1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
module GHC.Core.Map (
-- * Maps over Core expressions
CoreMap, emptyCoreMap, extendCoreMap, lookupCoreMap, foldCoreMap,
-- * Maps over 'Type's
TypeMap, emptyTypeMap, extendTypeMap, lookupTypeMap, foldTypeMap,
LooseTypeMap,
-- ** With explicit scoping
CmEnv, lookupCME, extendTypeMapWithScope, lookupTypeMapWithScope,
mkDeBruijnContext,
-- * Maps over 'Maybe' values
MaybeMap,
-- * Maps over 'List' values
ListMap,
-- * Maps over 'Literal's
LiteralMap,
-- * Map for compressing leaves. See Note [Compressed TrieMap]
GenMap,
-- * 'TrieMap' class
TrieMap(..), XT, insertTM, deleteTM,
lkDFreeVar, xtDFreeVar,
lkDNamed, xtDNamed,
(>.>), (|>), (|>>),
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import GHC.Data.TrieMap
import GHC.Core
import GHC.Core.Coercion
import GHC.Types.Name
import GHC.Core.Type
import GHC.Core.TyCo.Rep
import GHC.Types.Var
import GHC.Data.FastString(FastString)
import GHC.Utils.Misc
import qualified Data.Map as Map
import qualified Data.IntMap as IntMap
import GHC.Types.Var.Env
import GHC.Types.Name.Env
import GHC.Utils.Outputable
import Control.Monad( (>=>) )
{-
This module implements TrieMaps over Core related data structures
like CoreExpr or Type. It is built on the Tries from the TrieMap
module.
The code is very regular and boilerplate-like, but there is
some neat handling of *binders*. In effect they are deBruijn
numbered on the fly.
-}
----------------------
-- Recall that
-- Control.Monad.(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> a -> Maybe c
-- NB: Be careful about RULES and type families (#5821). So we should make sure
-- to specify @Key TypeMapX@ (and not @DeBruijn Type@, the reduced form)
-- The CoreMap makes heavy use of GenMap. However the CoreMap Types are not
-- known when defining GenMap so we can only specialize them here.
{-# SPECIALIZE lkG :: Key TypeMapX -> TypeMapG a -> Maybe a #-}
{-# SPECIALIZE lkG :: Key CoercionMapX -> CoercionMapG a -> Maybe a #-}
{-# SPECIALIZE lkG :: Key CoreMapX -> CoreMapG a -> Maybe a #-}
{-# SPECIALIZE xtG :: Key TypeMapX -> XT a -> TypeMapG a -> TypeMapG a #-}
{-# SPECIALIZE xtG :: Key CoercionMapX -> XT a -> CoercionMapG a -> CoercionMapG a #-}
{-# SPECIALIZE xtG :: Key CoreMapX -> XT a -> CoreMapG a -> CoreMapG a #-}
{-# SPECIALIZE mapG :: (a -> b) -> TypeMapG a -> TypeMapG b #-}
{-# SPECIALIZE mapG :: (a -> b) -> CoercionMapG a -> CoercionMapG b #-}
{-# SPECIALIZE mapG :: (a -> b) -> CoreMapG a -> CoreMapG b #-}
{-# SPECIALIZE fdG :: (a -> b -> b) -> TypeMapG a -> b -> b #-}
{-# SPECIALIZE fdG :: (a -> b -> b) -> CoercionMapG a -> b -> b #-}
{-# SPECIALIZE fdG :: (a -> b -> b) -> CoreMapG a -> b -> b #-}
{-
************************************************************************
* *
CoreMap
* *
************************************************************************
-}
lkDNamed :: NamedThing n => n -> DNameEnv a -> Maybe a
lkDNamed n env = lookupDNameEnv env (getName n)
xtDNamed :: NamedThing n => n -> XT a -> DNameEnv a -> DNameEnv a
xtDNamed tc f m = alterDNameEnv f m (getName tc)
{-
Note [Binders]
~~~~~~~~~~~~~~
* In general we check binders as late as possible because types are
less likely to differ than expression structure. That's why
cm_lam :: CoreMapG (TypeMapG a)
rather than
cm_lam :: TypeMapG (CoreMapG a)
* We don't need to look at the type of some binders, notably
- the case binder in (Case _ b _ _)
- the binders in an alternative
because they are totally fixed by the context
Note [Empty case alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* For a key (Case e b ty (alt:alts)) we don't need to look the return type
'ty', because every alternative has that type.
* For a key (Case e b ty []) we MUST look at the return type 'ty', because
otherwise (Case (error () "urk") _ Int []) would compare equal to
(Case (error () "urk") _ Bool [])
which is utterly wrong (#6097)
We could compare the return type regardless, but the wildly common case
is that it's unnecessary, so we have two fields (cm_case and cm_ecase)
for the two possibilities. Only cm_ecase looks at the type.
See also Note [Empty case alternatives] in GHC.Core.
-}
-- | @CoreMap a@ is a map from 'CoreExpr' to @a@. If you are a client, this
-- is the type you want.
newtype CoreMap a = CoreMap (CoreMapG a)
instance TrieMap CoreMap where
type Key CoreMap = CoreExpr
emptyTM = CoreMap emptyTM
lookupTM k (CoreMap m) = lookupTM (deBruijnize k) m
alterTM k f (CoreMap m) = CoreMap (alterTM (deBruijnize k) f m)
foldTM k (CoreMap m) = foldTM k m
mapTM f (CoreMap m) = CoreMap (mapTM f m)
-- | @CoreMapG a@ is a map from @DeBruijn CoreExpr@ to @a@. The extended
-- key makes it suitable for recursive traversal, since it can track binders,
-- but it is strictly internal to this module. If you are including a 'CoreMap'
-- inside another 'TrieMap', this is the type you want.
type CoreMapG = GenMap CoreMapX
-- | @CoreMapX a@ is the base map from @DeBruijn CoreExpr@ to @a@, but without
-- the 'GenMap' optimization.
data CoreMapX a
= CM { cm_var :: VarMap a
, cm_lit :: LiteralMap a
, cm_co :: CoercionMapG a
, cm_type :: TypeMapG a
, cm_cast :: CoreMapG (CoercionMapG a)
, cm_tick :: CoreMapG (TickishMap a)
, cm_app :: CoreMapG (CoreMapG a)
, cm_lam :: CoreMapG (BndrMap a) -- Note [Binders]
, cm_letn :: CoreMapG (CoreMapG (BndrMap a))
, cm_letr :: ListMap CoreMapG (CoreMapG (ListMap BndrMap a))
, cm_case :: CoreMapG (ListMap AltMap a)
, cm_ecase :: CoreMapG (TypeMapG a) -- Note [Empty case alternatives]
}
instance Eq (DeBruijn CoreExpr) where
D env1 e1 == D env2 e2 = go e1 e2 where
go (Var v1) (Var v2)
= case (lookupCME env1 v1, lookupCME env2 v2) of
(Just b1, Just b2) -> b1 == b2
(Nothing, Nothing) -> v1 == v2
_ -> False
go (Lit lit1) (Lit lit2) = lit1 == lit2
go (Type t1) (Type t2) = D env1 t1 == D env2 t2
go (Coercion co1) (Coercion co2) = D env1 co1 == D env2 co2
go (Cast e1 co1) (Cast e2 co2) = D env1 co1 == D env2 co2 && go e1 e2
go (App f1 a1) (App f2 a2) = go f1 f2 && go a1 a2
-- This seems a bit dodgy, see 'eqTickish'
go (Tick n1 e1) (Tick n2 e2) = n1 == n2 && go e1 e2
go (Lam b1 e1) (Lam b2 e2)
= D env1 (varType b1) == D env2 (varType b2)
&& D env1 (varMultMaybe b1) == D env2 (varMultMaybe b2)
&& D (extendCME env1 b1) e1 == D (extendCME env2 b2) e2
go (Let (NonRec v1 r1) e1) (Let (NonRec v2 r2) e2)
= go r1 r2
&& D (extendCME env1 v1) e1 == D (extendCME env2 v2) e2
go (Let (Rec ps1) e1) (Let (Rec ps2) e2)
= equalLength ps1 ps2
&& D env1' rs1 == D env2' rs2
&& D env1' e1 == D env2' e2
where
(bs1,rs1) = unzip ps1
(bs2,rs2) = unzip ps2
env1' = extendCMEs env1 bs1
env2' = extendCMEs env2 bs2
go (Case e1 b1 t1 a1) (Case e2 b2 t2 a2)
| null a1 -- See Note [Empty case alternatives]
= null a2 && go e1 e2 && D env1 t1 == D env2 t2
| otherwise
= go e1 e2 && D (extendCME env1 b1) a1 == D (extendCME env2 b2) a2
go _ _ = False
emptyE :: CoreMapX a
emptyE = CM { cm_var = emptyTM, cm_lit = emptyTM
, cm_co = emptyTM, cm_type = emptyTM
, cm_cast = emptyTM, cm_app = emptyTM
, cm_lam = emptyTM, cm_letn = emptyTM
, cm_letr = emptyTM, cm_case = emptyTM
, cm_ecase = emptyTM, cm_tick = emptyTM }
instance TrieMap CoreMapX where
type Key CoreMapX = DeBruijn CoreExpr
emptyTM = emptyE
lookupTM = lkE
alterTM = xtE
foldTM = fdE
mapTM = mapE
--------------------------
mapE :: (a->b) -> CoreMapX a -> CoreMapX b
mapE f (CM { cm_var = cvar, cm_lit = clit
, cm_co = cco, cm_type = ctype
, cm_cast = ccast , cm_app = capp
, cm_lam = clam, cm_letn = cletn
, cm_letr = cletr, cm_case = ccase
, cm_ecase = cecase, cm_tick = ctick })
= CM { cm_var = mapTM f cvar, cm_lit = mapTM f clit
, cm_co = mapTM f cco, cm_type = mapTM f ctype
, cm_cast = mapTM (mapTM f) ccast, cm_app = mapTM (mapTM f) capp
, cm_lam = mapTM (mapTM f) clam, cm_letn = mapTM (mapTM (mapTM f)) cletn
, cm_letr = mapTM (mapTM (mapTM f)) cletr, cm_case = mapTM (mapTM f) ccase
, cm_ecase = mapTM (mapTM f) cecase, cm_tick = mapTM (mapTM f) ctick }
--------------------------
lookupCoreMap :: CoreMap a -> CoreExpr -> Maybe a
lookupCoreMap cm e = lookupTM e cm
extendCoreMap :: CoreMap a -> CoreExpr -> a -> CoreMap a
extendCoreMap m e v = alterTM e (\_ -> Just v) m
foldCoreMap :: (a -> b -> b) -> b -> CoreMap a -> b
foldCoreMap k z m = foldTM k m z
emptyCoreMap :: CoreMap a
emptyCoreMap = emptyTM
instance Outputable a => Outputable (CoreMap a) where
ppr m = text "CoreMap elts" <+> ppr (foldTM (:) m [])
-------------------------
fdE :: (a -> b -> b) -> CoreMapX a -> b -> b
fdE k m
= foldTM k (cm_var m)
. foldTM k (cm_lit m)
. foldTM k (cm_co m)
. foldTM k (cm_type m)
. foldTM (foldTM k) (cm_cast m)
. foldTM (foldTM k) (cm_tick m)
. foldTM (foldTM k) (cm_app m)
. foldTM (foldTM k) (cm_lam m)
. foldTM (foldTM (foldTM k)) (cm_letn m)
. foldTM (foldTM (foldTM k)) (cm_letr m)
. foldTM (foldTM k) (cm_case m)
. foldTM (foldTM k) (cm_ecase m)
-- lkE: lookup in trie for expressions
lkE :: DeBruijn CoreExpr -> CoreMapX a -> Maybe a
lkE (D env expr) cm = go expr cm
where
go (Var v) = cm_var >.> lkVar env v
go (Lit l) = cm_lit >.> lookupTM l
go (Type t) = cm_type >.> lkG (D env t)
go (Coercion c) = cm_co >.> lkG (D env c)
go (Cast e c) = cm_cast >.> lkG (D env e) >=> lkG (D env c)
go (Tick tickish e) = cm_tick >.> lkG (D env e) >=> lkTickish tickish
go (App e1 e2) = cm_app >.> lkG (D env e2) >=> lkG (D env e1)
go (Lam v e) = cm_lam >.> lkG (D (extendCME env v) e)
>=> lkBndr env v
go (Let (NonRec b r) e) = cm_letn >.> lkG (D env r)
>=> lkG (D (extendCME env b) e) >=> lkBndr env b
go (Let (Rec prs) e) = let (bndrs,rhss) = unzip prs
env1 = extendCMEs env bndrs
in cm_letr
>.> lkList (lkG . D env1) rhss
>=> lkG (D env1 e)
>=> lkList (lkBndr env1) bndrs
go (Case e b ty as) -- See Note [Empty case alternatives]
| null as = cm_ecase >.> lkG (D env e) >=> lkG (D env ty)
| otherwise = cm_case >.> lkG (D env e)
>=> lkList (lkA (extendCME env b)) as
xtE :: DeBruijn CoreExpr -> XT a -> CoreMapX a -> CoreMapX a
xtE (D env (Var v)) f m = m { cm_var = cm_var m
|> xtVar env v f }
xtE (D env (Type t)) f m = m { cm_type = cm_type m
|> xtG (D env t) f }
xtE (D env (Coercion c)) f m = m { cm_co = cm_co m
|> xtG (D env c) f }
xtE (D _ (Lit l)) f m = m { cm_lit = cm_lit m |> alterTM l f }
xtE (D env (Cast e c)) f m = m { cm_cast = cm_cast m |> xtG (D env e)
|>> xtG (D env c) f }
xtE (D env (Tick t e)) f m = m { cm_tick = cm_tick m |> xtG (D env e)
|>> xtTickish t f }
xtE (D env (App e1 e2)) f m = m { cm_app = cm_app m |> xtG (D env e2)
|>> xtG (D env e1) f }
xtE (D env (Lam v e)) f m = m { cm_lam = cm_lam m
|> xtG (D (extendCME env v) e)
|>> xtBndr env v f }
xtE (D env (Let (NonRec b r) e)) f m = m { cm_letn = cm_letn m
|> xtG (D (extendCME env b) e)
|>> xtG (D env r)
|>> xtBndr env b f }
xtE (D env (Let (Rec prs) e)) f m = m { cm_letr =
let (bndrs,rhss) = unzip prs
env1 = extendCMEs env bndrs
in cm_letr m
|> xtList (xtG . D env1) rhss
|>> xtG (D env1 e)
|>> xtList (xtBndr env1)
bndrs f }
xtE (D env (Case e b ty as)) f m
| null as = m { cm_ecase = cm_ecase m |> xtG (D env e)
|>> xtG (D env ty) f }
| otherwise = m { cm_case = cm_case m |> xtG (D env e)
|>> let env1 = extendCME env b
in xtList (xtA env1) as f }
-- TODO: this seems a bit dodgy, see 'eqTickish'
type TickishMap a = Map.Map (Tickish Id) a
lkTickish :: Tickish Id -> TickishMap a -> Maybe a
lkTickish = lookupTM
xtTickish :: Tickish Id -> XT a -> TickishMap a -> TickishMap a
xtTickish = alterTM
------------------------
data AltMap a -- A single alternative
= AM { am_deflt :: CoreMapG a
, am_data :: DNameEnv (CoreMapG a)
, am_lit :: LiteralMap (CoreMapG a) }
instance TrieMap AltMap where
type Key AltMap = CoreAlt
emptyTM = AM { am_deflt = emptyTM
, am_data = emptyDNameEnv
, am_lit = emptyTM }
lookupTM = lkA emptyCME
alterTM = xtA emptyCME
foldTM = fdA
mapTM = mapA
instance Eq (DeBruijn CoreAlt) where
D env1 a1 == D env2 a2 = go a1 a2 where
go (DEFAULT, _, rhs1) (DEFAULT, _, rhs2)
= D env1 rhs1 == D env2 rhs2
go (LitAlt lit1, _, rhs1) (LitAlt lit2, _, rhs2)
= lit1 == lit2 && D env1 rhs1 == D env2 rhs2
go (DataAlt dc1, bs1, rhs1) (DataAlt dc2, bs2, rhs2)
= dc1 == dc2 &&
D (extendCMEs env1 bs1) rhs1 == D (extendCMEs env2 bs2) rhs2
go _ _ = False
mapA :: (a->b) -> AltMap a -> AltMap b
mapA f (AM { am_deflt = adeflt, am_data = adata, am_lit = alit })
= AM { am_deflt = mapTM f adeflt
, am_data = mapTM (mapTM f) adata
, am_lit = mapTM (mapTM f) alit }
lkA :: CmEnv -> CoreAlt -> AltMap a -> Maybe a
lkA env (DEFAULT, _, rhs) = am_deflt >.> lkG (D env rhs)
lkA env (LitAlt lit, _, rhs) = am_lit >.> lookupTM lit >=> lkG (D env rhs)
lkA env (DataAlt dc, bs, rhs) = am_data >.> lkDNamed dc
>=> lkG (D (extendCMEs env bs) rhs)
xtA :: CmEnv -> CoreAlt -> XT a -> AltMap a -> AltMap a
xtA env (DEFAULT, _, rhs) f m =
m { am_deflt = am_deflt m |> xtG (D env rhs) f }
xtA env (LitAlt l, _, rhs) f m =
m { am_lit = am_lit m |> alterTM l |>> xtG (D env rhs) f }
xtA env (DataAlt d, bs, rhs) f m =
m { am_data = am_data m |> xtDNamed d
|>> xtG (D (extendCMEs env bs) rhs) f }
fdA :: (a -> b -> b) -> AltMap a -> b -> b
fdA k m = foldTM k (am_deflt m)
. foldTM (foldTM k) (am_data m)
. foldTM (foldTM k) (am_lit m)
{-
************************************************************************
* *
Coercions
* *
************************************************************************
-}
-- We should really never care about the contents of a coercion. Instead,
-- just look up the coercion's type.
newtype CoercionMap a = CoercionMap (CoercionMapG a)
instance TrieMap CoercionMap where
type Key CoercionMap = Coercion
emptyTM = CoercionMap emptyTM
lookupTM k (CoercionMap m) = lookupTM (deBruijnize k) m
alterTM k f (CoercionMap m) = CoercionMap (alterTM (deBruijnize k) f m)
foldTM k (CoercionMap m) = foldTM k m
mapTM f (CoercionMap m) = CoercionMap (mapTM f m)
type CoercionMapG = GenMap CoercionMapX
newtype CoercionMapX a = CoercionMapX (TypeMapX a)
instance TrieMap CoercionMapX where
type Key CoercionMapX = DeBruijn Coercion
emptyTM = CoercionMapX emptyTM
lookupTM = lkC
alterTM = xtC
foldTM f (CoercionMapX core_tm) = foldTM f core_tm
mapTM f (CoercionMapX core_tm) = CoercionMapX (mapTM f core_tm)
instance Eq (DeBruijn Coercion) where
D env1 co1 == D env2 co2
= D env1 (coercionType co1) ==
D env2 (coercionType co2)
lkC :: DeBruijn Coercion -> CoercionMapX a -> Maybe a
lkC (D env co) (CoercionMapX core_tm) = lkT (D env $ coercionType co)
core_tm
xtC :: DeBruijn Coercion -> XT a -> CoercionMapX a -> CoercionMapX a
xtC (D env co) f (CoercionMapX m)
= CoercionMapX (xtT (D env $ coercionType co) f m)
{-
************************************************************************
* *
Types
* *
************************************************************************
-}
-- | @TypeMapG a@ is a map from @DeBruijn Type@ to @a@. The extended
-- key makes it suitable for recursive traversal, since it can track binders,
-- but it is strictly internal to this module. If you are including a 'TypeMap'
-- inside another 'TrieMap', this is the type you want. Note that this
-- lookup does not do a kind-check. Thus, all keys in this map must have
-- the same kind. Also note that this map respects the distinction between
-- @Type@ and @Constraint@, despite the fact that they are equivalent type
-- synonyms in Core.
type TypeMapG = GenMap TypeMapX
-- | @TypeMapX a@ is the base map from @DeBruijn Type@ to @a@, but without the
-- 'GenMap' optimization.
data TypeMapX a
= TM { tm_var :: VarMap a
, tm_app :: TypeMapG (TypeMapG a)
, tm_tycon :: DNameEnv a
, tm_forall :: TypeMapG (BndrMap a) -- See Note [Binders]
, tm_tylit :: TyLitMap a
, tm_coerce :: Maybe a
}
-- Note that there is no tyconapp case; see Note [Equality on AppTys] in GHC.Core.Type
-- | Squeeze out any synonyms, and change TyConApps to nested AppTys. Why the
-- last one? See Note [Equality on AppTys] in "GHC.Core.Type"
--
-- Note, however, that we keep Constraint and Type apart here, despite the fact
-- that they are both synonyms of TYPE 'LiftedRep (see #11715).
trieMapView :: Type -> Maybe Type
trieMapView ty
-- First check for TyConApps that need to be expanded to
-- AppTy chains.
| Just (tc, tys@(_:_)) <- tcSplitTyConApp_maybe ty
= Just $ foldl' AppTy (TyConApp tc []) tys
-- Then resolve any remaining nullary synonyms.
| Just ty' <- tcView ty = Just ty'
trieMapView _ = Nothing
instance TrieMap TypeMapX where
type Key TypeMapX = DeBruijn Type
emptyTM = emptyT
lookupTM = lkT
alterTM = xtT
foldTM = fdT
mapTM = mapT
instance Eq (DeBruijn Type) where
env_t@(D env t) == env_t'@(D env' t')
| Just new_t <- tcView t = D env new_t == env_t'
| Just new_t' <- tcView t' = env_t == D env' new_t'
| otherwise
= case (t, t') of
(CastTy t1 _, _) -> D env t1 == D env t'
(_, CastTy t1' _) -> D env t == D env t1'
(TyVarTy v, TyVarTy v')
-> case (lookupCME env v, lookupCME env' v') of
(Just bv, Just bv') -> bv == bv'
(Nothing, Nothing) -> v == v'
_ -> False
-- See Note [Equality on AppTys] in GHC.Core.Type
(AppTy t1 t2, s) | Just (t1', t2') <- repSplitAppTy_maybe s
-> D env t1 == D env' t1' && D env t2 == D env' t2'
(s, AppTy t1' t2') | Just (t1, t2) <- repSplitAppTy_maybe s
-> D env t1 == D env' t1' && D env t2 == D env' t2'
(FunTy _ w1 t1 t2, FunTy _ w1' t1' t2')
-> D env w1 == D env w1' && D env t1 == D env' t1' && D env t2 == D env' t2'
(TyConApp tc tys, TyConApp tc' tys')
-> tc == tc' && D env tys == D env' tys'
(LitTy l, LitTy l')
-> l == l'
(ForAllTy (Bndr tv _) ty, ForAllTy (Bndr tv' _) ty')
-> D env (varType tv) == D env' (varType tv') &&
D (extendCME env tv) ty == D (extendCME env' tv') ty'
(CoercionTy {}, CoercionTy {})
-> True
_ -> False
instance {-# OVERLAPPING #-}
Outputable a => Outputable (TypeMapG a) where
ppr m = text "TypeMap elts" <+> ppr (foldTM (:) m [])
emptyT :: TypeMapX a
emptyT = TM { tm_var = emptyTM
, tm_app = emptyTM
, tm_tycon = emptyDNameEnv
, tm_forall = emptyTM
, tm_tylit = emptyTyLitMap
, tm_coerce = Nothing }
mapT :: (a->b) -> TypeMapX a -> TypeMapX b
mapT f (TM { tm_var = tvar, tm_app = tapp, tm_tycon = ttycon
, tm_forall = tforall, tm_tylit = tlit
, tm_coerce = tcoerce })
= TM { tm_var = mapTM f tvar
, tm_app = mapTM (mapTM f) tapp
, tm_tycon = mapTM f ttycon
, tm_forall = mapTM (mapTM f) tforall
, tm_tylit = mapTM f tlit
, tm_coerce = fmap f tcoerce }
-----------------
lkT :: DeBruijn Type -> TypeMapX a -> Maybe a
lkT (D env ty) m = go ty m
where
go ty | Just ty' <- trieMapView ty = go ty'
go (TyVarTy v) = tm_var >.> lkVar env v
go (AppTy t1 t2) = tm_app >.> lkG (D env t1)
>=> lkG (D env t2)
go (TyConApp tc []) = tm_tycon >.> lkDNamed tc
go ty@(TyConApp _ (_:_)) = pprPanic "lkT TyConApp" (ppr ty)
go (LitTy l) = tm_tylit >.> lkTyLit l
go (ForAllTy (Bndr tv _) ty) = tm_forall >.> lkG (D (extendCME env tv) ty)
>=> lkBndr env tv
go ty@(FunTy {}) = pprPanic "lkT FunTy" (ppr ty)
go (CastTy t _) = go t
go (CoercionTy {}) = tm_coerce
-----------------
xtT :: DeBruijn Type -> XT a -> TypeMapX a -> TypeMapX a
xtT (D env ty) f m | Just ty' <- trieMapView ty = xtT (D env ty') f m
xtT (D env (TyVarTy v)) f m = m { tm_var = tm_var m |> xtVar env v f }
xtT (D env (AppTy t1 t2)) f m = m { tm_app = tm_app m |> xtG (D env t1)
|>> xtG (D env t2) f }
xtT (D _ (TyConApp tc [])) f m = m { tm_tycon = tm_tycon m |> xtDNamed tc f }
xtT (D _ (LitTy l)) f m = m { tm_tylit = tm_tylit m |> xtTyLit l f }
xtT (D env (CastTy t _)) f m = xtT (D env t) f m
xtT (D _ (CoercionTy {})) f m = m { tm_coerce = tm_coerce m |> f }
xtT (D env (ForAllTy (Bndr tv _) ty)) f m
= m { tm_forall = tm_forall m |> xtG (D (extendCME env tv) ty)
|>> xtBndr env tv f }
xtT (D _ ty@(TyConApp _ (_:_))) _ _ = pprPanic "xtT TyConApp" (ppr ty)
xtT (D _ ty@(FunTy {})) _ _ = pprPanic "xtT FunTy" (ppr ty)
fdT :: (a -> b -> b) -> TypeMapX a -> b -> b
fdT k m = foldTM k (tm_var m)
. foldTM (foldTM k) (tm_app m)
. foldTM k (tm_tycon m)
. foldTM (foldTM k) (tm_forall m)
. foldTyLit k (tm_tylit m)
. foldMaybe k (tm_coerce m)
------------------------
data TyLitMap a = TLM { tlm_number :: Map.Map Integer a
, tlm_string :: Map.Map FastString a
}
instance TrieMap TyLitMap where
type Key TyLitMap = TyLit
emptyTM = emptyTyLitMap
lookupTM = lkTyLit
alterTM = xtTyLit
foldTM = foldTyLit
mapTM = mapTyLit
emptyTyLitMap :: TyLitMap a
emptyTyLitMap = TLM { tlm_number = Map.empty, tlm_string = Map.empty }
mapTyLit :: (a->b) -> TyLitMap a -> TyLitMap b
mapTyLit f (TLM { tlm_number = tn, tlm_string = ts })
= TLM { tlm_number = Map.map f tn, tlm_string = Map.map f ts }
lkTyLit :: TyLit -> TyLitMap a -> Maybe a
lkTyLit l =
case l of
NumTyLit n -> tlm_number >.> Map.lookup n
StrTyLit n -> tlm_string >.> Map.lookup n
xtTyLit :: TyLit -> XT a -> TyLitMap a -> TyLitMap a
xtTyLit l f m =
case l of
NumTyLit n -> m { tlm_number = tlm_number m |> Map.alter f n }
StrTyLit n -> m { tlm_string = tlm_string m |> Map.alter f n }
foldTyLit :: (a -> b -> b) -> TyLitMap a -> b -> b
foldTyLit l m = flip (Map.foldr l) (tlm_string m)
. flip (Map.foldr l) (tlm_number m)
-------------------------------------------------
-- | @TypeMap a@ is a map from 'Type' to @a@. If you are a client, this
-- is the type you want. The keys in this map may have different kinds.
newtype TypeMap a = TypeMap (TypeMapG (TypeMapG a))
lkTT :: DeBruijn Type -> TypeMap a -> Maybe a
lkTT (D env ty) (TypeMap m) = lkG (D env $ typeKind ty) m
>>= lkG (D env ty)
xtTT :: DeBruijn Type -> XT a -> TypeMap a -> TypeMap a
xtTT (D env ty) f (TypeMap m)
= TypeMap (m |> xtG (D env $ typeKind ty)
|>> xtG (D env ty) f)
-- Below are some client-oriented functions which operate on 'TypeMap'.
instance TrieMap TypeMap where
type Key TypeMap = Type
emptyTM = TypeMap emptyTM
lookupTM k m = lkTT (deBruijnize k) m
alterTM k f m = xtTT (deBruijnize k) f m
foldTM k (TypeMap m) = foldTM (foldTM k) m
mapTM f (TypeMap m) = TypeMap (mapTM (mapTM f) m)
foldTypeMap :: (a -> b -> b) -> b -> TypeMap a -> b
foldTypeMap k z m = foldTM k m z
emptyTypeMap :: TypeMap a
emptyTypeMap = emptyTM
lookupTypeMap :: TypeMap a -> Type -> Maybe a
lookupTypeMap cm t = lookupTM t cm
extendTypeMap :: TypeMap a -> Type -> a -> TypeMap a
extendTypeMap m t v = alterTM t (const (Just v)) m
lookupTypeMapWithScope :: TypeMap a -> CmEnv -> Type -> Maybe a
lookupTypeMapWithScope m cm t = lkTT (D cm t) m
-- | Extend a 'TypeMap' with a type in the given context.
-- @extendTypeMapWithScope m (mkDeBruijnContext [a,b,c]) t v@ is equivalent to
-- @extendTypeMap m (forall a b c. t) v@, but allows reuse of the context over
-- multiple insertions.
extendTypeMapWithScope :: TypeMap a -> CmEnv -> Type -> a -> TypeMap a
extendTypeMapWithScope m cm t v = xtTT (D cm t) (const (Just v)) m
-- | Construct a deBruijn environment with the given variables in scope.
-- e.g. @mkDeBruijnEnv [a,b,c]@ constructs a context @forall a b c.@
mkDeBruijnContext :: [Var] -> CmEnv
mkDeBruijnContext = extendCMEs emptyCME
-- | A 'LooseTypeMap' doesn't do a kind-check. Thus, when lookup up (t |> g),
-- you'll find entries inserted under (t), even if (g) is non-reflexive.
newtype LooseTypeMap a
= LooseTypeMap (TypeMapG a)
instance TrieMap LooseTypeMap where
type Key LooseTypeMap = Type
emptyTM = LooseTypeMap emptyTM
lookupTM k (LooseTypeMap m) = lookupTM (deBruijnize k) m
alterTM k f (LooseTypeMap m) = LooseTypeMap (alterTM (deBruijnize k) f m)
foldTM f (LooseTypeMap m) = foldTM f m
mapTM f (LooseTypeMap m) = LooseTypeMap (mapTM f m)
{-
************************************************************************
* *
Variables
* *
************************************************************************
-}
type BoundVar = Int -- Bound variables are deBruijn numbered
type BoundVarMap a = IntMap.IntMap a
data CmEnv = CME { cme_next :: !BoundVar
, cme_env :: VarEnv BoundVar }
emptyCME :: CmEnv
emptyCME = CME { cme_next = 0, cme_env = emptyVarEnv }
extendCME :: CmEnv -> Var -> CmEnv
extendCME (CME { cme_next = bv, cme_env = env }) v
= CME { cme_next = bv+1, cme_env = extendVarEnv env v bv }
extendCMEs :: CmEnv -> [Var] -> CmEnv
extendCMEs env vs = foldl' extendCME env vs
lookupCME :: CmEnv -> Var -> Maybe BoundVar
lookupCME (CME { cme_env = env }) v = lookupVarEnv env v
-- | @DeBruijn a@ represents @a@ modulo alpha-renaming. This is achieved
-- by equipping the value with a 'CmEnv', which tracks an on-the-fly deBruijn
-- numbering. This allows us to define an 'Eq' instance for @DeBruijn a@, even
-- if this was not (easily) possible for @a@. Note: we purposely don't
-- export the constructor. Make a helper function if you find yourself
-- needing it.
data DeBruijn a = D CmEnv a
-- | Synthesizes a @DeBruijn a@ from an @a@, by assuming that there are no
-- bound binders (an empty 'CmEnv'). This is usually what you want if there
-- isn't already a 'CmEnv' in scope.
deBruijnize :: a -> DeBruijn a
deBruijnize = D emptyCME
instance Eq (DeBruijn a) => Eq (DeBruijn [a]) where
D _ [] == D _ [] = True
D env (x:xs) == D env' (x':xs') = D env x == D env' x' &&
D env xs == D env' xs'
_ == _ = False
instance Eq (DeBruijn a) => Eq (DeBruijn (Maybe a)) where
D _ Nothing == D _ Nothing = True
D env (Just x) == D env' (Just x') = D env x == D env' x'
_ == _ = False
--------- Variable binders -------------
-- | A 'BndrMap' is a 'TypeMapG' which allows us to distinguish between
-- binding forms whose binders have different types. For example,
-- if we are doing a 'TrieMap' lookup on @\(x :: Int) -> ()@, we should
-- not pick up an entry in the 'TrieMap' for @\(x :: Bool) -> ()@:
-- we can disambiguate this by matching on the type (or kind, if this
-- a binder in a type) of the binder.
--
-- We also need to do the same for multiplicity! Which, since multiplicities are
-- encoded simply as a 'Type', amounts to have a Trie for a pair of types. Tries
-- of pairs are composition.
data BndrMap a = BndrMap (TypeMapG (MaybeMap TypeMapG a))
instance TrieMap BndrMap where
type Key BndrMap = Var
emptyTM = BndrMap emptyTM
lookupTM = lkBndr emptyCME
alterTM = xtBndr emptyCME
foldTM = fdBndrMap
mapTM = mapBndrMap
mapBndrMap :: (a -> b) -> BndrMap a -> BndrMap b
mapBndrMap f (BndrMap tm) = BndrMap (mapTM (mapTM f) tm)
fdBndrMap :: (a -> b -> b) -> BndrMap a -> b -> b
fdBndrMap f (BndrMap tm) = foldTM (foldTM f) tm
-- Note [Binders]
-- ~~~~~~~~~~~~~~
-- We need to use 'BndrMap' for 'Coercion', 'CoreExpr' AND 'Type', since all
-- of these data types have binding forms.
lkBndr :: CmEnv -> Var -> BndrMap a -> Maybe a
lkBndr env v (BndrMap tymap) = do
multmap <- lkG (D env (varType v)) tymap
lookupTM (D env <$> varMultMaybe v) multmap
xtBndr :: forall a . CmEnv -> Var -> XT a -> BndrMap a -> BndrMap a
xtBndr env v xt (BndrMap tymap) =
BndrMap (tymap |> xtG (D env (varType v)) |>> (alterTM (D env <$> varMultMaybe v) xt))
--------- Variable occurrence -------------
data VarMap a = VM { vm_bvar :: BoundVarMap a -- Bound variable
, vm_fvar :: DVarEnv a } -- Free variable
instance TrieMap VarMap where
type Key VarMap = Var
emptyTM = VM { vm_bvar = IntMap.empty, vm_fvar = emptyDVarEnv }
lookupTM = lkVar emptyCME
alterTM = xtVar emptyCME
foldTM = fdVar
mapTM = mapVar
mapVar :: (a->b) -> VarMap a -> VarMap b
mapVar f (VM { vm_bvar = bv, vm_fvar = fv })
= VM { vm_bvar = mapTM f bv, vm_fvar = mapTM f fv }
lkVar :: CmEnv -> Var -> VarMap a -> Maybe a
lkVar env v
| Just bv <- lookupCME env v = vm_bvar >.> lookupTM bv
| otherwise = vm_fvar >.> lkDFreeVar v
xtVar :: CmEnv -> Var -> XT a -> VarMap a -> VarMap a
xtVar env v f m
| Just bv <- lookupCME env v = m { vm_bvar = vm_bvar m |> alterTM bv f }
| otherwise = m { vm_fvar = vm_fvar m |> xtDFreeVar v f }
fdVar :: (a -> b -> b) -> VarMap a -> b -> b
fdVar k m = foldTM k (vm_bvar m)
. foldTM k (vm_fvar m)
lkDFreeVar :: Var -> DVarEnv a -> Maybe a
lkDFreeVar var env = lookupDVarEnv env var
xtDFreeVar :: Var -> XT a -> DVarEnv a -> DVarEnv a
xtDFreeVar v f m = alterDVarEnv f m v
|