1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
{-
Describes predicates as they are considered by the solver.
-}
module GHC.Core.Predicate (
Pred(..), classifyPredType,
isPredTy, isEvVarType,
-- Equality predicates
EqRel(..), eqRelRole,
isEqPrimPred, isEqPred,
getEqPredTys, getEqPredTys_maybe, getEqPredRole,
predTypeEqRel,
mkPrimEqPred, mkReprPrimEqPred, mkPrimEqPredRole,
mkHeteroPrimEqPred, mkHeteroReprPrimEqPred,
-- Class predicates
mkClassPred, isDictTy,
isClassPred, isEqPredClass, isCTupleClass,
getClassPredTys, getClassPredTys_maybe,
classMethodTy, classMethodInstTy,
-- Implicit parameters
isIPLikePred, hasIPSuperClasses, isIPTyCon, isIPClass,
-- Evidence variables
DictId, isEvVar, isDictId
) where
import GHC.Prelude
import GHC.Core.Type
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Types.Var
import GHC.Core.Coercion
import GHC.Builtin.Names
import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Core.Multiplicity ( scaledThing )
-- | A predicate in the solver. The solver tries to prove Wanted predicates
-- from Given ones.
data Pred
= ClassPred Class [Type]
| EqPred EqRel Type Type
| IrredPred PredType
| ForAllPred [TyVar] [PredType] PredType
-- ForAllPred: see Note [Quantified constraints] in GHC.Tc.Solver.Canonical
-- NB: There is no TuplePred case
-- Tuple predicates like (Eq a, Ord b) are just treated
-- as ClassPred, as if we had a tuple class with two superclasses
-- class (c1, c2) => (%,%) c1 c2
classifyPredType :: PredType -> Pred
classifyPredType ev_ty = case splitTyConApp_maybe ev_ty of
Just (tc, [_, _, ty1, ty2])
| tc `hasKey` eqReprPrimTyConKey -> EqPred ReprEq ty1 ty2
| tc `hasKey` eqPrimTyConKey -> EqPred NomEq ty1 ty2
Just (tc, tys)
| Just clas <- tyConClass_maybe tc
-> ClassPred clas tys
_ | (tvs, rho) <- splitForAllTys ev_ty
, (theta, pred) <- splitFunTys rho
, not (null tvs && null theta)
-> ForAllPred tvs (map scaledThing theta) pred
| otherwise
-> IrredPred ev_ty
-- --------------------- Dictionary types ---------------------------------
mkClassPred :: Class -> [Type] -> PredType
mkClassPred clas tys = mkTyConApp (classTyCon clas) tys
isDictTy :: Type -> Bool
isDictTy = isClassPred
getClassPredTys :: HasDebugCallStack => PredType -> (Class, [Type])
getClassPredTys ty = case getClassPredTys_maybe ty of
Just (clas, tys) -> (clas, tys)
Nothing -> pprPanic "getClassPredTys" (ppr ty)
getClassPredTys_maybe :: PredType -> Maybe (Class, [Type])
getClassPredTys_maybe ty = case splitTyConApp_maybe ty of
Just (tc, tys) | Just clas <- tyConClass_maybe tc -> Just (clas, tys)
_ -> Nothing
classMethodTy :: Id -> Type
-- Takes a class selector op :: forall a. C a => meth_ty
-- and returns the type of its method, meth_ty
-- The selector can be a superclass selector, in which case
-- you get back a superclass
classMethodTy sel_id
= funResultTy $ -- meth_ty
dropForAlls $ -- C a => meth_ty
varType sel_id -- forall a. C n => meth_ty
classMethodInstTy :: Id -> [Type] -> Type
-- Takes a class selector op :: forall a b. C a b => meth_ty
-- and the types [ty1, ty2] at which it is instantiated,
-- returns the instantiated type of its method, meth_ty[t1/a,t2/b]
-- The selector can be a superclass selector, in which case
-- you get back a superclass
classMethodInstTy sel_id arg_tys
= funResultTy $
piResultTys (varType sel_id) arg_tys
-- --------------------- Equality predicates ---------------------------------
-- | A choice of equality relation. This is separate from the type 'Role'
-- because 'Phantom' does not define a (non-trivial) equality relation.
data EqRel = NomEq | ReprEq
deriving (Eq, Ord)
instance Outputable EqRel where
ppr NomEq = text "nominal equality"
ppr ReprEq = text "representational equality"
eqRelRole :: EqRel -> Role
eqRelRole NomEq = Nominal
eqRelRole ReprEq = Representational
getEqPredTys :: PredType -> (Type, Type)
getEqPredTys ty
= case splitTyConApp_maybe ty of
Just (tc, [_, _, ty1, ty2])
| tc `hasKey` eqPrimTyConKey
|| tc `hasKey` eqReprPrimTyConKey
-> (ty1, ty2)
_ -> pprPanic "getEqPredTys" (ppr ty)
getEqPredTys_maybe :: PredType -> Maybe (Role, Type, Type)
getEqPredTys_maybe ty
= case splitTyConApp_maybe ty of
Just (tc, [_, _, ty1, ty2])
| tc `hasKey` eqPrimTyConKey -> Just (Nominal, ty1, ty2)
| tc `hasKey` eqReprPrimTyConKey -> Just (Representational, ty1, ty2)
_ -> Nothing
getEqPredRole :: PredType -> Role
getEqPredRole ty = eqRelRole (predTypeEqRel ty)
-- | Get the equality relation relevant for a pred type.
predTypeEqRel :: PredType -> EqRel
predTypeEqRel ty
| Just (tc, _) <- splitTyConApp_maybe ty
, tc `hasKey` eqReprPrimTyConKey
= ReprEq
| otherwise
= NomEq
{-------------------------------------------
Predicates on PredType
--------------------------------------------}
{-
Note [Evidence for quantified constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The superclass mechanism in GHC.Tc.Solver.Canonical.makeSuperClasses risks
taking a quantified constraint like
(forall a. C a => a ~ b)
and generate superclass evidence
(forall a. C a => a ~# b)
This is a funny thing: neither isPredTy nor isCoVarType are true
of it. So we are careful not to generate it in the first place:
see Note [Equality superclasses in quantified constraints]
in GHC.Tc.Solver.Canonical.
-}
isEvVarType :: Type -> Bool
-- True of (a) predicates, of kind Constraint, such as (Eq a), and (a ~ b)
-- (b) coercion types, such as (t1 ~# t2) or (t1 ~R# t2)
-- See Note [Types for coercions, predicates, and evidence] in GHC.Core.TyCo.Rep
-- See Note [Evidence for quantified constraints]
isEvVarType ty = isCoVarType ty || isPredTy ty
isEqPredClass :: Class -> Bool
-- True of (~) and (~~)
isEqPredClass cls = cls `hasKey` eqTyConKey
|| cls `hasKey` heqTyConKey
isClassPred, isEqPred, isEqPrimPred :: PredType -> Bool
isClassPred ty = case tyConAppTyCon_maybe ty of
Just tyCon | isClassTyCon tyCon -> True
_ -> False
isEqPred ty -- True of (a ~ b) and (a ~~ b)
-- ToDo: should we check saturation?
| Just tc <- tyConAppTyCon_maybe ty
, Just cls <- tyConClass_maybe tc
= isEqPredClass cls
| otherwise
= False
isEqPrimPred ty = isCoVarType ty
-- True of (a ~# b) (a ~R# b)
isCTupleClass :: Class -> Bool
isCTupleClass cls = isTupleTyCon (classTyCon cls)
{- *********************************************************************
* *
Implicit parameters
* *
********************************************************************* -}
isIPTyCon :: TyCon -> Bool
isIPTyCon tc = tc `hasKey` ipClassKey
-- Class and its corresponding TyCon have the same Unique
isIPClass :: Class -> Bool
isIPClass cls = cls `hasKey` ipClassKey
isIPLikePred :: Type -> Bool
-- See Note [Local implicit parameters]
isIPLikePred = is_ip_like_pred initIPRecTc
is_ip_like_pred :: RecTcChecker -> Type -> Bool
is_ip_like_pred rec_clss ty
| Just (tc, tys) <- splitTyConApp_maybe ty
, Just rec_clss' <- if isTupleTyCon tc -- Tuples never cause recursion
then Just rec_clss
else checkRecTc rec_clss tc
, Just cls <- tyConClass_maybe tc
= isIPClass cls || has_ip_super_classes rec_clss' cls tys
| otherwise
= False -- Includes things like (D []) where D is
-- a Constraint-ranged family; #7785
hasIPSuperClasses :: Class -> [Type] -> Bool
-- See Note [Local implicit parameters]
hasIPSuperClasses = has_ip_super_classes initIPRecTc
has_ip_super_classes :: RecTcChecker -> Class -> [Type] -> Bool
has_ip_super_classes rec_clss cls tys
= any ip_ish (classSCSelIds cls)
where
-- Check that the type of a superclass determines its value
-- sc_sel_id :: forall a b. C a b -> <superclass type>
ip_ish sc_sel_id = is_ip_like_pred rec_clss $
classMethodInstTy sc_sel_id tys
initIPRecTc :: RecTcChecker
initIPRecTc = setRecTcMaxBound 1 initRecTc
{- Note [Local implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function isIPLikePred tells if this predicate, or any of its
superclasses, is an implicit parameter.
Why are implicit parameters special? Unlike normal classes, we can
have local instances for implicit parameters, in the form of
let ?x = True in ...
So in various places we must be careful not to assume that any value
of the right type will do; we must carefully look for the innermost binding.
So isIPLikePred checks whether this is an implicit parameter, or has
a superclass that is an implicit parameter.
Several wrinkles
* We must be careful with superclasses, as #18649 showed. Haskell
doesn't allow an implicit parameter as a superclass
class (?x::a) => C a where ...
but with a constraint tuple we might have
(% Eq a, ?x::Int %)
and /its/ superclasses, namely (Eq a) and (?x::Int), /do/ include an
implicit parameter.
With ConstraintKinds this can apply to /any/ class, e.g.
class sc => C sc where ...
Then (C (?x::Int)) has (?x::Int) as a superclass. So we must
instantiate and check each superclass, one by one, in
hasIPSuperClasses.
* With -XRecursiveSuperClasses, the superclass hunt can go on forever,
so we need a RecTcChecker to cut it off.
* Another apparent additional complexity involves type families. For
example, consider
type family D (v::*->*) :: Constraint
type instance D [] = ()
f :: D v => v Char -> Int
If we see a call (f "foo"), we'll pass a "dictionary"
() |> (g :: () ~ D [])
and it's good to specialise f at this dictionary.
So the question is: can an implicit parameter "hide inside" a
type-family constraint like (D a). Well, no. We don't allow
type instance D Maybe = ?x:Int
Hence the umbrella 'otherwise' case in is_ip_like_pred. See #7785.
Small worries (Sept 20):
* I don't see what stops us having that 'type instance'. Indeed I
think nothing does.
* I'm a little concerned about type variables; such a variable might
be instantiated to an implicit parameter. I don't think this
matters in the cases for which isIPLikePred is used, and it's pretty
obscure anyway.
* The superclass hunt stops when it encounters the same class again,
but in principle we could have the same class, differently instantiated,
and the second time it could have an implicit parameter
I'm going to treat these as problems for another day. They are all exotic. -}
{- *********************************************************************
* *
Evidence variables
* *
********************************************************************* -}
isEvVar :: Var -> Bool
isEvVar var = isEvVarType (varType var)
isDictId :: Id -> Bool
isDictId id = isDictTy (varType id)
|