1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
|
{-# LANGUAGE CPP #-}
module GHC.Core.TyCo.FVs
( shallowTyCoVarsOfType, shallowTyCoVarsOfTypes,
tyCoVarsOfType, tyCoVarsOfTypes,
tyCoVarsOfTypeDSet, tyCoVarsOfTypesDSet,
tyCoFVsBndr, tyCoFVsVarBndr, tyCoFVsVarBndrs,
tyCoFVsOfType, tyCoVarsOfTypeList,
tyCoFVsOfTypes, tyCoVarsOfTypesList,
deepTcvFolder,
shallowTyCoVarsOfTyVarEnv, shallowTyCoVarsOfCoVarEnv,
shallowTyCoVarsOfCo, shallowTyCoVarsOfCos,
tyCoVarsOfCo, tyCoVarsOfCos, tyCoVarsOfMCo,
coVarsOfType, coVarsOfTypes,
coVarsOfCo, coVarsOfCos,
tyCoVarsOfCoDSet,
tyCoFVsOfCo, tyCoFVsOfCos,
tyCoVarsOfCoList,
almostDevoidCoVarOfCo,
-- Injective free vars
injectiveVarsOfType, injectiveVarsOfTypes,
invisibleVarsOfType, invisibleVarsOfTypes,
-- No Free vars
noFreeVarsOfType, noFreeVarsOfTypes, noFreeVarsOfCo,
-- * Well-scoped free variables
scopedSort, tyCoVarsOfTypeWellScoped,
tyCoVarsOfTypesWellScoped,
-- * Closing over kinds
closeOverKindsDSet, closeOverKindsList,
closeOverKinds,
-- * Raw materials
Endo(..), runTyCoVars
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import {-# SOURCE #-} GHC.Core.Type (coreView, partitionInvisibleTypes)
import Data.Monoid as DM ( Endo(..), All(..) )
import GHC.Core.TyCo.Rep
import GHC.Core.TyCon
import GHC.Types.Var
import GHC.Utils.FV
import GHC.Types.Unique.FM
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Utils.Misc
import GHC.Utils.Panic
{-
%************************************************************************
%* *
Free variables of types and coercions
%* *
%************************************************************************
-}
{- Note [Shallow and deep free variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Definitions
* Shallow free variables of a type: the variables
affected by substitution. Specifically, the (TyVarTy tv)
and (CoVar cv) that appear
- In the type and coercions appearing in the type
- In shallow free variables of the kind of a Forall binder
but NOT in the kind of the /occurrences/ of a type variable.
* Deep free variables of a type: shallow free variables, plus
the deep free variables of the kinds of those variables.
That is, deepFVs( t ) = closeOverKinds( shallowFVs( t ) )
Examples:
Type Shallow Deep
---------------------------------
(a : (k:Type)) {a} {a,k}
forall (a:(k:Type)). a {k} {k}
(a:k->Type) (b:k) {a,b} {a,b,k}
-}
{- Note [Free variables of types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The family of functions tyCoVarsOfType, tyCoVarsOfTypes etc, returns
a VarSet that is closed over the types of its variables. More precisely,
if S = tyCoVarsOfType( t )
and (a:k) is in S
then tyCoVarsOftype( k ) is a subset of S
Example: The tyCoVars of this ((a:* -> k) Int) is {a, k}.
We could /not/ close over the kinds of the variable occurrences, and
instead do so at call sites, but it seems that we always want to do
so, so it's easiest to do it here.
It turns out that getting the free variables of types is performance critical,
so we profiled several versions, exploring different implementation strategies.
1. Baseline version: uses FV naively. Essentially:
tyCoVarsOfType ty = fvVarSet $ tyCoFVsOfType ty
This is not nice, because FV introduces some overhead to implement
determinism, and through its "interesting var" function, neither of which
we need here, so they are a complete waste.
2. UnionVarSet version: instead of reusing the FV-based code, we simply used
VarSets directly, trying to avoid the overhead of FV. E.g.:
-- FV version:
tyCoFVsOfType (AppTy fun arg) a b c = (tyCoFVsOfType fun `unionFV` tyCoFVsOfType arg) a b c
-- UnionVarSet version:
tyCoVarsOfType (AppTy fun arg) = (tyCoVarsOfType fun `unionVarSet` tyCoVarsOfType arg)
This looks deceptively similar, but while FV internally builds a list- and
set-generating function, the VarSet functions manipulate sets directly, and
the latter performs a lot worse than the naive FV version.
3. Accumulator-style VarSet version: this is what we use now. We do use VarSet
as our data structure, but delegate the actual work to a new
ty_co_vars_of_... family of functions, which use accumulator style and the
"in-scope set" filter found in the internals of FV, but without the
determinism overhead.
See #14880.
Note [Closing over free variable kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tyCoVarsOfType and tyCoFVsOfType, while traversing a type, will also close over
free variable kinds. In previous GHC versions, this happened naively: whenever
we would encounter an occurrence of a free type variable, we would close over
its kind. This, however is wrong for two reasons (see #14880):
1. Efficiency. If we have Proxy (a::k) -> Proxy (a::k) -> Proxy (a::k), then
we don't want to have to traverse k more than once.
2. Correctness. Imagine we have forall k. b -> k, where b has
kind k, for some k bound in an outer scope. If we look at b's kind inside
the forall, we'll collect that k is free and then remove k from the set of
free variables. This is plain wrong. We must instead compute that b is free
and then conclude that b's kind is free.
An obvious first approach is to move the closing-over-kinds from the
occurrences of a type variable to after finding the free vars - however, this
turns out to introduce performance regressions, and isn't even entirely
correct.
In fact, it isn't even important *when* we close over kinds; what matters is
that we handle each type var exactly once, and that we do it in the right
context.
So the next approach we tried was to use the "in-scope set" part of FV or the
equivalent argument in the accumulator-style `ty_co_vars_of_type` function, to
say "don't bother with variables we have already closed over". This should work
fine in theory, but the code is complicated and doesn't perform well.
But there is a simpler way, which is implemented here. Consider the two points
above:
1. Efficiency: we now have an accumulator, so the second time we encounter 'a',
we'll ignore it, certainly not looking at its kind - this is why
pre-checking set membership before inserting ends up not only being faster,
but also being correct.
2. Correctness: we have an "in-scope set" (I think we should call it it a
"bound-var set"), specifying variables that are bound by a forall in the type
we are traversing; we simply ignore these variables, certainly not looking at
their kind.
So now consider:
forall k. b -> k
where b :: k->Type is free; but of course, it's a different k! When looking at
b -> k we'll have k in the bound-var set. So we'll ignore the k. But suppose
this is our first encounter with b; we want the free vars of its kind. But we
want to behave as if we took the free vars of its kind at the end; that is,
with no bound vars in scope.
So the solution is easy. The old code was this:
ty_co_vars_of_type (TyVarTy v) is acc
| v `elemVarSet` is = acc
| v `elemVarSet` acc = acc
| otherwise = ty_co_vars_of_type (tyVarKind v) is (extendVarSet acc v)
Now all we need to do is take the free vars of tyVarKind v *with an empty
bound-var set*, thus:
ty_co_vars_of_type (TyVarTy v) is acc
| v `elemVarSet` is = acc
| v `elemVarSet` acc = acc
| otherwise = ty_co_vars_of_type (tyVarKind v) emptyVarSet (extendVarSet acc v)
^^^^^^^^^^^
And that's it. This works because a variable is either bound or free. If it is bound,
then we won't look at it at all. If it is free, then all the variables free in its
kind are free -- regardless of whether some local variable has the same Unique.
So if we're looking at a variable occurrence at all, then all variables in its
kind are free.
-}
{- *********************************************************************
* *
Endo for free variables
* *
********************************************************************* -}
{- Note [Acumulating parameter free variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can use foldType to build an accumulating-parameter version of a
free-var finder, thus:
fvs :: Type -> TyCoVarSet
fvs ty = appEndo (foldType folder ty) emptyVarSet
Recall that
foldType :: TyCoFolder env a -> env -> Type -> a
newtype Endo a = Endo (a -> a) -- In Data.Monoid
instance Monoid a => Monoid (Endo a) where
(Endo f) `mappend` (Endo g) = Endo (f.g)
appEndo :: Endo a -> a -> a
appEndo (Endo f) x = f x
So `mappend` for Endos is just function composition.
It's very important that, after optimisation, we end up with
* an arity-three function
* that is strict in the accumulator
fvs env (TyVarTy v) acc
| v `elemVarSet` env = acc
| v `elemVarSet` acc = acc
| otherwise = acc `extendVarSet` v
fvs env (AppTy t1 t2) = fvs env t1 (fvs env t2 acc)
...
The "strict in the accumulator" part is to ensure that in the
AppTy equation we don't build a thunk for (fvs env t2 acc).
The optimiser does do all this, but not very robustly. It depends
critially on the basic arity-2 function not being exported, so that
all its calls are visibly to three arguments. This analysis is
done by the Call Arity pass.
TL;DR: check this regularly!
-}
runTyCoVars :: Endo TyCoVarSet -> TyCoVarSet
{-# INLINE runTyCoVars #-}
runTyCoVars f = appEndo f emptyVarSet
noView :: Type -> Maybe Type
noView _ = Nothing
{- *********************************************************************
* *
Deep free variables
See Note [Shallow and deep free variables]
* *
********************************************************************* -}
tyCoVarsOfType :: Type -> TyCoVarSet
tyCoVarsOfType ty = runTyCoVars (deep_ty ty)
-- Alternative:
-- tyCoVarsOfType ty = closeOverKinds (shallowTyCoVarsOfType ty)
tyCoVarsOfTypes :: [Type] -> TyCoVarSet
tyCoVarsOfTypes tys = runTyCoVars (deep_tys tys)
-- Alternative:
-- tyCoVarsOfTypes tys = closeOverKinds (shallowTyCoVarsOfTypes tys)
tyCoVarsOfCo :: Coercion -> TyCoVarSet
-- See Note [Free variables of Coercions]
tyCoVarsOfCo co = runTyCoVars (deep_co co)
tyCoVarsOfMCo :: MCoercion -> TyCoVarSet
tyCoVarsOfMCo MRefl = emptyVarSet
tyCoVarsOfMCo (MCo co) = tyCoVarsOfCo co
tyCoVarsOfCos :: [Coercion] -> TyCoVarSet
tyCoVarsOfCos cos = runTyCoVars (deep_cos cos)
deep_ty :: Type -> Endo TyCoVarSet
deep_tys :: [Type] -> Endo TyCoVarSet
deep_co :: Coercion -> Endo TyCoVarSet
deep_cos :: [Coercion] -> Endo TyCoVarSet
(deep_ty, deep_tys, deep_co, deep_cos) = foldTyCo deepTcvFolder emptyVarSet
deepTcvFolder :: TyCoFolder TyCoVarSet (Endo TyCoVarSet)
deepTcvFolder = TyCoFolder { tcf_view = noView
, tcf_tyvar = do_tcv, tcf_covar = do_tcv
, tcf_hole = do_hole, tcf_tycobinder = do_bndr }
where
do_tcv is v = Endo do_it
where
do_it acc | v `elemVarSet` is = acc
| v `elemVarSet` acc = acc
| otherwise = appEndo (deep_ty (varType v)) $
acc `extendVarSet` v
do_bndr is tcv _ = extendVarSet is tcv
do_hole is hole = do_tcv is (coHoleCoVar hole)
-- See Note [CoercionHoles and coercion free variables]
-- in GHC.Core.TyCo.Rep
{- *********************************************************************
* *
Shallow free variables
See Note [Shallow and deep free variables]
* *
********************************************************************* -}
shallowTyCoVarsOfType :: Type -> TyCoVarSet
-- See Note [Free variables of types]
shallowTyCoVarsOfType ty = runTyCoVars (shallow_ty ty)
shallowTyCoVarsOfTypes :: [Type] -> TyCoVarSet
shallowTyCoVarsOfTypes tys = runTyCoVars (shallow_tys tys)
shallowTyCoVarsOfCo :: Coercion -> TyCoVarSet
shallowTyCoVarsOfCo co = runTyCoVars (shallow_co co)
shallowTyCoVarsOfCos :: [Coercion] -> TyCoVarSet
shallowTyCoVarsOfCos cos = runTyCoVars (shallow_cos cos)
-- | Returns free variables of types, including kind variables as
-- a non-deterministic set. For type synonyms it does /not/ expand the
-- synonym.
shallowTyCoVarsOfTyVarEnv :: TyVarEnv Type -> TyCoVarSet
-- See Note [Free variables of types]
shallowTyCoVarsOfTyVarEnv tys = shallowTyCoVarsOfTypes (nonDetEltsUFM tys)
-- It's OK to use nonDetEltsUFM here because we immediately
-- forget the ordering by returning a set
shallowTyCoVarsOfCoVarEnv :: CoVarEnv Coercion -> TyCoVarSet
shallowTyCoVarsOfCoVarEnv cos = shallowTyCoVarsOfCos (nonDetEltsUFM cos)
-- It's OK to use nonDetEltsUFM here because we immediately
-- forget the ordering by returning a set
shallow_ty :: Type -> Endo TyCoVarSet
shallow_tys :: [Type] -> Endo TyCoVarSet
shallow_co :: Coercion -> Endo TyCoVarSet
shallow_cos :: [Coercion] -> Endo TyCoVarSet
(shallow_ty, shallow_tys, shallow_co, shallow_cos) = foldTyCo shallowTcvFolder emptyVarSet
shallowTcvFolder :: TyCoFolder TyCoVarSet (Endo TyCoVarSet)
shallowTcvFolder = TyCoFolder { tcf_view = noView
, tcf_tyvar = do_tcv, tcf_covar = do_tcv
, tcf_hole = do_hole, tcf_tycobinder = do_bndr }
where
do_tcv is v = Endo do_it
where
do_it acc | v `elemVarSet` is = acc
| v `elemVarSet` acc = acc
| otherwise = acc `extendVarSet` v
do_bndr is tcv _ = extendVarSet is tcv
do_hole _ _ = mempty -- Ignore coercion holes
{- *********************************************************************
* *
Free coercion variables
* *
********************************************************************* -}
{- Note [Finding free coercion varibles]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here we are only interested in the free /coercion/ variables.
We can achieve this through a slightly differnet TyCo folder.
Notice that we look deeply, into kinds.
See #14880.
-}
coVarsOfType :: Type -> CoVarSet
coVarsOfTypes :: [Type] -> CoVarSet
coVarsOfCo :: Coercion -> CoVarSet
coVarsOfCos :: [Coercion] -> CoVarSet
coVarsOfType ty = runTyCoVars (deep_cv_ty ty)
coVarsOfTypes tys = runTyCoVars (deep_cv_tys tys)
coVarsOfCo co = runTyCoVars (deep_cv_co co)
coVarsOfCos cos = runTyCoVars (deep_cv_cos cos)
deep_cv_ty :: Type -> Endo CoVarSet
deep_cv_tys :: [Type] -> Endo CoVarSet
deep_cv_co :: Coercion -> Endo CoVarSet
deep_cv_cos :: [Coercion] -> Endo CoVarSet
(deep_cv_ty, deep_cv_tys, deep_cv_co, deep_cv_cos) = foldTyCo deepCoVarFolder emptyVarSet
deepCoVarFolder :: TyCoFolder TyCoVarSet (Endo CoVarSet)
deepCoVarFolder = TyCoFolder { tcf_view = noView
, tcf_tyvar = do_tyvar, tcf_covar = do_covar
, tcf_hole = do_hole, tcf_tycobinder = do_bndr }
where
do_tyvar _ _ = mempty
-- This do_tyvar means we won't see any CoVars in this
-- TyVar's kind. This may be wrong; but it's the way it's
-- always been. And its awkward to change, because
-- the tyvar won't end up in the accumulator, so
-- we'd look repeatedly. Blargh.
do_covar is v = Endo do_it
where
do_it acc | v `elemVarSet` is = acc
| v `elemVarSet` acc = acc
| otherwise = appEndo (deep_cv_ty (varType v)) $
acc `extendVarSet` v
do_bndr is tcv _ = extendVarSet is tcv
do_hole is hole = do_covar is (coHoleCoVar hole)
-- See Note [CoercionHoles and coercion free variables]
-- in GHC.Core.TyCo.Rep
{- *********************************************************************
* *
Closing over kinds
* *
********************************************************************* -}
------------- Closing over kinds -----------------
closeOverKinds :: TyCoVarSet -> TyCoVarSet
-- For each element of the input set,
-- add the deep free variables of its kind
closeOverKinds vs = nonDetStrictFoldVarSet do_one vs vs
where
do_one v acc = appEndo (deep_ty (varType v)) acc
{- --------------- Alternative version 1 (using FV) ------------
closeOverKinds = fvVarSet . closeOverKindsFV . nonDetEltsUniqSet
-}
{- ---------------- Alternative version 2 -------------
-- | Add the kind variables free in the kinds of the tyvars in the given set.
-- Returns a non-deterministic set.
closeOverKinds :: TyCoVarSet -> TyCoVarSet
closeOverKinds vs
= go vs vs
where
go :: VarSet -- Work list
-> VarSet -- Accumulator, always a superset of wl
-> VarSet
go wl acc
| isEmptyVarSet wl = acc
| otherwise = go wl_kvs (acc `unionVarSet` wl_kvs)
where
k v inner_acc = ty_co_vars_of_type (varType v) acc inner_acc
wl_kvs = nonDetFoldVarSet k emptyVarSet wl
-- wl_kvs = union of shallow free vars of the kinds of wl
-- but don't bother to collect vars in acc
-}
{- ---------------- Alternative version 3 -------------
-- | Add the kind variables free in the kinds of the tyvars in the given set.
-- Returns a non-deterministic set.
closeOverKinds :: TyVarSet -> TyVarSet
closeOverKinds vs = close_over_kinds vs emptyVarSet
close_over_kinds :: TyVarSet -- Work list
-> TyVarSet -- Accumulator
-> TyVarSet
-- Precondition: in any call (close_over_kinds wl acc)
-- for every tv in acc, the shallow kind-vars of tv
-- are either in the work list wl, or in acc
-- Postcondition: result is the deep free vars of (wl `union` acc)
close_over_kinds wl acc
= nonDetFoldVarSet do_one acc wl
where
do_one :: Var -> TyVarSet -> TyVarSet
-- (do_one v acc) adds v and its deep free-vars to acc
do_one v acc | v `elemVarSet` acc
= acc
| otherwise
= close_over_kinds (shallowTyCoVarsOfType (varType v)) $
acc `extendVarSet` v
-}
{- *********************************************************************
* *
The FV versions return deterministic results
* *
********************************************************************* -}
-- | Given a list of tyvars returns a deterministic FV computation that
-- returns the given tyvars with the kind variables free in the kinds of the
-- given tyvars.
closeOverKindsFV :: [TyVar] -> FV
closeOverKindsFV tvs =
mapUnionFV (tyCoFVsOfType . tyVarKind) tvs `unionFV` mkFVs tvs
-- | Add the kind variables free in the kinds of the tyvars in the given set.
-- Returns a deterministically ordered list.
closeOverKindsList :: [TyVar] -> [TyVar]
closeOverKindsList tvs = fvVarList $ closeOverKindsFV tvs
-- | Add the kind variables free in the kinds of the tyvars in the given set.
-- Returns a deterministic set.
closeOverKindsDSet :: DTyVarSet -> DTyVarSet
closeOverKindsDSet = fvDVarSet . closeOverKindsFV . dVarSetElems
-- | `tyCoFVsOfType` that returns free variables of a type in a deterministic
-- set. For explanation of why using `VarSet` is not deterministic see
-- Note [Deterministic FV] in "GHC.Utils.FV".
tyCoVarsOfTypeDSet :: Type -> DTyCoVarSet
-- See Note [Free variables of types]
tyCoVarsOfTypeDSet ty = fvDVarSet $ tyCoFVsOfType ty
-- | `tyCoFVsOfType` that returns free variables of a type in deterministic
-- order. For explanation of why using `VarSet` is not deterministic see
-- Note [Deterministic FV] in "GHC.Utils.FV".
tyCoVarsOfTypeList :: Type -> [TyCoVar]
-- See Note [Free variables of types]
tyCoVarsOfTypeList ty = fvVarList $ tyCoFVsOfType ty
-- | Returns free variables of types, including kind variables as
-- a deterministic set. For type synonyms it does /not/ expand the
-- synonym.
tyCoVarsOfTypesDSet :: [Type] -> DTyCoVarSet
-- See Note [Free variables of types]
tyCoVarsOfTypesDSet tys = fvDVarSet $ tyCoFVsOfTypes tys
-- | Returns free variables of types, including kind variables as
-- a deterministically ordered list. For type synonyms it does /not/ expand the
-- synonym.
tyCoVarsOfTypesList :: [Type] -> [TyCoVar]
-- See Note [Free variables of types]
tyCoVarsOfTypesList tys = fvVarList $ tyCoFVsOfTypes tys
-- | The worker for `tyCoFVsOfType` and `tyCoFVsOfTypeList`.
-- The previous implementation used `unionVarSet` which is O(n+m) and can
-- make the function quadratic.
-- It's exported, so that it can be composed with
-- other functions that compute free variables.
-- See Note [FV naming conventions] in "GHC.Utils.FV".
--
-- Eta-expanded because that makes it run faster (apparently)
-- See Note [FV eta expansion] in "GHC.Utils.FV" for explanation.
tyCoFVsOfType :: Type -> FV
-- See Note [Free variables of types]
tyCoFVsOfType (TyVarTy v) f bound_vars (acc_list, acc_set)
| not (f v) = (acc_list, acc_set)
| v `elemVarSet` bound_vars = (acc_list, acc_set)
| v `elemVarSet` acc_set = (acc_list, acc_set)
| otherwise = tyCoFVsOfType (tyVarKind v) f
emptyVarSet -- See Note [Closing over free variable kinds]
(v:acc_list, extendVarSet acc_set v)
tyCoFVsOfType (TyConApp _ tys) f bound_vars acc = tyCoFVsOfTypes tys f bound_vars acc
tyCoFVsOfType (LitTy {}) f bound_vars acc = emptyFV f bound_vars acc
tyCoFVsOfType (AppTy fun arg) f bound_vars acc = (tyCoFVsOfType fun `unionFV` tyCoFVsOfType arg) f bound_vars acc
tyCoFVsOfType (FunTy _ w arg res) f bound_vars acc = (tyCoFVsOfType w `unionFV` tyCoFVsOfType arg `unionFV` tyCoFVsOfType res) f bound_vars acc
tyCoFVsOfType (ForAllTy bndr ty) f bound_vars acc = tyCoFVsBndr bndr (tyCoFVsOfType ty) f bound_vars acc
tyCoFVsOfType (CastTy ty co) f bound_vars acc = (tyCoFVsOfType ty `unionFV` tyCoFVsOfCo co) f bound_vars acc
tyCoFVsOfType (CoercionTy co) f bound_vars acc = tyCoFVsOfCo co f bound_vars acc
tyCoFVsBndr :: TyCoVarBinder -> FV -> FV
-- Free vars of (forall b. <thing with fvs>)
tyCoFVsBndr (Bndr tv _) fvs = tyCoFVsVarBndr tv fvs
tyCoFVsVarBndrs :: [Var] -> FV -> FV
tyCoFVsVarBndrs vars fvs = foldr tyCoFVsVarBndr fvs vars
tyCoFVsVarBndr :: Var -> FV -> FV
tyCoFVsVarBndr var fvs
= tyCoFVsOfType (varType var) -- Free vars of its type/kind
`unionFV` delFV var fvs -- Delete it from the thing-inside
tyCoFVsOfTypes :: [Type] -> FV
-- See Note [Free variables of types]
tyCoFVsOfTypes (ty:tys) fv_cand in_scope acc = (tyCoFVsOfType ty `unionFV` tyCoFVsOfTypes tys) fv_cand in_scope acc
tyCoFVsOfTypes [] fv_cand in_scope acc = emptyFV fv_cand in_scope acc
-- | Get a deterministic set of the vars free in a coercion
tyCoVarsOfCoDSet :: Coercion -> DTyCoVarSet
-- See Note [Free variables of types]
tyCoVarsOfCoDSet co = fvDVarSet $ tyCoFVsOfCo co
tyCoVarsOfCoList :: Coercion -> [TyCoVar]
-- See Note [Free variables of types]
tyCoVarsOfCoList co = fvVarList $ tyCoFVsOfCo co
tyCoFVsOfMCo :: MCoercion -> FV
tyCoFVsOfMCo MRefl = emptyFV
tyCoFVsOfMCo (MCo co) = tyCoFVsOfCo co
tyCoFVsOfCo :: Coercion -> FV
-- Extracts type and coercion variables from a coercion
-- See Note [Free variables of types]
tyCoFVsOfCo (Refl ty) fv_cand in_scope acc
= tyCoFVsOfType ty fv_cand in_scope acc
tyCoFVsOfCo (GRefl _ ty mco) fv_cand in_scope acc
= (tyCoFVsOfType ty `unionFV` tyCoFVsOfMCo mco) fv_cand in_scope acc
tyCoFVsOfCo (TyConAppCo _ _ cos) fv_cand in_scope acc = tyCoFVsOfCos cos fv_cand in_scope acc
tyCoFVsOfCo (AppCo co arg) fv_cand in_scope acc
= (tyCoFVsOfCo co `unionFV` tyCoFVsOfCo arg) fv_cand in_scope acc
tyCoFVsOfCo (ForAllCo tv kind_co co) fv_cand in_scope acc
= (tyCoFVsVarBndr tv (tyCoFVsOfCo co) `unionFV` tyCoFVsOfCo kind_co) fv_cand in_scope acc
tyCoFVsOfCo (FunCo _ w co1 co2) fv_cand in_scope acc
= (tyCoFVsOfCo co1 `unionFV` tyCoFVsOfCo co2 `unionFV` tyCoFVsOfCo w) fv_cand in_scope acc
tyCoFVsOfCo (CoVarCo v) fv_cand in_scope acc
= tyCoFVsOfCoVar v fv_cand in_scope acc
tyCoFVsOfCo (HoleCo h) fv_cand in_scope acc
= tyCoFVsOfCoVar (coHoleCoVar h) fv_cand in_scope acc
-- See Note [CoercionHoles and coercion free variables]
tyCoFVsOfCo (AxiomInstCo _ _ cos) fv_cand in_scope acc = tyCoFVsOfCos cos fv_cand in_scope acc
tyCoFVsOfCo (UnivCo p _ t1 t2) fv_cand in_scope acc
= (tyCoFVsOfProv p `unionFV` tyCoFVsOfType t1
`unionFV` tyCoFVsOfType t2) fv_cand in_scope acc
tyCoFVsOfCo (SymCo co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc
tyCoFVsOfCo (TransCo co1 co2) fv_cand in_scope acc = (tyCoFVsOfCo co1 `unionFV` tyCoFVsOfCo co2) fv_cand in_scope acc
tyCoFVsOfCo (NthCo _ _ co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc
tyCoFVsOfCo (LRCo _ co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc
tyCoFVsOfCo (InstCo co arg) fv_cand in_scope acc = (tyCoFVsOfCo co `unionFV` tyCoFVsOfCo arg) fv_cand in_scope acc
tyCoFVsOfCo (KindCo co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc
tyCoFVsOfCo (SubCo co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc
tyCoFVsOfCo (AxiomRuleCo _ cs) fv_cand in_scope acc = tyCoFVsOfCos cs fv_cand in_scope acc
tyCoFVsOfCoVar :: CoVar -> FV
tyCoFVsOfCoVar v fv_cand in_scope acc
= (unitFV v `unionFV` tyCoFVsOfType (varType v)) fv_cand in_scope acc
tyCoFVsOfProv :: UnivCoProvenance -> FV
tyCoFVsOfProv (PhantomProv co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc
tyCoFVsOfProv (ProofIrrelProv co) fv_cand in_scope acc = tyCoFVsOfCo co fv_cand in_scope acc
tyCoFVsOfProv (PluginProv _) fv_cand in_scope acc = emptyFV fv_cand in_scope acc
tyCoFVsOfProv CorePrepProv fv_cand in_scope acc = emptyFV fv_cand in_scope acc
tyCoFVsOfCos :: [Coercion] -> FV
tyCoFVsOfCos [] fv_cand in_scope acc = emptyFV fv_cand in_scope acc
tyCoFVsOfCos (co:cos) fv_cand in_scope acc = (tyCoFVsOfCo co `unionFV` tyCoFVsOfCos cos) fv_cand in_scope acc
----- Whether a covar is /Almost Devoid/ in a type or coercion ----
-- | Given a covar and a coercion, returns True if covar is almost devoid in
-- the coercion. That is, covar can only appear in Refl and GRefl.
-- See last wrinkle in Note [Unused coercion variable in ForAllCo] in "GHC.Core.Coercion"
almostDevoidCoVarOfCo :: CoVar -> Coercion -> Bool
almostDevoidCoVarOfCo cv co =
almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_co :: Coercion -> CoVar -> Bool
almost_devoid_co_var_of_co (Refl {}) _ = True -- covar is allowed in Refl and
almost_devoid_co_var_of_co (GRefl {}) _ = True -- GRefl, so we don't look into
-- the coercions
almost_devoid_co_var_of_co (TyConAppCo _ _ cos) cv
= almost_devoid_co_var_of_cos cos cv
almost_devoid_co_var_of_co (AppCo co arg) cv
= almost_devoid_co_var_of_co co cv
&& almost_devoid_co_var_of_co arg cv
almost_devoid_co_var_of_co (ForAllCo v kind_co co) cv
= almost_devoid_co_var_of_co kind_co cv
&& (v == cv || almost_devoid_co_var_of_co co cv)
almost_devoid_co_var_of_co (FunCo _ w co1 co2) cv
= almost_devoid_co_var_of_co w cv
&& almost_devoid_co_var_of_co co1 cv
&& almost_devoid_co_var_of_co co2 cv
almost_devoid_co_var_of_co (CoVarCo v) cv = v /= cv
almost_devoid_co_var_of_co (HoleCo h) cv = (coHoleCoVar h) /= cv
almost_devoid_co_var_of_co (AxiomInstCo _ _ cos) cv
= almost_devoid_co_var_of_cos cos cv
almost_devoid_co_var_of_co (UnivCo p _ t1 t2) cv
= almost_devoid_co_var_of_prov p cv
&& almost_devoid_co_var_of_type t1 cv
&& almost_devoid_co_var_of_type t2 cv
almost_devoid_co_var_of_co (SymCo co) cv
= almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_co (TransCo co1 co2) cv
= almost_devoid_co_var_of_co co1 cv
&& almost_devoid_co_var_of_co co2 cv
almost_devoid_co_var_of_co (NthCo _ _ co) cv
= almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_co (LRCo _ co) cv
= almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_co (InstCo co arg) cv
= almost_devoid_co_var_of_co co cv
&& almost_devoid_co_var_of_co arg cv
almost_devoid_co_var_of_co (KindCo co) cv
= almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_co (SubCo co) cv
= almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_co (AxiomRuleCo _ cs) cv
= almost_devoid_co_var_of_cos cs cv
almost_devoid_co_var_of_cos :: [Coercion] -> CoVar -> Bool
almost_devoid_co_var_of_cos [] _ = True
almost_devoid_co_var_of_cos (co:cos) cv
= almost_devoid_co_var_of_co co cv
&& almost_devoid_co_var_of_cos cos cv
almost_devoid_co_var_of_prov :: UnivCoProvenance -> CoVar -> Bool
almost_devoid_co_var_of_prov (PhantomProv co) cv
= almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_prov (ProofIrrelProv co) cv
= almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_prov (PluginProv _) _ = True
almost_devoid_co_var_of_prov CorePrepProv _ = True
almost_devoid_co_var_of_type :: Type -> CoVar -> Bool
almost_devoid_co_var_of_type (TyVarTy _) _ = True
almost_devoid_co_var_of_type (TyConApp _ tys) cv
= almost_devoid_co_var_of_types tys cv
almost_devoid_co_var_of_type (LitTy {}) _ = True
almost_devoid_co_var_of_type (AppTy fun arg) cv
= almost_devoid_co_var_of_type fun cv
&& almost_devoid_co_var_of_type arg cv
almost_devoid_co_var_of_type (FunTy _ w arg res) cv
= almost_devoid_co_var_of_type w cv
&& almost_devoid_co_var_of_type arg cv
&& almost_devoid_co_var_of_type res cv
almost_devoid_co_var_of_type (ForAllTy (Bndr v _) ty) cv
= almost_devoid_co_var_of_type (varType v) cv
&& (v == cv || almost_devoid_co_var_of_type ty cv)
almost_devoid_co_var_of_type (CastTy ty co) cv
= almost_devoid_co_var_of_type ty cv
&& almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_type (CoercionTy co) cv
= almost_devoid_co_var_of_co co cv
almost_devoid_co_var_of_types :: [Type] -> CoVar -> Bool
almost_devoid_co_var_of_types [] _ = True
almost_devoid_co_var_of_types (ty:tys) cv
= almost_devoid_co_var_of_type ty cv
&& almost_devoid_co_var_of_types tys cv
{- *********************************************************************
* *
Injective free vars
* *
********************************************************************* -}
-- | Returns the free variables of a 'Type' that are in injective positions.
-- Specifically, it finds the free variables while:
--
-- * Expanding type synonyms
--
-- * Ignoring the coercion in @(ty |> co)@
--
-- * Ignoring the non-injective fields of a 'TyConApp'
--
--
-- For example, if @F@ is a non-injective type family, then:
--
-- @
-- injectiveTyVarsOf( Either c (Maybe (a, F b c)) ) = {a,c}
-- @
--
-- If @'injectiveVarsOfType' ty = itvs@, then knowing @ty@ fixes @itvs@.
-- More formally, if
-- @a@ is in @'injectiveVarsOfType' ty@
-- and @S1(ty) ~ S2(ty)@,
-- then @S1(a) ~ S2(a)@,
-- where @S1@ and @S2@ are arbitrary substitutions.
--
-- See @Note [When does a tycon application need an explicit kind signature?]@.
injectiveVarsOfType :: Bool -- ^ Should we look under injective type families?
-- See Note [Coverage condition for injective type families]
-- in "GHC.Tc.Instance.Family".
-> Type -> FV
injectiveVarsOfType look_under_tfs = go
where
go ty | Just ty' <- coreView ty
= go ty'
go (TyVarTy v) = unitFV v `unionFV` go (tyVarKind v)
go (AppTy f a) = go f `unionFV` go a
go (FunTy _ w ty1 ty2) = go w `unionFV` go ty1 `unionFV` go ty2
go (TyConApp tc tys) =
case tyConInjectivityInfo tc of
Injective inj
| look_under_tfs || not (isTypeFamilyTyCon tc)
-> mapUnionFV go $
filterByList (inj ++ repeat True) tys
-- Oversaturated arguments to a tycon are
-- always injective, hence the repeat True
_ -> emptyFV
go (ForAllTy (Bndr tv _) ty) = go (tyVarKind tv) `unionFV` delFV tv (go ty)
go LitTy{} = emptyFV
go (CastTy ty _) = go ty
go CoercionTy{} = emptyFV
-- | Returns the free variables of a 'Type' that are in injective positions.
-- Specifically, it finds the free variables while:
--
-- * Expanding type synonyms
--
-- * Ignoring the coercion in @(ty |> co)@
--
-- * Ignoring the non-injective fields of a 'TyConApp'
--
-- See @Note [When does a tycon application need an explicit kind signature?]@.
injectiveVarsOfTypes :: Bool -- ^ look under injective type families?
-- See Note [Coverage condition for injective type families]
-- in "GHC.Tc.Instance.Family".
-> [Type] -> FV
injectiveVarsOfTypes look_under_tfs = mapUnionFV (injectiveVarsOfType look_under_tfs)
{- *********************************************************************
* *
Invisible vars
* *
********************************************************************* -}
-- | Returns the set of variables that are used invisibly anywhere within
-- the given type. A variable will be included even if it is used both visibly
-- and invisibly. An invisible use site includes:
-- * In the kind of a variable
-- * In the kind of a bound variable in a forall
-- * In a coercion
-- * In a Specified or Inferred argument to a function
-- See Note [VarBndrs, TyCoVarBinders, TyConBinders, and visibility] in "GHC.Core.TyCo.Rep"
invisibleVarsOfType :: Type -> FV
invisibleVarsOfType = go
where
go ty | Just ty' <- coreView ty
= go ty'
go (TyVarTy v) = go (tyVarKind v)
go (AppTy f a) = go f `unionFV` go a
go (FunTy _ w ty1 ty2) = go w `unionFV` go ty1 `unionFV` go ty2
go (TyConApp tc tys) = tyCoFVsOfTypes invisibles `unionFV`
invisibleVarsOfTypes visibles
where (invisibles, visibles) = partitionInvisibleTypes tc tys
go (ForAllTy tvb ty) = tyCoFVsBndr tvb $ go ty
go LitTy{} = emptyFV
go (CastTy ty co) = tyCoFVsOfCo co `unionFV` go ty
go (CoercionTy co) = tyCoFVsOfCo co
-- | Like 'invisibleVarsOfType', but for many types.
invisibleVarsOfTypes :: [Type] -> FV
invisibleVarsOfTypes = mapUnionFV invisibleVarsOfType
{- *********************************************************************
* *
No free vars
* *
********************************************************************* -}
nfvFolder :: TyCoFolder TyCoVarSet DM.All
nfvFolder = TyCoFolder { tcf_view = noView
, tcf_tyvar = do_tcv, tcf_covar = do_tcv
, tcf_hole = do_hole, tcf_tycobinder = do_bndr }
where
do_tcv is tv = All (tv `elemVarSet` is)
do_hole _ _ = All True -- I'm unsure; probably never happens
do_bndr is tv _ = is `extendVarSet` tv
nfv_ty :: Type -> DM.All
nfv_tys :: [Type] -> DM.All
nfv_co :: Coercion -> DM.All
(nfv_ty, nfv_tys, nfv_co, _) = foldTyCo nfvFolder emptyVarSet
noFreeVarsOfType :: Type -> Bool
noFreeVarsOfType ty = DM.getAll (nfv_ty ty)
noFreeVarsOfTypes :: [Type] -> Bool
noFreeVarsOfTypes tys = DM.getAll (nfv_tys tys)
noFreeVarsOfCo :: Coercion -> Bool
noFreeVarsOfCo co = getAll (nfv_co co)
{- *********************************************************************
* *
scopedSort
* *
********************************************************************* -}
{- Note [ScopedSort]
~~~~~~~~~~~~~~~~~~~~
Consider
foo :: Proxy a -> Proxy (b :: k) -> Proxy (a :: k2) -> ()
This function type is implicitly generalised over [a, b, k, k2]. These
variables will be Specified; that is, they will be available for visible
type application. This is because they are written in the type signature
by the user.
However, we must ask: what order will they appear in? In cases without
dependency, this is easy: we just use the lexical left-to-right ordering
of first occurrence. With dependency, we cannot get off the hook so
easily.
We thus state:
* These variables appear in the order as given by ScopedSort, where
the input to ScopedSort is the left-to-right order of first occurrence.
Note that this applies only to *implicit* quantification, without a
`forall`. If the user writes a `forall`, then we just use the order given.
ScopedSort is defined thusly (as proposed in #15743):
* Work left-to-right through the input list, with a cursor.
* If variable v at the cursor is depended on by any earlier variable w,
move v immediately before the leftmost such w.
INVARIANT: The prefix of variables before the cursor form a valid telescope.
Note that ScopedSort makes sense only after type inference is done and all
types/kinds are fully settled and zonked.
-}
-- | Do a topological sort on a list of tyvars,
-- so that binders occur before occurrences
-- E.g. given [ a::k, k::*, b::k ]
-- it'll return a well-scoped list [ k::*, a::k, b::k ]
--
-- This is a deterministic sorting operation
-- (that is, doesn't depend on Uniques).
--
-- It is also meant to be stable: that is, variables should not
-- be reordered unnecessarily. This is specified in Note [ScopedSort]
-- See also Note [Ordering of implicit variables] in "GHC.Rename.HsType"
scopedSort :: [TyCoVar] -> [TyCoVar]
scopedSort = go [] []
where
go :: [TyCoVar] -- already sorted, in reverse order
-> [TyCoVarSet] -- each set contains all the variables which must be placed
-- before the tv corresponding to the set; they are accumulations
-- of the fvs in the sorted tvs' kinds
-- This list is in 1-to-1 correspondence with the sorted tyvars
-- INVARIANT:
-- all (\tl -> all (`subVarSet` head tl) (tail tl)) (tails fv_list)
-- That is, each set in the list is a superset of all later sets.
-> [TyCoVar] -- yet to be sorted
-> [TyCoVar]
go acc _fv_list [] = reverse acc
go acc fv_list (tv:tvs)
= go acc' fv_list' tvs
where
(acc', fv_list') = insert tv acc fv_list
insert :: TyCoVar -- var to insert
-> [TyCoVar] -- sorted list, in reverse order
-> [TyCoVarSet] -- list of fvs, as above
-> ([TyCoVar], [TyCoVarSet]) -- augmented lists
insert tv [] [] = ([tv], [tyCoVarsOfType (tyVarKind tv)])
insert tv (a:as) (fvs:fvss)
| tv `elemVarSet` fvs
, (as', fvss') <- insert tv as fvss
= (a:as', fvs `unionVarSet` fv_tv : fvss')
| otherwise
= (tv:a:as, fvs `unionVarSet` fv_tv : fvs : fvss)
where
fv_tv = tyCoVarsOfType (tyVarKind tv)
-- lists not in correspondence
insert _ _ _ = panic "scopedSort"
-- | Get the free vars of a type in scoped order
tyCoVarsOfTypeWellScoped :: Type -> [TyVar]
tyCoVarsOfTypeWellScoped = scopedSort . tyCoVarsOfTypeList
-- | Get the free vars of types in scoped order
tyCoVarsOfTypesWellScoped :: [Type] -> [TyVar]
tyCoVarsOfTypesWellScoped = scopedSort . tyCoVarsOfTypesList
|