg'
-- might have an extra Sym at the front (after being optimized) that co1
-- lacks, so we need to use sym_arg to balance the number of Syms. (#15725)
Pair t1 t2 = coercionKind sym_arg
Pair t1' t2' = coercionKind arg'
mk_new_co cv kind_co h1 h2
= let -- h1 :: (t1 ~ t2)
-- h2 :: (t3 ~ t4)
-- kind_co :: (t1 ~ t2) ~ (t3 ~ t4)
-- n1 :: t1 ~ t3
-- n2 :: t2 ~ t4
-- new_co = (h1 :: t1 ~ t2) ~ ((n1;h2;sym n2) :: t1 ~ t2)
r2 = coVarRole cv
kind_co' = downgradeRole r2 Nominal kind_co
n1 = mkNthCo r2 2 kind_co'
n2 = mkNthCo r2 3 kind_co'
in mkProofIrrelCo Nominal (Refl (coercionType h1)) h1
(n1 `mkTransCo` h2 `mkTransCo` (mkSymCo n2))
opt_co4 env sym _rep r (KindCo co)
= ASSERT( r == Nominal )
let kco' = promoteCoercion co in
case kco' of
KindCo co' -> promoteCoercion (opt_co1 env sym co')
_ -> opt_co4_wrap env sym False Nominal kco'
-- This might be able to be optimized more to do the promotion
-- and substitution/optimization at the same time
opt_co4 env sym _ r (SubCo co)
= ASSERT( r == Representational )
opt_co4_wrap env sym True Nominal co
-- This could perhaps be optimized more.
opt_co4 env sym rep r (AxiomRuleCo co cs)
= ASSERT( r == coaxrRole co )
wrapRole rep r $
wrapSym sym $
AxiomRuleCo co (zipWith (opt_co2 env False) (coaxrAsmpRoles co) cs)
{- Note [Optimise CoVarCo to Refl]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have (c :: t~t) we can optimise it to Refl. That increases the
chances of floating the Refl upwards; e.g. Maybe c --> Refl (Maybe t)
We do so here in optCoercion, not in mkCoVarCo; see Note [mkCoVarCo]
in GHC.Core.Coercion.
-}
-------------
-- | Optimize a phantom coercion. The input coercion may not necessarily
-- be a phantom, but the output sure will be.
opt_phantom :: LiftingContext -> SymFlag -> Coercion -> NormalCo
opt_phantom env sym co
= opt_univ env sym (PhantomProv (mkKindCo co)) Phantom ty1 ty2
where
Pair ty1 ty2 = coercionKind co
{- Note [Differing kinds]
~~~~~~~~~~~~~~~~~~~~~~
The two types may not have the same kind (although that would be very unusual).
But even if they have the same kind, and the same type constructor, the number
of arguments in a `CoTyConApp` can differ. Consider
Any :: forall k. k
Any * Int :: *
Any (*->*) Maybe Int :: *
Hence the need to compare argument lengths; see #13658
-}
opt_univ :: LiftingContext -> SymFlag -> UnivCoProvenance -> Role
-> Type -> Type -> Coercion
opt_univ env sym (PhantomProv h) _r ty1 ty2
| sym = mkPhantomCo h' ty2' ty1'
| otherwise = mkPhantomCo h' ty1' ty2'
where
h' = opt_co4 env sym False Nominal h
ty1' = substTy (lcSubstLeft env) ty1
ty2' = substTy (lcSubstRight env) ty2
opt_univ env sym prov role oty1 oty2
| Just (tc1, tys1) <- splitTyConApp_maybe oty1
, Just (tc2, tys2) <- splitTyConApp_maybe oty2
, tc1 == tc2
, equalLength tys1 tys2 -- see Note [Differing kinds]
-- NB: prov must not be the two interesting ones (ProofIrrel & Phantom);
-- Phantom is already taken care of, and ProofIrrel doesn't relate tyconapps
= let roles = tyConRolesX role tc1
arg_cos = zipWith3 (mkUnivCo prov') roles tys1 tys2
arg_cos' = zipWith (opt_co4 env sym False) roles arg_cos
in
mkTyConAppCo role tc1 arg_cos'
-- can't optimize the AppTy case because we can't build the kind coercions.
| Just (tv1, ty1) <- splitForAllTy_ty_maybe oty1
, Just (tv2, ty2) <- splitForAllTy_ty_maybe oty2
-- NB: prov isn't interesting here either
= let k1 = tyVarKind tv1
k2 = tyVarKind tv2
eta = mkUnivCo prov' Nominal k1 k2
-- eta gets opt'ed soon, but not yet.
ty2' = substTyWith [tv2] [TyVarTy tv1 `mkCastTy` eta] ty2
(env', tv1', eta') = optForAllCoBndr env sym tv1 eta
in
mkForAllCo tv1' eta' (opt_univ env' sym prov' role ty1 ty2')
| Just (cv1, ty1) <- splitForAllTy_co_maybe oty1
, Just (cv2, ty2) <- splitForAllTy_co_maybe oty2
-- NB: prov isn't interesting here either
= let k1 = varType cv1
k2 = varType cv2
r' = coVarRole cv1
eta = mkUnivCo prov' Nominal k1 k2
eta_d = downgradeRole r' Nominal eta
-- eta gets opt'ed soon, but not yet.
n_co = (mkSymCo $ mkNthCo r' 2 eta_d) `mkTransCo`
(mkCoVarCo cv1) `mkTransCo`
(mkNthCo r' 3 eta_d)
ty2' = substTyWithCoVars [cv2] [n_co] ty2
(env', cv1', eta') = optForAllCoBndr env sym cv1 eta
in
mkForAllCo cv1' eta' (opt_univ env' sym prov' role ty1 ty2')
| otherwise
= let ty1 = substTyUnchecked (lcSubstLeft env) oty1
ty2 = substTyUnchecked (lcSubstRight env) oty2
(a, b) | sym = (ty2, ty1)
| otherwise = (ty1, ty2)
in
mkUnivCo prov' role a b
where
prov' = case prov of
PhantomProv kco -> PhantomProv $ opt_co4_wrap env sym False Nominal kco
ProofIrrelProv kco -> ProofIrrelProv $ opt_co4_wrap env sym False Nominal kco
PluginProv _ -> prov
CorePrepProv -> prov
-------------
opt_transList :: HasDebugCallStack => InScopeSet -> [NormalCo] -> [NormalCo] -> [NormalCo]
opt_transList is = zipWithEqual "opt_transList" (opt_trans is)
-- The input lists must have identical length.
opt_trans :: InScopeSet -> NormalCo -> NormalCo -> NormalCo
opt_trans is co1 co2
| isReflCo co1 = co2
-- optimize when co1 is a Refl Co
| otherwise = opt_trans1 is co1 co2
opt_trans1 :: InScopeSet -> NormalNonIdCo -> NormalCo -> NormalCo
-- First arg is not the identity
opt_trans1 is co1 co2
| isReflCo co2 = co1
-- optimize when co2 is a Refl Co
| otherwise = opt_trans2 is co1 co2
opt_trans2 :: InScopeSet -> NormalNonIdCo -> NormalNonIdCo -> NormalCo
-- Neither arg is the identity
opt_trans2 is (TransCo co1a co1b) co2
-- Don't know whether the sub-coercions are the identity
= opt_trans is co1a (opt_trans is co1b co2)
opt_trans2 is co1 co2
| Just co <- opt_trans_rule is co1 co2
= co
opt_trans2 is co1 (TransCo co2a co2b)
| Just co1_2a <- opt_trans_rule is co1 co2a
= if isReflCo co1_2a
then co2b
else opt_trans1 is co1_2a co2b
opt_trans2 _ co1 co2
= mkTransCo co1 co2
------
-- Optimize coercions with a top-level use of transitivity.
opt_trans_rule :: InScopeSet -> NormalNonIdCo -> NormalNonIdCo -> Maybe NormalCo
opt_trans_rule is in_co1@(GRefl r1 t1 (MCo co1)) in_co2@(GRefl r2 _ (MCo co2))
= ASSERT( r1 == r2 )
fireTransRule "GRefl" in_co1 in_co2 $
mkGReflRightCo r1 t1 (opt_trans is co1 co2)
-- Push transitivity through matching destructors
opt_trans_rule is in_co1@(NthCo r1 d1 co1) in_co2@(NthCo r2 d2 co2)
| d1 == d2
, coercionRole co1 == coercionRole co2
, co1 `compatible_co` co2
= ASSERT( r1 == r2 )
fireTransRule "PushNth" in_co1 in_co2 $
mkNthCo r1 d1 (opt_trans is co1 co2)
opt_trans_rule is in_co1@(LRCo d1 co1) in_co2@(LRCo d2 co2)
| d1 == d2
, co1 `compatible_co` co2
= fireTransRule "PushLR" in_co1 in_co2 $
mkLRCo d1 (opt_trans is co1 co2)
-- Push transitivity inside instantiation
opt_trans_rule is in_co1@(InstCo co1 ty1) in_co2@(InstCo co2 ty2)
| ty1 `eqCoercion` ty2
, co1 `compatible_co` co2
= fireTransRule "TrPushInst" in_co1 in_co2 $
mkInstCo (opt_trans is co1 co2) ty1
opt_trans_rule is in_co1@(UnivCo p1 r1 tyl1 _tyr1)
in_co2@(UnivCo p2 r2 _tyl2 tyr2)
| Just prov' <- opt_trans_prov p1 p2
= ASSERT( r1 == r2 )
fireTransRule "UnivCo" in_co1 in_co2 $
mkUnivCo prov' r1 tyl1 tyr2
where
-- if the provenances are different, opt'ing will be very confusing
opt_trans_prov (PhantomProv kco1) (PhantomProv kco2)
= Just $ PhantomProv $ opt_trans is kco1 kco2
opt_trans_prov (ProofIrrelProv kco1) (ProofIrrelProv kco2)
= Just $ ProofIrrelProv $ opt_trans is kco1 kco2
opt_trans_prov (PluginProv str1) (PluginProv str2) | str1 == str2 = Just p1
opt_trans_prov _ _ = Nothing
-- Push transitivity down through matching top-level constructors.
opt_trans_rule is in_co1@(TyConAppCo r1 tc1 cos1) in_co2@(TyConAppCo r2 tc2 cos2)
| tc1 == tc2
= ASSERT( r1 == r2 )
fireTransRule "PushTyConApp" in_co1 in_co2 $
mkTyConAppCo r1 tc1 (opt_transList is cos1 cos2)
opt_trans_rule is in_co1@(FunCo r1 w1 co1a co1b) in_co2@(FunCo r2 w2 co2a co2b)
= ASSERT( r1 == r2) -- Just like the TyConAppCo/TyConAppCo case
fireTransRule "PushFun" in_co1 in_co2 $
mkFunCo r1 (opt_trans is w1 w2) (opt_trans is co1a co2a) (opt_trans is co1b co2b)
opt_trans_rule is in_co1@(AppCo co1a co1b) in_co2@(AppCo co2a co2b)
-- Must call opt_trans_rule_app; see Note [EtaAppCo]
= opt_trans_rule_app is in_co1 in_co2 co1a [co1b] co2a [co2b]
-- Eta rules
opt_trans_rule is co1@(TyConAppCo r tc cos1) co2
| Just cos2 <- etaTyConAppCo_maybe tc co2
= fireTransRule "EtaCompL" co1 co2 $
mkTyConAppCo r tc (opt_transList is cos1 cos2)
opt_trans_rule is co1 co2@(TyConAppCo r tc cos2)
| Just cos1 <- etaTyConAppCo_maybe tc co1
= fireTransRule "EtaCompR" co1 co2 $
mkTyConAppCo r tc (opt_transList is cos1 cos2)
opt_trans_rule is co1@(AppCo co1a co1b) co2
| Just (co2a,co2b) <- etaAppCo_maybe co2
= opt_trans_rule_app is co1 co2 co1a [co1b] co2a [co2b]
opt_trans_rule is co1 co2@(AppCo co2a co2b)
| Just (co1a,co1b) <- etaAppCo_maybe co1
= opt_trans_rule_app is co1 co2 co1a [co1b] co2a [co2b]
-- Push transitivity inside forall
-- forall over types.
opt_trans_rule is co1 co2
| Just (tv1, eta1, r1) <- splitForAllCo_ty_maybe co1
, Just (tv2, eta2, r2) <- etaForAllCo_ty_maybe co2
= push_trans tv1 eta1 r1 tv2 eta2 r2
| Just (tv2, eta2, r2) <- splitForAllCo_ty_maybe co2
, Just (tv1, eta1, r1) <- etaForAllCo_ty_maybe co1
= push_trans tv1 eta1 r1 tv2 eta2 r2
where
push_trans tv1 eta1 r1 tv2 eta2 r2
-- Given:
-- co1 = /\ tv1 : eta1. r1
-- co2 = /\ tv2 : eta2. r2
-- Wanted:
-- /\tv1 : (eta1;eta2). (r1; r2[tv2 |-> tv1 |> eta1])
= fireTransRule "EtaAllTy_ty" co1 co2 $
mkForAllCo tv1 (opt_trans is eta1 eta2) (opt_trans is' r1 r2')
where
is' = is `extendInScopeSet` tv1
r2' = substCoWithUnchecked [tv2] [mkCastTy (TyVarTy tv1) eta1] r2
-- Push transitivity inside forall
-- forall over coercions.
opt_trans_rule is co1 co2
| Just (cv1, eta1, r1) <- splitForAllCo_co_maybe co1
, Just (cv2, eta2, r2) <- etaForAllCo_co_maybe co2
= push_trans cv1 eta1 r1 cv2 eta2 r2
| Just (cv2, eta2, r2) <- splitForAllCo_co_maybe co2
, Just (cv1, eta1, r1) <- etaForAllCo_co_maybe co1
= push_trans cv1 eta1 r1 cv2 eta2 r2
where
push_trans cv1 eta1 r1 cv2 eta2 r2
-- Given:
-- co1 = /\ cv1 : eta1. r1
-- co2 = /\ cv2 : eta2. r2
-- Wanted:
-- n1 = nth 2 eta1
-- n2 = nth 3 eta1
-- nco = /\ cv1 : (eta1;eta2). (r1; r2[cv2 |-> (sym n1);cv1;n2])
= fireTransRule "EtaAllTy_co" co1 co2 $
mkForAllCo cv1 (opt_trans is eta1 eta2) (opt_trans is' r1 r2')
where
is' = is `extendInScopeSet` cv1
role = coVarRole cv1
eta1' = downgradeRole role Nominal eta1
n1 = mkNthCo role 2 eta1'
n2 = mkNthCo role 3 eta1'
r2' = substCo (zipCvSubst [cv2] [(mkSymCo n1) `mkTransCo`
(mkCoVarCo cv1) `mkTransCo` n2])
r2
-- Push transitivity inside axioms
opt_trans_rule is co1 co2
-- See Note [Why call checkAxInstCo during optimisation]
-- TrPushSymAxR
| Just (sym, con, ind, cos1) <- co1_is_axiom_maybe
, True <- sym
, Just cos2 <- matchAxiom sym con ind co2
, let newAxInst = AxiomInstCo con ind (opt_transList is (map mkSymCo cos2) cos1)
, Nothing <- checkAxInstCo newAxInst
= fireTransRule "TrPushSymAxR" co1 co2 $ SymCo newAxInst
-- TrPushAxR
| Just (sym, con, ind, cos1) <- co1_is_axiom_maybe
, False <- sym
, Just cos2 <- matchAxiom sym con ind co2
, let newAxInst = AxiomInstCo con ind (opt_transList is cos1 cos2)
, Nothing <- checkAxInstCo newAxInst
= fireTransRule "TrPushAxR" co1 co2 newAxInst
-- TrPushSymAxL
| Just (sym, con, ind, cos2) <- co2_is_axiom_maybe
, True <- sym
, Just cos1 <- matchAxiom (not sym) con ind co1
, let newAxInst = AxiomInstCo con ind (opt_transList is cos2 (map mkSymCo cos1))
, Nothing <- checkAxInstCo newAxInst
= fireTransRule "TrPushSymAxL" co1 co2 $ SymCo newAxInst
-- TrPushAxL
| Just (sym, con, ind, cos2) <- co2_is_axiom_maybe
, False <- sym
, Just cos1 <- matchAxiom (not sym) con ind co1
, let newAxInst = AxiomInstCo con ind (opt_transList is cos1 cos2)
, Nothing <- checkAxInstCo newAxInst
= fireTransRule "TrPushAxL" co1 co2 newAxInst
-- TrPushAxSym/TrPushSymAx
| Just (sym1, con1, ind1, cos1) <- co1_is_axiom_maybe
, Just (sym2, con2, ind2, cos2) <- co2_is_axiom_maybe
, con1 == con2
, ind1 == ind2
, sym1 == not sym2
, let branch = coAxiomNthBranch con1 ind1
qtvs = coAxBranchTyVars branch ++ coAxBranchCoVars branch
lhs = coAxNthLHS con1 ind1
rhs = coAxBranchRHS branch
pivot_tvs = exactTyCoVarsOfType (if sym2 then rhs else lhs)
, all (`elemVarSet` pivot_tvs) qtvs
= fireTransRule "TrPushAxSym" co1 co2 $
if sym2
-- TrPushAxSym
then liftCoSubstWith role qtvs (opt_transList is cos1 (map mkSymCo cos2)) lhs
-- TrPushSymAx
else liftCoSubstWith role qtvs (opt_transList is (map mkSymCo cos1) cos2) rhs
where
co1_is_axiom_maybe = isAxiom_maybe co1
co2_is_axiom_maybe = isAxiom_maybe co2
role = coercionRole co1 -- should be the same as coercionRole co2!
opt_trans_rule _ co1 co2 -- Identity rule
| let ty1 = coercionLKind co1
r = coercionRole co1
ty2 = coercionRKind co2
, ty1 `eqType` ty2
= fireTransRule "RedTypeDirRefl" co1 co2 $
mkReflCo r ty2
opt_trans_rule _ _ _ = Nothing
-- See Note [EtaAppCo]
opt_trans_rule_app :: InScopeSet
-> Coercion -- original left-hand coercion (printing only)
-> Coercion -- original right-hand coercion (printing only)
-> Coercion -- left-hand coercion "function"
-> [Coercion] -- left-hand coercion "args"
-> Coercion -- right-hand coercion "function"
-> [Coercion] -- right-hand coercion "args"
-> Maybe Coercion
opt_trans_rule_app is orig_co1 orig_co2 co1a co1bs co2a co2bs
| AppCo co1aa co1ab <- co1a
, Just (co2aa, co2ab) <- etaAppCo_maybe co2a
= opt_trans_rule_app is orig_co1 orig_co2 co1aa (co1ab:co1bs) co2aa (co2ab:co2bs)
| AppCo co2aa co2ab <- co2a
, Just (co1aa, co1ab) <- etaAppCo_maybe co1a
= opt_trans_rule_app is orig_co1 orig_co2 co1aa (co1ab:co1bs) co2aa (co2ab:co2bs)
| otherwise
= ASSERT( co1bs `equalLength` co2bs )
fireTransRule ("EtaApps:" ++ show (length co1bs)) orig_co1 orig_co2 $
let rt1a = coercionRKind co1a
lt2a = coercionLKind co2a
rt2a = coercionRole co2a
rt1bs = map coercionRKind co1bs
lt2bs = map coercionLKind co2bs
rt2bs = map coercionRole co2bs
kcoa = mkKindCo $ buildCoercion lt2a rt1a
kcobs = map mkKindCo $ zipWith buildCoercion lt2bs rt1bs
co2a' = mkCoherenceLeftCo rt2a lt2a kcoa co2a
co2bs' = zipWith3 mkGReflLeftCo rt2bs lt2bs kcobs
co2bs'' = zipWith mkTransCo co2bs' co2bs
in
mkAppCos (opt_trans is co1a co2a')
(zipWith (opt_trans is) co1bs co2bs'')
fireTransRule :: String -> Coercion -> Coercion -> Coercion -> Maybe Coercion
fireTransRule _rule _co1 _co2 res
= Just res
{-
Note [Conflict checking with AxiomInstCo]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following type family and axiom:
type family Equal (a :: k) (b :: k) :: Bool
type instance where
Equal a a = True
Equal a b = False
--
Equal :: forall k::*. k -> k -> Bool
axEqual :: { forall k::*. forall a::k. Equal k a a ~ True
; forall k::*. forall a::k. forall b::k. Equal k a b ~ False }
We wish to disallow (axEqual[1] <*> <Int> <Int). (Recall that the index is
0-based, so this is the second branch of the axiom.) The problem is that, on
the surface, it seems that (axEqual[1] <*> <Int> <Int>) :: (Equal * Int Int ~
False) and that all is OK. But, all is not OK: we want to use the first branch
of the axiom in this case, not the second. The problem is that the parameters
of the first branch can unify with the supplied coercions, thus meaning that
the first branch should be taken. See also Note [Apartness] in
"GHC.Core.FamInstEnv".
Note [Why call checkAxInstCo during optimisation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is possible that otherwise-good-looking optimisations meet with disaster
in the presence of axioms with multiple equations. Consider
type family Equal (a :: *) (b :: *) :: Bool where
Equal a a = True
Equal a b = False
type family Id (a :: *) :: * where
Id a = a
axEq :: { [a::*]. Equal a a ~ True
; [a::*, b::*]. Equal a b ~ False }
axId :: [a::*]. Id a ~ a
co1 = Equal (axId[0] Int) (axId[0] Bool)
:: Equal (Id Int) (Id Bool) ~ Equal Int Bool
co2 = axEq[1] <Int> <Bool>
:: Equal Int Bool ~ False
We wish to optimise (co1 ; co2). We end up in rule TrPushAxL, noting that
co2 is an axiom and that matchAxiom succeeds when looking at co1. But, what
happens when we push the coercions inside? We get
co3 = axEq[1] (axId[0] Int) (axId[0] Bool)
:: Equal (Id Int) (Id Bool) ~ False
which is bogus! This is because the type system isn't smart enough to know
that (Id Int) and (Id Bool) are Surely Apart, as they're headed by type
families. At the time of writing, I (Richard Eisenberg) couldn't think of
a way of detecting this any more efficient than just building the optimised
coercion and checking.
Note [EtaAppCo]
~~~~~~~~~~~~~~~
Suppose we're trying to optimize (co1a co1b ; co2a co2b). Ideally, we'd
like to rewrite this to (co1a ; co2a) (co1b ; co2b). The problem is that
the resultant coercions might not be well kinded. Here is an example (things
labeled with x don't matter in this example):
k1 :: Type
k2 :: Type
a :: k1 -> Type
b :: k1
h :: k1 ~ k2
co1a :: x1 ~ (a |> (h -> <Type>)
co1b :: x2 ~ (b |> h)
co2a :: a ~ x3
co2b :: b ~ x4
First, convince yourself of the following:
co1a co1b :: x1 x2 ~ (a |> (h -> <Type>)) (b |> h)
co2a co2b :: a b ~ x3 x4
(a |> (h -> <Type>)) (b |> h) `eqType` a b
That last fact is due to Note [Non-trivial definitional equality] in GHC.Core.TyCo.Rep,
where we ignore coercions in types as long as two types' kinds are the same.
In our case, we meet this last condition, because
(a |> (h -> <Type>)) (b |> h) :: Type
and
a b :: Type
So the input coercion (co1a co1b ; co2a co2b) is well-formed. But the
suggested output coercions (co1a ; co2a) and (co1b ; co2b) are not -- the
kinds don't match up.
The solution here is to twiddle the kinds in the output coercions. First, we
need to find coercions
ak :: kind(a |> (h -> <Type>)) ~ kind(a)
bk :: kind(b |> h) ~ kind(b)
This can be done with mkKindCo and buildCoercion. The latter assumes two
types are identical modulo casts and builds a coercion between them.
Then, we build (co1a ; co2a |> sym ak) and (co1b ; co2b |> sym bk) as the
output coercions. These are well-kinded.
Also, note that all of this is done after accumulated any nested AppCo
parameters. This step is to avoid quadratic behavior in calling coercionKind.
The problem described here was first found in dependent/should_compile/dynamic-paper.
-}
-- | Check to make sure that an AxInstCo is internally consistent.
-- Returns the conflicting branch, if it exists
-- See Note [Conflict checking with AxiomInstCo]
checkAxInstCo :: Coercion -> Maybe CoAxBranch
-- defined here to avoid dependencies in GHC.Core.Coercion
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism] in GHC.Core.Lint
checkAxInstCo (AxiomInstCo ax ind cos)
= let branch = coAxiomNthBranch ax ind
tvs = coAxBranchTyVars branch
cvs = coAxBranchCoVars branch
incomps = coAxBranchIncomps branch
(tys, cotys) = splitAtList tvs (map coercionLKind cos)
co_args = map stripCoercionTy cotys
subst = zipTvSubst tvs tys `composeTCvSubst`
zipCvSubst cvs co_args
target = Type.substTys subst (coAxBranchLHS branch)
in_scope = mkInScopeSet $
unionVarSets (map (tyCoVarsOfTypes . coAxBranchLHS) incomps)
flattened_target = flattenTys in_scope target in
check_no_conflict flattened_target incomps
where
check_no_conflict :: [Type] -> [CoAxBranch] -> Maybe CoAxBranch
check_no_conflict _ [] = Nothing
check_no_conflict flat (b@CoAxBranch { cab_lhs = lhs_incomp } : rest)
-- See Note [Apartness] in GHC.Core.FamInstEnv
| SurelyApart <- tcUnifyTysFG instanceBindFun flat lhs_incomp
= check_no_conflict flat rest
| otherwise
= Just b
checkAxInstCo _ = Nothing
-----------
wrapSym :: SymFlag -> Coercion -> Coercion
wrapSym sym co | sym = mkSymCo co
| otherwise = co
-- | Conditionally set a role to be representational
wrapRole :: ReprFlag
-> Role -- ^ current role
-> Coercion -> Coercion
wrapRole False _ = id
wrapRole True current = downgradeRole Representational current
-- | If we require a representational role, return that. Otherwise,
-- return the "default" role provided.
chooseRole :: ReprFlag
-> Role -- ^ "default" role
-> Role
chooseRole True _ = Representational
chooseRole _ r = r
-----------
isAxiom_maybe :: Coercion -> Maybe (Bool, CoAxiom Branched, Int, [Coercion])
isAxiom_maybe (SymCo co)
| Just (sym, con, ind, cos) <- isAxiom_maybe co
= Just (not sym, con, ind, cos)
isAxiom_maybe (AxiomInstCo con ind cos)
= Just (False, con, ind, cos)
isAxiom_maybe _ = Nothing
matchAxiom :: Bool -- True = match LHS, False = match RHS
-> CoAxiom br -> Int -> Coercion -> Maybe [Coercion]
matchAxiom sym ax@(CoAxiom { co_ax_tc = tc }) ind co
| CoAxBranch { cab_tvs = qtvs
, cab_cvs = [] -- can't infer these, so fail if there are any
, cab_roles = roles
, cab_lhs = lhs
, cab_rhs = rhs } <- coAxiomNthBranch ax ind
, Just subst <- liftCoMatch (mkVarSet qtvs)
(if sym then (mkTyConApp tc lhs) else rhs)
co
, all (`isMappedByLC` subst) qtvs
= zipWithM (liftCoSubstTyVar subst) roles qtvs
| otherwise
= Nothing
-------------
compatible_co :: Coercion -> Coercion -> Bool
-- Check whether (co1 . co2) will be well-kinded
compatible_co co1 co2
= x1 `eqType` x2
where
x1 = coercionRKind co1
x2 = coercionLKind co2
-------------
{-
etaForAllCo
~~~~~~~~~~~~~~~~~
(1) etaForAllCo_ty_maybe
Suppose we have
g : all a1:k1.t1 ~ all a2:k2.t2
but g is *not* a ForAllCo. We want to eta-expand it. So, we do this:
g' = all a1:(ForAllKindCo g).(InstCo g (a1 ~ a1 |> ForAllKindCo g))
Call the kind coercion h1 and the body coercion h2. We can see that
h2 : t1 ~ t2[a2 |-> (a1 |> h1)]
According to the typing rule for ForAllCo, we get that
g' : all a1:k1.t1 ~ all a1:k2.(t2[a2 |-> (a1 |> h1)][a1 |-> a1 |> sym h1])
or
g' : all a1:k1.t1 ~ all a1:k2.(t2[a2 |-> a1])
as desired.
(2) etaForAllCo_co_maybe
Suppose we have
g : all c1:(s1~s2). t1 ~ all c2:(s3~s4). t2
Similarly, we do this
g' = all c1:h1. h2
: all c1:(s1~s2). t1 ~ all c1:(s3~s4). t2[c2 |-> (sym eta1;c1;eta2)]
[c1 |-> eta1;c1;sym eta2]
Here,
h1 = mkNthCo Nominal 0 g :: (s1~s2)~(s3~s4)
eta1 = mkNthCo r 2 h1 :: (s1 ~ s3)
eta2 = mkNthCo r 3 h1 :: (s2 ~ s4)
h2 = mkInstCo g (cv1 ~ (sym eta1;c1;eta2))
-}
etaForAllCo_ty_maybe :: Coercion -> Maybe (TyVar, Coercion, Coercion)
-- Try to make the coercion be of form (forall tv:kind_co. co)
etaForAllCo_ty_maybe co
| Just (tv, kind_co, r) <- splitForAllCo_ty_maybe co
= Just (tv, kind_co, r)
| Pair ty1 ty2 <- coercionKind co
, Just (tv1, _) <- splitForAllTy_ty_maybe ty1
, isForAllTy_ty ty2
, let kind_co = mkNthCo Nominal 0 co
= Just ( tv1, kind_co
, mkInstCo co (mkGReflRightCo Nominal (TyVarTy tv1) kind_co))
| otherwise
= Nothing
etaForAllCo_co_maybe :: Coercion -> Maybe (CoVar, Coercion, Coercion)
-- Try to make the coercion be of form (forall cv:kind_co. co)
etaForAllCo_co_maybe co
| Just (cv, kind_co, r) <- splitForAllCo_co_maybe co
= Just (cv, kind_co, r)
| Pair ty1 ty2 <- coercionKind co
, Just (cv1, _) <- splitForAllTy_co_maybe ty1
, isForAllTy_co ty2
= let kind_co = mkNthCo Nominal 0 co
r = coVarRole cv1
l_co = mkCoVarCo cv1
kind_co' = downgradeRole r Nominal kind_co
r_co = (mkSymCo (mkNthCo r 2 kind_co')) `mkTransCo`
l_co `mkTransCo`
(mkNthCo r 3 kind_co')
in Just ( cv1, kind_co
, mkInstCo co (mkProofIrrelCo Nominal kind_co l_co r_co))
| otherwise
= Nothing
etaAppCo_maybe :: Coercion -> Maybe (Coercion,Coercion)
-- If possible, split a coercion
-- g :: t1a t1b ~ t2a t2b
-- into a pair of coercions (left g, right g)
etaAppCo_maybe co
| Just (co1,co2) <- splitAppCo_maybe co
= Just (co1,co2)
| (Pair ty1 ty2, Nominal) <- coercionKindRole co
, Just (_,t1) <- splitAppTy_maybe ty1
, Just (_,t2) <- splitAppTy_maybe ty2
, let isco1 = isCoercionTy t1
, let isco2 = isCoercionTy t2
, isco1 == isco2
= Just (LRCo CLeft co, LRCo CRight co)
| otherwise
= Nothing
etaTyConAppCo_maybe :: TyCon -> Coercion -> Maybe [Coercion]
-- If possible, split a coercion
-- g :: T s1 .. sn ~ T t1 .. tn
-- into [ Nth 0 g :: s1~t1, ..., Nth (n-1) g :: sn~tn ]
etaTyConAppCo_maybe tc (TyConAppCo _ tc2 cos2)
= ASSERT( tc == tc2 ) Just cos2
etaTyConAppCo_maybe tc co
| not (mustBeSaturated tc)
, (Pair ty1 ty2, r) <- coercionKindRole co
, Just (tc1, tys1) <- splitTyConApp_maybe ty1
, Just (tc2, tys2) <- splitTyConApp_maybe ty2
, tc1 == tc2
, isInjectiveTyCon tc r -- See Note [NthCo and newtypes] in GHC.Core.TyCo.Rep
, let n = length tys1
, tys2 `lengthIs` n -- This can fail in an erroneous program
-- E.g. T a ~# T a b
-- #14607
= ASSERT( tc == tc1 )
Just (decomposeCo n co (tyConRolesX r tc1))
-- NB: n might be <> tyConArity tc
-- e.g. data family T a :: * -> *
-- g :: T a b ~ T c d
| otherwise
= Nothing
{-
Note [Eta for AppCo]
~~~~~~~~~~~~~~~~~~~~
Suppose we have
g :: s1 t1 ~ s2 t2
Then we can't necessarily make
left g :: s1 ~ s2
right g :: t1 ~ t2
because it's possible that
s1 :: * -> * t1 :: *
s2 :: (*->*) -> * t2 :: * -> *
and in that case (left g) does not have the same
kind on either side.
It's enough to check that
kind t1 = kind t2
because if g is well-kinded then
kind (s1 t2) = kind (s2 t2)
and these two imply
kind s1 = kind s2
-}
optForAllCoBndr :: LiftingContext -> Bool
-> TyCoVar -> Coercion -> (LiftingContext, TyCoVar, Coercion)
optForAllCoBndr env sym
= substForAllCoBndrUsingLC sym (opt_co4_wrap env sym False Nominal) env
|