1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
|
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Handy functions for creating much Core syntax
module GHC.Core.Make (
-- * Constructing normal syntax
mkCoreLet, mkCoreLets,
mkCoreApp, mkCoreApps, mkCoreConApps,
mkCoreLams, mkWildCase, mkIfThenElse,
mkWildValBinder, mkWildEvBinder,
mkSingleAltCase,
sortQuantVars, castBottomExpr,
-- * Constructing boxed literals
mkWordExpr,
mkIntExpr, mkIntExprInt, mkUncheckedIntExpr,
mkIntegerExpr, mkNaturalExpr,
mkFloatExpr, mkDoubleExpr,
mkCharExpr, mkStringExpr, mkStringExprFS, mkStringExprFSWith,
-- * Floats
FloatBind(..), wrapFloat, wrapFloats, floatBindings,
-- * Constructing small tuples
mkCoreVarTupTy, mkCoreTup, mkCoreUbxTup, mkCoreUbxSum,
mkCoreTupBoxity, unitExpr,
-- * Constructing big tuples
mkBigCoreVarTup, mkBigCoreVarTup1,
mkBigCoreVarTupTy, mkBigCoreTupTy,
mkBigCoreTup,
-- * Deconstructing small tuples
mkSmallTupleSelector, mkSmallTupleCase,
-- * Deconstructing big tuples
mkTupleSelector, mkTupleSelector1, mkTupleCase,
-- * Constructing list expressions
mkNilExpr, mkConsExpr, mkListExpr,
mkFoldrExpr, mkBuildExpr,
-- * Constructing Maybe expressions
mkNothingExpr, mkJustExpr,
-- * Error Ids
mkRuntimeErrorApp, mkImpossibleExpr, mkAbsentErrorApp, errorIds,
rEC_CON_ERROR_ID, rUNTIME_ERROR_ID,
nON_EXHAUSTIVE_GUARDS_ERROR_ID, nO_METHOD_BINDING_ERROR_ID,
pAT_ERROR_ID, rEC_SEL_ERROR_ID, aBSENT_ERROR_ID,
tYPE_ERROR_ID, aBSENT_SUM_FIELD_ERROR_ID
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import GHC.Types.Id
import GHC.Types.Var ( EvVar, setTyVarUnique )
import GHC.Core
import GHC.Core.Utils ( exprType, needsCaseBinding, mkSingleAltCase, bindNonRec )
import GHC.Types.Literal
import GHC.Driver.Types
import GHC.Platform
import GHC.Builtin.Types
import GHC.Builtin.Names
import GHC.Hs.Utils ( mkChunkified, chunkify )
import GHC.Core.Type
import GHC.Core.Coercion ( isCoVar )
import GHC.Core.DataCon ( DataCon, dataConWorkId )
import GHC.Core.Multiplicity
import GHC.Builtin.Types.Prim
import GHC.Types.Id.Info
import GHC.Types.Demand
import GHC.Types.Cpr
import GHC.Types.Name hiding ( varName )
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Types.Unique.Supply
import GHC.Types.Basic
import GHC.Utils.Misc
import Data.List
import Data.Char ( ord )
infixl 4 `mkCoreApp`, `mkCoreApps`
{-
************************************************************************
* *
\subsection{Basic GHC.Core construction}
* *
************************************************************************
-}
sortQuantVars :: [Var] -> [Var]
-- Sort the variables, putting type and covars first, in scoped order,
-- and then other Ids
-- It is a deterministic sort, meaining it doesn't look at the values of
-- Uniques. For explanation why it's important See Note [Unique Determinism]
-- in GHC.Types.Unique.
sortQuantVars vs = sorted_tcvs ++ ids
where
(tcvs, ids) = partition (isTyVar <||> isCoVar) vs
sorted_tcvs = scopedSort tcvs
-- | Bind a binding group over an expression, using a @let@ or @case@ as
-- appropriate (see "GHC.Core#let_app_invariant")
mkCoreLet :: CoreBind -> CoreExpr -> CoreExpr
mkCoreLet (NonRec bndr rhs) body -- See Note [Core let/app invariant]
= bindNonRec bndr rhs body
mkCoreLet bind body
= Let bind body
-- | Create a lambda where the given expression has a number of variables
-- bound over it. The leftmost binder is that bound by the outermost
-- lambda in the result
mkCoreLams :: [CoreBndr] -> CoreExpr -> CoreExpr
mkCoreLams = mkLams
-- | Bind a list of binding groups over an expression. The leftmost binding
-- group becomes the outermost group in the resulting expression
mkCoreLets :: [CoreBind] -> CoreExpr -> CoreExpr
mkCoreLets binds body = foldr mkCoreLet body binds
-- | Construct an expression which represents the application of a number of
-- expressions to that of a data constructor expression. The leftmost expression
-- in the list is applied first
mkCoreConApps :: DataCon -> [CoreExpr] -> CoreExpr
mkCoreConApps con args = mkCoreApps (Var (dataConWorkId con)) args
-- | Construct an expression which represents the application of a number of
-- expressions to another. The leftmost expression in the list is applied first
-- Respects the let/app invariant by building a case expression where necessary
-- See Note [Core let/app invariant] in "GHC.Core"
mkCoreApps :: CoreExpr -> [CoreExpr] -> CoreExpr
mkCoreApps fun args
= fst $
foldl' (mkCoreAppTyped doc_string) (fun, fun_ty) args
where
doc_string = ppr fun_ty $$ ppr fun $$ ppr args
fun_ty = exprType fun
-- | Construct an expression which represents the application of one expression
-- to the other
-- Respects the let/app invariant by building a case expression where necessary
-- See Note [Core let/app invariant] in "GHC.Core"
mkCoreApp :: SDoc -> CoreExpr -> CoreExpr -> CoreExpr
mkCoreApp s fun arg
= fst $ mkCoreAppTyped s (fun, exprType fun) arg
-- | Construct an expression which represents the application of one expression
-- paired with its type to an argument. The result is paired with its type. This
-- function is not exported and used in the definition of 'mkCoreApp' and
-- 'mkCoreApps'.
-- Respects the let/app invariant by building a case expression where necessary
-- See Note [Core let/app invariant] in "GHC.Core"
mkCoreAppTyped :: SDoc -> (CoreExpr, Type) -> CoreExpr -> (CoreExpr, Type)
mkCoreAppTyped _ (fun, fun_ty) (Type ty)
= (App fun (Type ty), piResultTy fun_ty ty)
mkCoreAppTyped _ (fun, fun_ty) (Coercion co)
= (App fun (Coercion co), funResultTy fun_ty)
mkCoreAppTyped d (fun, fun_ty) arg
= ASSERT2( isFunTy fun_ty, ppr fun $$ ppr arg $$ d )
(mkValApp fun arg (Scaled mult arg_ty) res_ty, res_ty)
where
(mult, arg_ty, res_ty) = splitFunTy fun_ty
mkValApp :: CoreExpr -> CoreExpr -> Scaled Type -> Type -> CoreExpr
-- Build an application (e1 e2),
-- or a strict binding (case e2 of x -> e1 x)
-- using the latter when necessary to respect the let/app invariant
-- See Note [Core let/app invariant] in GHC.Core
mkValApp fun arg (Scaled w arg_ty) res_ty
| not (needsCaseBinding arg_ty arg)
= App fun arg -- The vastly common case
| otherwise
= mkStrictApp fun arg (Scaled w arg_ty) res_ty
{- *********************************************************************
* *
Building case expressions
* *
********************************************************************* -}
mkWildEvBinder :: PredType -> EvVar
mkWildEvBinder pred = mkWildValBinder Many pred
-- | Make a /wildcard binder/. This is typically used when you need a binder
-- that you expect to use only at a *binding* site. Do not use it at
-- occurrence sites because it has a single, fixed unique, and it's very
-- easy to get into difficulties with shadowing. That's why it is used so little.
-- See Note [WildCard binders] in "GHC.Core.Opt.Simplify.Env"
mkWildValBinder :: Mult -> Type -> Id
mkWildValBinder w ty = mkLocalIdOrCoVar wildCardName w ty
-- "OrCoVar" since a coercion can be a scrutinee with -fdefer-type-errors
-- (e.g. see test T15695). Ticket #17291 covers fixing this problem.
mkWildCase :: CoreExpr -> Scaled Type -> Type -> [CoreAlt] -> CoreExpr
-- Make a case expression whose case binder is unused
-- The alts and res_ty should not have any occurrences of WildId
mkWildCase scrut (Scaled w scrut_ty) res_ty alts
= Case scrut (mkWildValBinder w scrut_ty) res_ty alts
mkStrictApp :: CoreExpr -> CoreExpr -> Scaled Type -> Type -> CoreExpr
-- Build a strict application (case e2 of x -> e1 x)
mkStrictApp fun arg (Scaled w arg_ty) res_ty
= Case arg arg_id res_ty [(DEFAULT,[],App fun (Var arg_id))]
-- mkDefaultCase looks attractive here, and would be sound.
-- But it uses (exprType alt_rhs) to compute the result type,
-- whereas here we already know that the result type is res_ty
where
arg_id = mkWildValBinder w arg_ty
-- Lots of shadowing, but it doesn't matter,
-- because 'fun' and 'res_ty' should not have a free wild-id
--
-- This is Dangerous. But this is the only place we play this
-- game, mkStrictApp returns an expression that does not have
-- a free wild-id. So the only way 'fun' could get a free wild-id
-- would be if you take apart this case expression (or some other
-- expression that uses mkWildValBinder, of which there are not
-- many), and pass a fragment of it as the fun part of a 'mkStrictApp'.
mkIfThenElse :: CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr
mkIfThenElse guard then_expr else_expr
-- Not going to be refining, so okay to take the type of the "then" clause
= mkWildCase guard (linear boolTy) (exprType then_expr)
[ (DataAlt falseDataCon, [], else_expr), -- Increasing order of tag!
(DataAlt trueDataCon, [], then_expr) ]
castBottomExpr :: CoreExpr -> Type -> CoreExpr
-- (castBottomExpr e ty), assuming that 'e' diverges,
-- return an expression of type 'ty'
-- See Note [Empty case alternatives] in GHC.Core
castBottomExpr e res_ty
| e_ty `eqType` res_ty = e
| otherwise = Case e (mkWildValBinder One e_ty) res_ty []
where
e_ty = exprType e
{-
************************************************************************
* *
\subsection{Making literals}
* *
************************************************************************
-}
-- | Create a 'CoreExpr' which will evaluate to the given @Int@
mkIntExpr :: Platform -> Integer -> CoreExpr -- Result = I# i :: Int
mkIntExpr platform i = mkCoreConApps intDataCon [mkIntLit platform i]
-- | Create a 'CoreExpr' which will evaluate to the given @Int@. Don't check
-- that the number is in the range of the target platform @Int@
mkUncheckedIntExpr :: Integer -> CoreExpr -- Result = I# i :: Int
mkUncheckedIntExpr i = mkCoreConApps intDataCon [Lit (mkLitIntUnchecked i)]
-- | Create a 'CoreExpr' which will evaluate to the given @Int@
mkIntExprInt :: Platform -> Int -> CoreExpr -- Result = I# i :: Int
mkIntExprInt platform i = mkCoreConApps intDataCon [mkIntLit platform (fromIntegral i)]
-- | Create a 'CoreExpr' which will evaluate to the a @Word@ with the given value
mkWordExpr :: Platform -> Integer -> CoreExpr
mkWordExpr platform w = mkCoreConApps wordDataCon [mkWordLit platform w]
-- | Create a 'CoreExpr' which will evaluate to the given @Integer@
mkIntegerExpr :: Integer -> CoreExpr -- Result :: Integer
mkIntegerExpr i = Lit (mkLitInteger i)
-- | Create a 'CoreExpr' which will evaluate to the given @Natural@
mkNaturalExpr :: Integer -> CoreExpr
mkNaturalExpr i = Lit (mkLitNatural i)
-- | Create a 'CoreExpr' which will evaluate to the given @Float@
mkFloatExpr :: Float -> CoreExpr
mkFloatExpr f = mkCoreConApps floatDataCon [mkFloatLitFloat f]
-- | Create a 'CoreExpr' which will evaluate to the given @Double@
mkDoubleExpr :: Double -> CoreExpr
mkDoubleExpr d = mkCoreConApps doubleDataCon [mkDoubleLitDouble d]
-- | Create a 'CoreExpr' which will evaluate to the given @Char@
mkCharExpr :: Char -> CoreExpr -- Result = C# c :: Int
mkCharExpr c = mkCoreConApps charDataCon [mkCharLit c]
-- | Create a 'CoreExpr' which will evaluate to the given @String@
mkStringExpr :: MonadThings m => String -> m CoreExpr -- Result :: String
-- | Create a 'CoreExpr' which will evaluate to a string morally equivalent to the given @FastString@
mkStringExprFS :: MonadThings m => FastString -> m CoreExpr -- Result :: String
mkStringExpr str = mkStringExprFS (mkFastString str)
mkStringExprFS = mkStringExprFSWith lookupId
mkStringExprFSWith :: Monad m => (Name -> m Id) -> FastString -> m CoreExpr
mkStringExprFSWith lookupM str
| nullFS str
= return (mkNilExpr charTy)
| all safeChar chars
= do unpack_id <- lookupM unpackCStringName
return (App (Var unpack_id) lit)
| otherwise
= do unpack_utf8_id <- lookupM unpackCStringUtf8Name
return (App (Var unpack_utf8_id) lit)
where
chars = unpackFS str
safeChar c = ord c >= 1 && ord c <= 0x7F
lit = Lit (LitString (bytesFS str))
{-
************************************************************************
* *
\subsection{Tuple constructors}
* *
************************************************************************
-}
{-
Creating tuples and their types for Core expressions
@mkBigCoreVarTup@ builds a tuple; the inverse to @mkTupleSelector@.
* If it has only one element, it is the identity function.
* If there are more elements than a big tuple can have, it nests
the tuples.
Note [Flattening one-tuples]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This family of functions creates a tuple of variables/expressions/types.
mkCoreTup [e1,e2,e3] = (e1,e2,e3)
What if there is just one variable/expression/type in the argument?
We could do one of two things:
* Flatten it out, so that
mkCoreTup [e1] = e1
* Build a one-tuple (see Note [One-tuples] in GHC.Builtin.Types)
mkCoreTup1 [e1] = Solo e1
We use a suffix "1" to indicate this.
Usually we want the former, but occasionally the latter.
NB: The logic in tupleDataCon knows about () and Solo and (,), etc.
Note [Don't flatten tuples from HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we get an explicit 1-tuple from HsSyn somehow (likely: Template Haskell),
we should treat it really as a 1-tuple, without flattening. Note that a
1-tuple and a flattened value have different performance and laziness
characteristics, so should just do what we're asked.
This arose from discussions in #16881.
One-tuples that arise internally depend on the circumstance; often flattening
is a good idea. Decisions are made on a case-by-case basis.
-}
-- | Build the type of a small tuple that holds the specified variables
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkCoreVarTupTy :: [Id] -> Type
mkCoreVarTupTy ids = mkBoxedTupleTy (map idType ids)
-- | Build a small tuple holding the specified expressions
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkCoreTup :: [CoreExpr] -> CoreExpr
mkCoreTup [c] = c
mkCoreTup cs = mkCoreTup1 cs -- non-1-tuples are uniform
-- | Build a small tuple holding the specified expressions
-- One-tuples are *not* flattened; see Note [Flattening one-tuples]
-- See also Note [Don't flatten tuples from HsSyn]
mkCoreTup1 :: [CoreExpr] -> CoreExpr
mkCoreTup1 cs = mkCoreConApps (tupleDataCon Boxed (length cs))
(map (Type . exprType) cs ++ cs)
-- | Build a small unboxed tuple holding the specified expressions,
-- with the given types. The types must be the types of the expressions.
-- Do not include the RuntimeRep specifiers; this function calculates them
-- for you.
-- Does /not/ flatten one-tuples; see Note [Flattening one-tuples]
mkCoreUbxTup :: [Type] -> [CoreExpr] -> CoreExpr
mkCoreUbxTup tys exps
= ASSERT( tys `equalLength` exps)
mkCoreConApps (tupleDataCon Unboxed (length tys))
(map (Type . getRuntimeRep) tys ++ map Type tys ++ exps)
-- | Make a core tuple of the given boxity; don't flatten 1-tuples
mkCoreTupBoxity :: Boxity -> [CoreExpr] -> CoreExpr
mkCoreTupBoxity Boxed exps = mkCoreTup1 exps
mkCoreTupBoxity Unboxed exps = mkCoreUbxTup (map exprType exps) exps
-- | Build an unboxed sum.
--
-- Alternative number ("alt") starts from 1.
mkCoreUbxSum :: Int -> Int -> [Type] -> CoreExpr -> CoreExpr
mkCoreUbxSum arity alt tys exp
= ASSERT( length tys == arity )
ASSERT( alt <= arity )
mkCoreConApps (sumDataCon alt arity)
(map (Type . getRuntimeRep) tys
++ map Type tys
++ [exp])
-- | Build a big tuple holding the specified variables
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreVarTup :: [Id] -> CoreExpr
mkBigCoreVarTup ids = mkBigCoreTup (map Var ids)
mkBigCoreVarTup1 :: [Id] -> CoreExpr
-- Same as mkBigCoreVarTup, but one-tuples are NOT flattened
-- see Note [Flattening one-tuples]
mkBigCoreVarTup1 [id] = mkCoreConApps (tupleDataCon Boxed 1)
[Type (idType id), Var id]
mkBigCoreVarTup1 ids = mkBigCoreTup (map Var ids)
-- | Build the type of a big tuple that holds the specified variables
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreVarTupTy :: [Id] -> Type
mkBigCoreVarTupTy ids = mkBigCoreTupTy (map idType ids)
-- | Build a big tuple holding the specified expressions
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreTup :: [CoreExpr] -> CoreExpr
mkBigCoreTup = mkChunkified mkCoreTup
-- | Build the type of a big tuple that holds the specified type of thing
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreTupTy :: [Type] -> Type
mkBigCoreTupTy = mkChunkified mkBoxedTupleTy
-- | The unit expression
unitExpr :: CoreExpr
unitExpr = Var unitDataConId
{-
************************************************************************
* *
\subsection{Tuple destructors}
* *
************************************************************************
-}
-- | Builds a selector which scrutises the given
-- expression and extracts the one name from the list given.
-- If you want the no-shadowing rule to apply, the caller
-- is responsible for making sure that none of these names
-- are in scope.
--
-- If there is just one 'Id' in the tuple, then the selector is
-- just the identity.
--
-- If necessary, we pattern match on a \"big\" tuple.
--
-- A tuple selector is not linear in its argument. Consequently, the case
-- expression built by `mkTupleSelector` must consume its scrutinee 'Many'
-- times. And all the argument variables must have multiplicity 'Many'.
mkTupleSelector, mkTupleSelector1
:: [Id] -- ^ The 'Id's to pattern match the tuple against
-> Id -- ^ The 'Id' to select
-> Id -- ^ A variable of the same type as the scrutinee
-> CoreExpr -- ^ Scrutinee
-> CoreExpr -- ^ Selector expression
-- mkTupleSelector [a,b,c,d] b v e
-- = case e of v {
-- (p,q) -> case p of p {
-- (a,b) -> b }}
-- We use 'tpl' vars for the p,q, since shadowing does not matter.
--
-- In fact, it's more convenient to generate it innermost first, getting
--
-- case (case e of v
-- (p,q) -> p) of p
-- (a,b) -> b
mkTupleSelector vars the_var scrut_var scrut
= mk_tup_sel (chunkify vars) the_var
where
mk_tup_sel [vars] the_var = mkSmallTupleSelector vars the_var scrut_var scrut
mk_tup_sel vars_s the_var = mkSmallTupleSelector group the_var tpl_v $
mk_tup_sel (chunkify tpl_vs) tpl_v
where
tpl_tys = [mkBoxedTupleTy (map idType gp) | gp <- vars_s]
tpl_vs = mkTemplateLocals tpl_tys
[(tpl_v, group)] = [(tpl,gp) | (tpl,gp) <- zipEqual "mkTupleSelector" tpl_vs vars_s,
the_var `elem` gp ]
-- ^ 'mkTupleSelector1' is like 'mkTupleSelector'
-- but one-tuples are NOT flattened (see Note [Flattening one-tuples])
mkTupleSelector1 vars the_var scrut_var scrut
| [_] <- vars
= mkSmallTupleSelector1 vars the_var scrut_var scrut
| otherwise
= mkTupleSelector vars the_var scrut_var scrut
-- | Like 'mkTupleSelector' but for tuples that are guaranteed
-- never to be \"big\".
--
-- > mkSmallTupleSelector [x] x v e = [| e |]
-- > mkSmallTupleSelector [x,y,z] x v e = [| case e of v { (x,y,z) -> x } |]
mkSmallTupleSelector, mkSmallTupleSelector1
:: [Id] -- The tuple args
-> Id -- The selected one
-> Id -- A variable of the same type as the scrutinee
-> CoreExpr -- Scrutinee
-> CoreExpr
mkSmallTupleSelector [var] should_be_the_same_var _ scrut
= ASSERT(var == should_be_the_same_var)
scrut -- Special case for 1-tuples
mkSmallTupleSelector vars the_var scrut_var scrut
= mkSmallTupleSelector1 vars the_var scrut_var scrut
-- ^ 'mkSmallTupleSelector1' is like 'mkSmallTupleSelector'
-- but one-tuples are NOT flattened (see Note [Flattening one-tuples])
mkSmallTupleSelector1 vars the_var scrut_var scrut
= ASSERT( notNull vars )
Case scrut scrut_var (idType the_var)
[(DataAlt (tupleDataCon Boxed (length vars)), vars, Var the_var)]
-- | A generalization of 'mkTupleSelector', allowing the body
-- of the case to be an arbitrary expression.
--
-- To avoid shadowing, we use uniques to invent new variables.
--
-- If necessary we pattern match on a \"big\" tuple.
mkTupleCase :: UniqSupply -- ^ For inventing names of intermediate variables
-> [Id] -- ^ The tuple identifiers to pattern match on
-> CoreExpr -- ^ Body of the case
-> Id -- ^ A variable of the same type as the scrutinee
-> CoreExpr -- ^ Scrutinee
-> CoreExpr
-- ToDo: eliminate cases where none of the variables are needed.
--
-- mkTupleCase uniqs [a,b,c,d] body v e
-- = case e of v { (p,q) ->
-- case p of p { (a,b) ->
-- case q of q { (c,d) ->
-- body }}}
mkTupleCase uniqs vars body scrut_var scrut
= mk_tuple_case uniqs (chunkify vars) body
where
-- This is the case where don't need any nesting
mk_tuple_case _ [vars] body
= mkSmallTupleCase vars body scrut_var scrut
-- This is the case where we must make nest tuples at least once
mk_tuple_case us vars_s body
= let (us', vars', body') = foldr one_tuple_case (us, [], body) vars_s
in mk_tuple_case us' (chunkify vars') body'
one_tuple_case chunk_vars (us, vs, body)
= let (uniq, us') = takeUniqFromSupply us
scrut_var = mkSysLocal (fsLit "ds") uniq Many
(mkBoxedTupleTy (map idType chunk_vars))
body' = mkSmallTupleCase chunk_vars body scrut_var (Var scrut_var)
in (us', scrut_var:vs, body')
-- | As 'mkTupleCase', but for a tuple that is small enough to be guaranteed
-- not to need nesting.
mkSmallTupleCase
:: [Id] -- ^ The tuple args
-> CoreExpr -- ^ Body of the case
-> Id -- ^ A variable of the same type as the scrutinee
-> CoreExpr -- ^ Scrutinee
-> CoreExpr
mkSmallTupleCase [var] body _scrut_var scrut
= bindNonRec var scrut body
mkSmallTupleCase vars body scrut_var scrut
-- One branch no refinement?
= Case scrut scrut_var (exprType body)
[(DataAlt (tupleDataCon Boxed (length vars)), vars, body)]
{-
************************************************************************
* *
Floats
* *
************************************************************************
-}
data FloatBind
= FloatLet CoreBind
| FloatCase CoreExpr Id AltCon [Var]
-- case e of y { C ys -> ... }
-- See Note [Floating single-alternative cases] in GHC.Core.Opt.SetLevels
instance Outputable FloatBind where
ppr (FloatLet b) = text "LET" <+> ppr b
ppr (FloatCase e b c bs) = hang (text "CASE" <+> ppr e <+> ptext (sLit "of") <+> ppr b)
2 (ppr c <+> ppr bs)
wrapFloat :: FloatBind -> CoreExpr -> CoreExpr
wrapFloat (FloatLet defns) body = Let defns body
wrapFloat (FloatCase e b con bs) body = mkSingleAltCase e b con bs body
-- | Applies the floats from right to left. That is @wrapFloats [b1, b2, …, bn]
-- u = let b1 in let b2 in … in let bn in u@
wrapFloats :: [FloatBind] -> CoreExpr -> CoreExpr
wrapFloats floats expr = foldr wrapFloat expr floats
bindBindings :: CoreBind -> [Var]
bindBindings (NonRec b _) = [b]
bindBindings (Rec bnds) = map fst bnds
floatBindings :: FloatBind -> [Var]
floatBindings (FloatLet bnd) = bindBindings bnd
floatBindings (FloatCase _ b _ bs) = b:bs
{-
************************************************************************
* *
\subsection{Common list manipulation expressions}
* *
************************************************************************
Call the constructor Ids when building explicit lists, so that they
interact well with rules.
-}
-- | Makes a list @[]@ for lists of the specified type
mkNilExpr :: Type -> CoreExpr
mkNilExpr ty = mkCoreConApps nilDataCon [Type ty]
-- | Makes a list @(:)@ for lists of the specified type
mkConsExpr :: Type -> CoreExpr -> CoreExpr -> CoreExpr
mkConsExpr ty hd tl = mkCoreConApps consDataCon [Type ty, hd, tl]
-- | Make a list containing the given expressions, where the list has the given type
mkListExpr :: Type -> [CoreExpr] -> CoreExpr
mkListExpr ty xs = foldr (mkConsExpr ty) (mkNilExpr ty) xs
-- | Make a fully applied 'foldr' expression
mkFoldrExpr :: MonadThings m
=> Type -- ^ Element type of the list
-> Type -- ^ Fold result type
-> CoreExpr -- ^ "Cons" function expression for the fold
-> CoreExpr -- ^ "Nil" expression for the fold
-> CoreExpr -- ^ List expression being folded acress
-> m CoreExpr
mkFoldrExpr elt_ty result_ty c n list = do
foldr_id <- lookupId foldrName
return (Var foldr_id `App` Type elt_ty
`App` Type result_ty
`App` c
`App` n
`App` list)
-- | Make a 'build' expression applied to a locally-bound worker function
mkBuildExpr :: (MonadFail m, MonadThings m, MonadUnique m)
=> Type -- ^ Type of list elements to be built
-> ((Id, Type) -> (Id, Type) -> m CoreExpr) -- ^ Function that, given information about the 'Id's
-- of the binders for the build worker function, returns
-- the body of that worker
-> m CoreExpr
mkBuildExpr elt_ty mk_build_inside = do
n_tyvar <- newTyVar alphaTyVar
let n_ty = mkTyVarTy n_tyvar
c_ty = mkVisFunTysMany [elt_ty, n_ty] n_ty
[c, n] <- sequence [mkSysLocalM (fsLit "c") Many c_ty, mkSysLocalM (fsLit "n") Many n_ty]
build_inside <- mk_build_inside (c, c_ty) (n, n_ty)
build_id <- lookupId buildName
return $ Var build_id `App` Type elt_ty `App` mkLams [n_tyvar, c, n] build_inside
where
newTyVar tyvar_tmpl = do
uniq <- getUniqueM
return (setTyVarUnique tyvar_tmpl uniq)
{-
************************************************************************
* *
Manipulating Maybe data type
* *
************************************************************************
-}
-- | Makes a Nothing for the specified type
mkNothingExpr :: Type -> CoreExpr
mkNothingExpr ty = mkConApp nothingDataCon [Type ty]
-- | Makes a Just from a value of the specified type
mkJustExpr :: Type -> CoreExpr -> CoreExpr
mkJustExpr ty val = mkConApp justDataCon [Type ty, val]
{-
************************************************************************
* *
Error expressions
* *
************************************************************************
-}
mkRuntimeErrorApp
:: Id -- Should be of type (forall a. Addr# -> a)
-- where Addr# points to a UTF8 encoded string
-> Type -- The type to instantiate 'a'
-> String -- The string to print
-> CoreExpr
mkRuntimeErrorApp err_id res_ty err_msg
= mkApps (Var err_id) [ Type (getRuntimeRep res_ty)
, Type res_ty, err_string ]
where
err_string = Lit (mkLitString err_msg)
mkImpossibleExpr :: Type -> CoreExpr
mkImpossibleExpr res_ty
= mkRuntimeErrorApp rUNTIME_ERROR_ID res_ty "Impossible case alternative"
{-
************************************************************************
* *
Error Ids
* *
************************************************************************
GHC randomly injects these into the code.
@patError@ is just a version of @error@ for pattern-matching
failures. It knows various ``codes'' which expand to longer
strings---this saves space!
@absentErr@ is a thing we put in for ``absent'' arguments. They jolly
well shouldn't be yanked on, but if one is, then you will get a
friendly message from @absentErr@ (rather than a totally random
crash).
@parError@ is a special version of @error@ which the compiler does
not know to be a bottoming Id. It is used in the @_par_@ and @_seq_@
templates, but we don't ever expect to generate code for it.
-}
errorIds :: [Id]
errorIds
= [ rUNTIME_ERROR_ID,
nON_EXHAUSTIVE_GUARDS_ERROR_ID,
nO_METHOD_BINDING_ERROR_ID,
pAT_ERROR_ID,
rEC_CON_ERROR_ID,
rEC_SEL_ERROR_ID,
aBSENT_ERROR_ID,
aBSENT_SUM_FIELD_ERROR_ID,
tYPE_ERROR_ID, -- Used with Opt_DeferTypeErrors, see #10284
rAISE_OVERFLOW_ID,
rAISE_UNDERFLOW_ID,
rAISE_DIVZERO_ID
]
recSelErrorName, runtimeErrorName, absentErrorName :: Name
recConErrorName, patErrorName :: Name
nonExhaustiveGuardsErrorName, noMethodBindingErrorName :: Name
typeErrorName :: Name
absentSumFieldErrorName :: Name
raiseOverflowName, raiseUnderflowName, raiseDivZeroName :: Name
recSelErrorName = err_nm "recSelError" recSelErrorIdKey rEC_SEL_ERROR_ID
absentErrorName = err_nm "absentError" absentErrorIdKey aBSENT_ERROR_ID
runtimeErrorName = err_nm "runtimeError" runtimeErrorIdKey rUNTIME_ERROR_ID
recConErrorName = err_nm "recConError" recConErrorIdKey rEC_CON_ERROR_ID
patErrorName = err_nm "patError" patErrorIdKey pAT_ERROR_ID
typeErrorName = err_nm "typeError" typeErrorIdKey tYPE_ERROR_ID
noMethodBindingErrorName = err_nm "noMethodBindingError"
noMethodBindingErrorIdKey nO_METHOD_BINDING_ERROR_ID
nonExhaustiveGuardsErrorName = err_nm "nonExhaustiveGuardsError"
nonExhaustiveGuardsErrorIdKey nON_EXHAUSTIVE_GUARDS_ERROR_ID
err_nm :: String -> Unique -> Id -> Name
err_nm str uniq id = mkWiredInIdName cONTROL_EXCEPTION_BASE (fsLit str) uniq id
rEC_SEL_ERROR_ID, rUNTIME_ERROR_ID, rEC_CON_ERROR_ID :: Id
pAT_ERROR_ID, nO_METHOD_BINDING_ERROR_ID, nON_EXHAUSTIVE_GUARDS_ERROR_ID :: Id
tYPE_ERROR_ID, aBSENT_ERROR_ID, aBSENT_SUM_FIELD_ERROR_ID :: Id
rAISE_OVERFLOW_ID, rAISE_UNDERFLOW_ID, rAISE_DIVZERO_ID :: Id
rEC_SEL_ERROR_ID = mkRuntimeErrorId recSelErrorName
rUNTIME_ERROR_ID = mkRuntimeErrorId runtimeErrorName
rEC_CON_ERROR_ID = mkRuntimeErrorId recConErrorName
pAT_ERROR_ID = mkRuntimeErrorId patErrorName
nO_METHOD_BINDING_ERROR_ID = mkRuntimeErrorId noMethodBindingErrorName
nON_EXHAUSTIVE_GUARDS_ERROR_ID = mkRuntimeErrorId nonExhaustiveGuardsErrorName
tYPE_ERROR_ID = mkRuntimeErrorId typeErrorName
-- Note [aBSENT_SUM_FIELD_ERROR_ID]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- Unboxed sums are transformed into unboxed tuples in GHC.Stg.Unarise.mkUbxSum
-- and fields that can't be reached are filled with rubbish values. It's easy to
-- come up with rubbish literal values: we use 0 (ints/words) and 0.0
-- (floats/doubles). Coming up with a rubbish pointer value is more delicate:
--
-- 1. it needs to be a valid closure pointer for the GC (not a NULL pointer)
--
-- 2. it is never used in Core, only in STG; and even then only for filling a
-- GC-ptr slot in an unboxed sum (see GHC.Stg.Unarise.ubxSumRubbishArg).
-- So all we need is a pointer, and its levity doesn't matter. Hence we
-- can safely give it the (lifted) type:
--
-- absentSumFieldError :: forall a. a
--
-- despite the fact that Unarise might instantiate it at non-lifted
-- types.
--
-- 3. it can't take arguments because it's used in unarise and applying an
-- argument would require allocating a thunk.
--
-- 4. it can't be CAFFY because that would mean making some non-CAFFY
-- definitions that use unboxed sums CAFFY in unarise.
--
-- Getting this wrong causes hard-to-debug runtime issues, see #15038.
--
-- 5. it can't be defined in `base` package.
--
-- Defining `absentSumFieldError` in `base` package introduces a
-- dependency on `base` for any code using unboxed sums. It became an
-- issue when we wanted to use unboxed sums in boot libraries used by
-- `base`, see #17791.
--
--
-- * Most runtime-error functions throw a proper Haskell exception, which can be
-- caught in the usual way. But these functions are defined in
-- `base:Control.Exception.Base`, hence, they cannot be directly invoked in
-- any library compiled before `base`. Only exceptions that have been wired
-- in the RTS can be thrown (indirectly, via a call into the RTS) by libraries
-- compiled before `base`.
--
-- However wiring exceptions in the RTS is a bit annoying because we need to
-- explicitly import exception closures via their mangled symbol name (e.g.
-- `import CLOSURE base_GHCziIOziException_heapOverflow_closure`) in Cmm files
-- and every imported symbol must be indicated to the linker in a few files
-- (`package.conf`, `rts.cabal`, `win32/libHSbase.def`, `Prelude.h`...). It
-- explains why exceptions are only wired in the RTS when necessary.
--
-- * `absentSumFieldError` is defined in ghc-prim:GHC.Prim.Panic, hence, it can
-- be invoked in libraries compiled before `base`. It does not throw a Haskell
-- exception; instead, it calls `stg_panic#`, which immediately halts
-- execution. A runtime invocation of `absentSumFieldError` indicates a GHC
-- bug. Unlike (say) pattern-match errors, it cannot be caused by a user
-- error. That's why it is OK for it to be un-catchable.
--
absentSumFieldErrorName
= mkWiredInIdName
gHC_PRIM_PANIC
(fsLit "absentSumFieldError")
absentSumFieldErrorIdKey
aBSENT_SUM_FIELD_ERROR_ID
raiseOverflowName
= mkWiredInIdName
gHC_PRIM_EXCEPTION
(fsLit "raiseOverflow")
raiseOverflowIdKey
rAISE_OVERFLOW_ID
raiseUnderflowName
= mkWiredInIdName
gHC_PRIM_EXCEPTION
(fsLit "raiseUnderflow")
raiseUnderflowIdKey
rAISE_UNDERFLOW_ID
raiseDivZeroName
= mkWiredInIdName
gHC_PRIM_EXCEPTION
(fsLit "raiseDivZero")
raiseDivZeroIdKey
rAISE_DIVZERO_ID
aBSENT_SUM_FIELD_ERROR_ID = mkExceptionId absentSumFieldErrorName
rAISE_OVERFLOW_ID = mkExceptionId raiseOverflowName
rAISE_UNDERFLOW_ID = mkExceptionId raiseUnderflowName
rAISE_DIVZERO_ID = mkExceptionId raiseDivZeroName
-- | Exception with type \"forall a. a\"
mkExceptionId :: Name -> Id
mkExceptionId name
= mkVanillaGlobalWithInfo name
(mkSpecForAllTys [alphaTyVar] (mkTyVarTy alphaTyVar)) -- forall a . a
(vanillaIdInfo `setStrictnessInfo` mkClosedStrictSig [] botDiv
`setCprInfo` mkCprSig 0 botCpr
`setArityInfo` 0
`setCafInfo` NoCafRefs) -- #15038
mkRuntimeErrorId :: Name -> Id
-- Error function
-- with type: forall (r:RuntimeRep) (a:TYPE r). Addr# -> a
-- with arity: 1
-- which diverges after being given one argument
-- The Addr# is expected to be the address of
-- a UTF8-encoded error string
mkRuntimeErrorId name
= mkVanillaGlobalWithInfo name runtimeErrorTy bottoming_info
where
bottoming_info = vanillaIdInfo `setStrictnessInfo` strict_sig
`setCprInfo` mkCprSig 1 botCpr
`setArityInfo` 1
-- Make arity and strictness agree
-- Do *not* mark them as NoCafRefs, because they can indeed have
-- CAF refs. For example, pAT_ERROR_ID calls GHC.Err.untangle,
-- which has some CAFs
-- In due course we may arrange that these error-y things are
-- regarded by the GC as permanently live, in which case we
-- can give them NoCaf info. As it is, any function that calls
-- any pc_bottoming_Id will itself have CafRefs, which bloats
-- SRTs.
strict_sig = mkClosedStrictSig [evalDmd] botDiv
runtimeErrorTy :: Type
-- forall (rr :: RuntimeRep) (a :: rr). Addr# -> a
-- See Note [Error and friends have an "open-tyvar" forall]
runtimeErrorTy = mkSpecForAllTys [runtimeRep1TyVar, openAlphaTyVar]
(mkVisFunTyMany addrPrimTy openAlphaTy)
{- Note [Error and friends have an "open-tyvar" forall]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'error' and 'undefined' have types
error :: forall (v :: RuntimeRep) (a :: TYPE v). String -> a
undefined :: forall (v :: RuntimeRep) (a :: TYPE v). a
Notice the runtime-representation polymorphism. This ensures that
"error" can be instantiated at unboxed as well as boxed types.
This is OK because it never returns, so the return type is irrelevant.
************************************************************************
* *
aBSENT_ERROR_ID
* *
************************************************************************
Note [aBSENT_ERROR_ID]
~~~~~~~~~~~~~~~~~~~~~~
We use aBSENT_ERROR_ID to build dummy values in workers. E.g.
f x = (case x of (a,b) -> b) + 1::Int
The demand analyser figures ot that only the second component of x is
used, and does a w/w split thus
f x = case x of (a,b) -> $wf b
$wf b = let a = absentError "blah"
x = (a,b)
in <the original RHS of f>
After some simplification, the (absentError "blah") thunk goes away.
------ Tricky wrinkle -------
#14285 had, roughly
data T a = MkT a !a
{-# INLINABLE f #-}
f x = case x of MkT a b -> g (MkT b a)
It turned out that g didn't use the second component, and hence f doesn't use
the first. But the stable-unfolding for f looks like
\x. case x of MkT a b -> g ($WMkT b a)
where $WMkT is the wrapper for MkT that evaluates its arguments. We
apply the same w/w split to this unfolding (see Note [Worker-wrapper
for INLINEABLE functions] in GHC.Core.Opt.WorkWrap) so the template ends up like
\b. let a = absentError "blah"
x = MkT a b
in case x of MkT a b -> g ($WMkT b a)
After doing case-of-known-constructor, and expanding $WMkT we get
\b -> g (case absentError "blah" of a -> MkT b a)
Yikes! That bogusly appears to evaluate the absentError!
This is extremely tiresome. Another way to think of this is that, in
Core, it is an invariant that a strict data constructor, like MkT, must
be applied only to an argument in HNF. So (absentError "blah") had
better be non-bottom.
So the "solution" is to add a special case for absentError to exprIsHNFlike.
This allows Simplify.rebuildCase, in the Note [Case to let transformation]
branch, to convert the case on absentError into a let. We also make
absentError *not* be diverging, unlike the other error-ids, so that we
can be sure not to remove the case branches before converting the case to
a let.
If, by some bug or bizarre happenstance, we ever call absentError, we should
throw an exception. This should never happen, of course, but we definitely
can't return anything. e.g. if somehow we had
case absentError "foo" of
Nothing -> ...
Just x -> ...
then if we return, the case expression will select a field and continue.
Seg fault city. Better to throw an exception. (Even though we've said
it is in HNF :-)
It might seem a bit surprising that seq on absentError is simply erased
absentError "foo" `seq` x ==> x
but that should be okay; since there's no pattern match we can't really
be relying on anything from it.
-}
aBSENT_ERROR_ID
= mkVanillaGlobalWithInfo absentErrorName absent_ty arity_info
where
absent_ty = mkSpecForAllTys [alphaTyVar] (mkVisFunTyMany addrPrimTy alphaTy)
-- Not runtime-rep polymorphic. aBSENT_ERROR_ID is only used for
-- lifted-type things; see Note [Absent errors] in GHC.Core.Opt.WorkWrap.Utils
arity_info = vanillaIdInfo `setArityInfo` 1
-- NB: no bottoming strictness info, unlike other error-ids.
-- See Note [aBSENT_ERROR_ID]
mkAbsentErrorApp :: Type -- The type to instantiate 'a'
-> String -- The string to print
-> CoreExpr
mkAbsentErrorApp res_ty err_msg
= mkApps (Var aBSENT_ERROR_ID) [ Type res_ty, err_string ]
where
err_string = Lit (mkLitString err_msg)
|