1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
|
-- (c) The University of Glasgow 2006
{-# LANGUAGE ScopedTypeVariables, PatternSynonyms #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
module GHC.Core.Unify (
tcMatchTy, tcMatchTyKi,
tcMatchTys, tcMatchTyKis,
tcMatchTyX, tcMatchTysX, tcMatchTyKisX,
tcMatchTyX_BM, ruleMatchTyKiX,
-- * Rough matching
roughMatchTcs, instanceCantMatch,
typesCantMatch,
-- Side-effect free unification
tcUnifyTy, tcUnifyTyKi, tcUnifyTys, tcUnifyTyKis,
tcUnifyTysFG, tcUnifyTyWithTFs,
BindFlag(..),
UnifyResult, UnifyResultM(..),
-- Matching a type against a lifted type (coercion)
liftCoMatch
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Name( Name )
import GHC.Core.Type hiding ( getTvSubstEnv )
import GHC.Core.Coercion hiding ( getCvSubstEnv )
import GHC.Core.TyCon
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.FVs ( tyCoVarsOfCoList, tyCoFVsOfTypes )
import GHC.Core.TyCo.Subst ( mkTvSubst )
import GHC.Utils.FV( FV, fvVarSet, fvVarList )
import GHC.Utils.Misc
import GHC.Data.Pair
import GHC.Utils.Outputable
import GHC.Types.Unique.FM
import GHC.Types.Unique.Set
import GHC.Exts( oneShot )
import Control.Monad
import Control.Applicative hiding ( empty )
import qualified Control.Applicative
{-
Unification is much tricker than you might think.
1. The substitution we generate binds the *template type variables*
which are given to us explicitly.
2. We want to match in the presence of foralls;
e.g (forall a. t1) ~ (forall b. t2)
That is what the RnEnv2 is for; it does the alpha-renaming
that makes it as if a and b were the same variable.
Initialising the RnEnv2, so that it can generate a fresh
binder when necessary, entails knowing the free variables of
both types.
3. We must be careful not to bind a template type variable to a
locally bound variable. E.g.
(forall a. x) ~ (forall b. b)
where x is the template type variable. Then we do not want to
bind x to a/b! This is a kind of occurs check.
The necessary locals accumulate in the RnEnv2.
Note [tcMatchTy vs tcMatchTyKi]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module offers two variants of matching: with kinds and without.
The TyKi variant takes two types, of potentially different kinds,
and matches them. Along the way, it necessarily also matches their
kinds. The Ty variant instead assumes that the kinds are already
eqType and so skips matching up the kinds.
How do you choose between them?
1. If you know that the kinds of the two types are eqType, use
the Ty variant. It is more efficient, as it does less work.
2. If the kinds of variables in the template type might mention type families,
use the Ty variant (and do other work to make sure the kinds
work out). These pure unification functions do a straightforward
syntactic unification and do no complex reasoning about type
families. Note that the types of the variables in instances can indeed
mention type families, so instance lookup must use the Ty variant.
(Nothing goes terribly wrong -- no panics -- if there might be type
families in kinds in the TyKi variant. You just might get match
failure even though a reducing a type family would lead to success.)
3. Otherwise, if you're sure that the variable kinds do not mention
type families and you're not already sure that the kind of the template
equals the kind of the target, then use the TyKi version.
-}
-- | @tcMatchTy t1 t2@ produces a substitution (over fvs(t1))
-- @s@ such that @s(t1)@ equals @t2@.
-- The returned substitution might bind coercion variables,
-- if the variable is an argument to a GADT constructor.
--
-- Precondition: typeKind ty1 `eqType` typeKind ty2
--
-- We don't pass in a set of "template variables" to be bound
-- by the match, because tcMatchTy (and similar functions) are
-- always used on top-level types, so we can bind any of the
-- free variables of the LHS.
-- See also Note [tcMatchTy vs tcMatchTyKi]
tcMatchTy :: Type -> Type -> Maybe TCvSubst
tcMatchTy ty1 ty2 = tcMatchTys [ty1] [ty2]
tcMatchTyX_BM :: (TyVar -> BindFlag) -> TCvSubst
-> Type -> Type -> Maybe TCvSubst
tcMatchTyX_BM bind_me subst ty1 ty2
= tc_match_tys_x bind_me False subst [ty1] [ty2]
-- | Like 'tcMatchTy', but allows the kinds of the types to differ,
-- and thus matches them as well.
-- See also Note [tcMatchTy vs tcMatchTyKi]
tcMatchTyKi :: Type -> Type -> Maybe TCvSubst
tcMatchTyKi ty1 ty2
= tc_match_tys (const BindMe) True [ty1] [ty2]
-- | This is similar to 'tcMatchTy', but extends a substitution
-- See also Note [tcMatchTy vs tcMatchTyKi]
tcMatchTyX :: TCvSubst -- ^ Substitution to extend
-> Type -- ^ Template
-> Type -- ^ Target
-> Maybe TCvSubst
tcMatchTyX subst ty1 ty2
= tc_match_tys_x (const BindMe) False subst [ty1] [ty2]
-- | Like 'tcMatchTy' but over a list of types.
-- See also Note [tcMatchTy vs tcMatchTyKi]
tcMatchTys :: [Type] -- ^ Template
-> [Type] -- ^ Target
-> Maybe TCvSubst -- ^ One-shot; in principle the template
-- variables could be free in the target
tcMatchTys tys1 tys2
= tc_match_tys (const BindMe) False tys1 tys2
-- | Like 'tcMatchTyKi' but over a list of types.
-- See also Note [tcMatchTy vs tcMatchTyKi]
tcMatchTyKis :: [Type] -- ^ Template
-> [Type] -- ^ Target
-> Maybe TCvSubst -- ^ One-shot substitution
tcMatchTyKis tys1 tys2
= tc_match_tys (const BindMe) True tys1 tys2
-- | Like 'tcMatchTys', but extending a substitution
-- See also Note [tcMatchTy vs tcMatchTyKi]
tcMatchTysX :: TCvSubst -- ^ Substitution to extend
-> [Type] -- ^ Template
-> [Type] -- ^ Target
-> Maybe TCvSubst -- ^ One-shot substitution
tcMatchTysX subst tys1 tys2
= tc_match_tys_x (const BindMe) False subst tys1 tys2
-- | Like 'tcMatchTyKis', but extending a substitution
-- See also Note [tcMatchTy vs tcMatchTyKi]
tcMatchTyKisX :: TCvSubst -- ^ Substitution to extend
-> [Type] -- ^ Template
-> [Type] -- ^ Target
-> Maybe TCvSubst -- ^ One-shot substitution
tcMatchTyKisX subst tys1 tys2
= tc_match_tys_x (const BindMe) True subst tys1 tys2
-- | Same as tc_match_tys_x, but starts with an empty substitution
tc_match_tys :: (TyVar -> BindFlag)
-> Bool -- ^ match kinds?
-> [Type]
-> [Type]
-> Maybe TCvSubst
tc_match_tys bind_me match_kis tys1 tys2
= tc_match_tys_x bind_me match_kis (mkEmptyTCvSubst in_scope) tys1 tys2
where
in_scope = mkInScopeSet (tyCoVarsOfTypes tys1 `unionVarSet` tyCoVarsOfTypes tys2)
-- | Worker for 'tcMatchTysX' and 'tcMatchTyKisX'
tc_match_tys_x :: (TyVar -> BindFlag)
-> Bool -- ^ match kinds?
-> TCvSubst
-> [Type]
-> [Type]
-> Maybe TCvSubst
tc_match_tys_x bind_me match_kis (TCvSubst in_scope tv_env cv_env) tys1 tys2
= case tc_unify_tys bind_me
False -- Matching, not unifying
False -- Not an injectivity check
match_kis
(mkRnEnv2 in_scope) tv_env cv_env tys1 tys2 of
Unifiable (tv_env', cv_env')
-> Just $ TCvSubst in_scope tv_env' cv_env'
_ -> Nothing
-- | This one is called from the expression matcher,
-- which already has a MatchEnv in hand
ruleMatchTyKiX
:: TyCoVarSet -- ^ template variables
-> RnEnv2
-> TvSubstEnv -- ^ type substitution to extend
-> Type -- ^ Template
-> Type -- ^ Target
-> Maybe TvSubstEnv
ruleMatchTyKiX tmpl_tvs rn_env tenv tmpl target
-- See Note [Kind coercions in Unify]
= case tc_unify_tys (matchBindFun tmpl_tvs) False False
True -- <-- this means to match the kinds
rn_env tenv emptyCvSubstEnv [tmpl] [target] of
Unifiable (tenv', _) -> Just tenv'
_ -> Nothing
matchBindFun :: TyCoVarSet -> TyVar -> BindFlag
matchBindFun tvs tv = if tv `elemVarSet` tvs then BindMe else Skolem
{- *********************************************************************
* *
Rough matching
* *
********************************************************************* -}
-- See Note [Rough match] field in GHC.Core.InstEnv
roughMatchTcs :: [Type] -> [Maybe Name]
roughMatchTcs tys = map rough tys
where
rough ty
| Just (ty', _) <- splitCastTy_maybe ty = rough ty'
| Just (tc,_) <- splitTyConApp_maybe ty = Just (tyConName tc)
| otherwise = Nothing
instanceCantMatch :: [Maybe Name] -> [Maybe Name] -> Bool
-- (instanceCantMatch tcs1 tcs2) returns True if tcs1 cannot
-- possibly be instantiated to actual, nor vice versa;
-- False is non-committal
instanceCantMatch (mt : ts) (ma : as) = itemCantMatch mt ma || instanceCantMatch ts as
instanceCantMatch _ _ = False -- Safe
itemCantMatch :: Maybe Name -> Maybe Name -> Bool
itemCantMatch (Just t) (Just a) = t /= a
itemCantMatch _ _ = False
{-
************************************************************************
* *
GADTs
* *
************************************************************************
Note [Pruning dead case alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider data T a where
T1 :: T Int
T2 :: T a
newtype X = MkX Int
newtype Y = MkY Char
type family F a
type instance F Bool = Int
Now consider case x of { T1 -> e1; T2 -> e2 }
The question before the house is this: if I know something about the type
of x, can I prune away the T1 alternative?
Suppose x::T Char. It's impossible to construct a (T Char) using T1,
Answer = YES we can prune the T1 branch (clearly)
Suppose x::T (F a), where 'a' is in scope. Then 'a' might be instantiated
to 'Bool', in which case x::T Int, so
ANSWER = NO (clearly)
We see here that we want precisely the apartness check implemented within
tcUnifyTysFG. So that's what we do! Two types cannot match if they are surely
apart. Note that since we are simply dropping dead code, a conservative test
suffices.
-}
-- | Given a list of pairs of types, are any two members of a pair surely
-- apart, even after arbitrary type function evaluation and substitution?
typesCantMatch :: [(Type,Type)] -> Bool
-- See Note [Pruning dead case alternatives]
typesCantMatch prs = any (uncurry cant_match) prs
where
cant_match :: Type -> Type -> Bool
cant_match t1 t2 = case tcUnifyTysFG (const BindMe) [t1] [t2] of
SurelyApart -> True
_ -> False
{-
************************************************************************
* *
Unification
* *
************************************************************************
Note [Fine-grained unification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do the types (x, x) and ([y], y) unify? The answer is seemingly "no" --
no substitution to finite types makes these match. But, a substitution to
*infinite* types can unify these two types: [x |-> [[[...]]], y |-> [[[...]]] ].
Why do we care? Consider these two type family instances:
type instance F x x = Int
type instance F [y] y = Bool
If we also have
type instance Looper = [Looper]
then the instances potentially overlap. The solution is to use unification
over infinite terms. This is possible (see [1] for lots of gory details), but
a full algorithm is a little more power than we need. Instead, we make a
conservative approximation and just omit the occurs check.
[1]: http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/axioms-extended.pdf
tcUnifyTys considers an occurs-check problem as the same as general unification
failure.
tcUnifyTysFG ("fine-grained") returns one of three results: success, occurs-check
failure ("MaybeApart"), or general failure ("SurelyApart").
See also #8162.
It's worth noting that unification in the presence of infinite types is not
complete. This means that, sometimes, a closed type family does not reduce
when it should. See test case indexed-types/should_fail/Overlap15 for an
example.
Note [The substitution in MaybeApart]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The constructor MaybeApart carries data with it, typically a TvSubstEnv. Why?
Because consider unifying these:
(a, a, Int) ~ (b, [b], Bool)
If we go left-to-right, we start with [a |-> b]. Then, on the middle terms, we
apply the subst we have so far and discover that we need [b |-> [b]]. Because
this fails the occurs check, we say that the types are MaybeApart (see above
Note [Fine-grained unification]). But, we can't stop there! Because if we
continue, we discover that Int is SurelyApart from Bool, and therefore the
types are apart. This has practical consequences for the ability for closed
type family applications to reduce. See test case
indexed-types/should_compile/Overlap14.
Note [Unification with skolems]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we discover that two types unify if and only if a skolem variable is
substituted, we can't properly unify the types. But, that skolem variable
may later be instantiated with a unifyable type. So, we return maybeApart
in these cases.
-}
-- | Simple unification of two types; all type variables are bindable
-- Precondition: the kinds are already equal
tcUnifyTy :: Type -> Type -- All tyvars are bindable
-> Maybe TCvSubst
-- A regular one-shot (idempotent) substitution
tcUnifyTy t1 t2 = tcUnifyTys (const BindMe) [t1] [t2]
-- | Like 'tcUnifyTy', but also unifies the kinds
tcUnifyTyKi :: Type -> Type -> Maybe TCvSubst
tcUnifyTyKi t1 t2 = tcUnifyTyKis (const BindMe) [t1] [t2]
-- | Unify two types, treating type family applications as possibly unifying
-- with anything and looking through injective type family applications.
-- Precondition: kinds are the same
tcUnifyTyWithTFs :: Bool -- ^ True <=> do two-way unification;
-- False <=> do one-way matching.
-- See end of sec 5.2 from the paper
-> Type -> Type -> Maybe TCvSubst
-- This algorithm is an implementation of the "Algorithm U" presented in
-- the paper "Injective type families for Haskell", Figures 2 and 3.
-- The code is incorporated with the standard unifier for convenience, but
-- its operation should match the specification in the paper.
tcUnifyTyWithTFs twoWay t1 t2
= case tc_unify_tys (const BindMe) twoWay True False
rn_env emptyTvSubstEnv emptyCvSubstEnv
[t1] [t2] of
Unifiable (subst, _) -> Just $ maybe_fix subst
MaybeApart (subst, _) -> Just $ maybe_fix subst
-- we want to *succeed* in questionable cases. This is a
-- pre-unification algorithm.
SurelyApart -> Nothing
where
in_scope = mkInScopeSet $ tyCoVarsOfTypes [t1, t2]
rn_env = mkRnEnv2 in_scope
maybe_fix | twoWay = niFixTCvSubst
| otherwise = mkTvSubst in_scope -- when matching, don't confuse
-- domain with range
-----------------
tcUnifyTys :: (TyCoVar -> BindFlag)
-> [Type] -> [Type]
-> Maybe TCvSubst
-- ^ A regular one-shot (idempotent) substitution
-- that unifies the erased types. See comments
-- for 'tcUnifyTysFG'
-- The two types may have common type variables, and indeed do so in the
-- second call to tcUnifyTys in GHC.Tc.Instance.FunDeps.checkClsFD
tcUnifyTys bind_fn tys1 tys2
= case tcUnifyTysFG bind_fn tys1 tys2 of
Unifiable result -> Just result
_ -> Nothing
-- | Like 'tcUnifyTys' but also unifies the kinds
tcUnifyTyKis :: (TyCoVar -> BindFlag)
-> [Type] -> [Type]
-> Maybe TCvSubst
tcUnifyTyKis bind_fn tys1 tys2
= case tcUnifyTyKisFG bind_fn tys1 tys2 of
Unifiable result -> Just result
_ -> Nothing
-- This type does double-duty. It is used in the UM (unifier monad) and to
-- return the final result. See Note [Fine-grained unification]
type UnifyResult = UnifyResultM TCvSubst
data UnifyResultM a = Unifiable a -- the subst that unifies the types
| MaybeApart a -- the subst has as much as we know
-- it must be part of a most general unifier
-- See Note [The substitution in MaybeApart]
| SurelyApart
deriving Functor
instance Applicative UnifyResultM where
pure = Unifiable
(<*>) = ap
instance Monad UnifyResultM where
SurelyApart >>= _ = SurelyApart
MaybeApart x >>= f = case f x of
Unifiable y -> MaybeApart y
other -> other
Unifiable x >>= f = f x
instance Alternative UnifyResultM where
empty = SurelyApart
a@(Unifiable {}) <|> _ = a
_ <|> b@(Unifiable {}) = b
a@(MaybeApart {}) <|> _ = a
_ <|> b@(MaybeApart {}) = b
SurelyApart <|> SurelyApart = SurelyApart
instance MonadPlus UnifyResultM
-- | @tcUnifyTysFG bind_tv tys1 tys2@ attepts to find a substitution @s@ (whose
-- domain elements all respond 'BindMe' to @bind_tv@) such that
-- @s(tys1)@ and that of @s(tys2)@ are equal, as witnessed by the returned
-- Coercions. This version requires that the kinds of the types are the same,
-- if you unify left-to-right.
tcUnifyTysFG :: (TyVar -> BindFlag)
-> [Type] -> [Type]
-> UnifyResult
tcUnifyTysFG bind_fn tys1 tys2
= tc_unify_tys_fg False bind_fn tys1 tys2
tcUnifyTyKisFG :: (TyVar -> BindFlag)
-> [Type] -> [Type]
-> UnifyResult
tcUnifyTyKisFG bind_fn tys1 tys2
= tc_unify_tys_fg True bind_fn tys1 tys2
tc_unify_tys_fg :: Bool
-> (TyVar -> BindFlag)
-> [Type] -> [Type]
-> UnifyResult
tc_unify_tys_fg match_kis bind_fn tys1 tys2
= do { (env, _) <- tc_unify_tys bind_fn True False match_kis env
emptyTvSubstEnv emptyCvSubstEnv
tys1 tys2
; return $ niFixTCvSubst env }
where
vars = tyCoVarsOfTypes tys1 `unionVarSet` tyCoVarsOfTypes tys2
env = mkRnEnv2 $ mkInScopeSet vars
-- | This function is actually the one to call the unifier -- a little
-- too general for outside clients, though.
tc_unify_tys :: (TyVar -> BindFlag)
-> AmIUnifying -- ^ True <=> unify; False <=> match
-> Bool -- ^ True <=> doing an injectivity check
-> Bool -- ^ True <=> treat the kinds as well
-> RnEnv2
-> TvSubstEnv -- ^ substitution to extend
-> CvSubstEnv
-> [Type] -> [Type]
-> UnifyResultM (TvSubstEnv, CvSubstEnv)
-- NB: It's tempting to ASSERT here that, if we're not matching kinds, then
-- the kinds of the types should be the same. However, this doesn't work,
-- as the types may be a dependent telescope, where later types have kinds
-- that mention variables occurring earlier in the list of types. Here's an
-- example (from typecheck/should_fail/T12709):
-- template: [rep :: RuntimeRep, a :: TYPE rep]
-- target: [LiftedRep :: RuntimeRep, Int :: TYPE LiftedRep]
-- We can see that matching the first pair will make the kinds of the second
-- pair equal. Yet, we still don't need a separate pass to unify the kinds
-- of these types, so it's appropriate to use the Ty variant of unification.
-- See also Note [tcMatchTy vs tcMatchTyKi].
tc_unify_tys bind_fn unif inj_check match_kis rn_env tv_env cv_env tys1 tys2
= initUM tv_env cv_env $
do { when match_kis $
unify_tys env kis1 kis2
; unify_tys env tys1 tys2
; (,) <$> getTvSubstEnv <*> getCvSubstEnv }
where
env = UMEnv { um_bind_fun = bind_fn
, um_skols = emptyVarSet
, um_unif = unif
, um_inj_tf = inj_check
, um_rn_env = rn_env }
kis1 = map typeKind tys1
kis2 = map typeKind tys2
instance Outputable a => Outputable (UnifyResultM a) where
ppr SurelyApart = text "SurelyApart"
ppr (Unifiable x) = text "Unifiable" <+> ppr x
ppr (MaybeApart x) = text "MaybeApart" <+> ppr x
{-
************************************************************************
* *
Non-idempotent substitution
* *
************************************************************************
Note [Non-idempotent substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
During unification we use a TvSubstEnv/CvSubstEnv pair that is
(a) non-idempotent
(b) loop-free; ie repeatedly applying it yields a fixed point
Note [Finding the substitution fixpoint]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Finding the fixpoint of a non-idempotent substitution arising from a
unification is much trickier than it looks, because of kinds. Consider
T k (H k (f:k)) ~ T * (g:*)
If we unify, we get the substitution
[ k -> *
, g -> H k (f:k) ]
To make it idempotent we don't want to get just
[ k -> *
, g -> H * (f:k) ]
We also want to substitute inside f's kind, to get
[ k -> *
, g -> H k (f:*) ]
If we don't do this, we may apply the substitution to something,
and get an ill-formed type, i.e. one where typeKind will fail.
This happened, for example, in #9106.
It gets worse. In #14164 we wanted to take the fixpoint of
this substitution
[ xs_asV :-> F a_aY6 (z_aY7 :: a_aY6)
(rest_aWF :: G a_aY6 (z_aY7 :: a_aY6))
, a_aY6 :-> a_aXQ ]
We have to apply the substitution for a_aY6 two levels deep inside
the invocation of F! We don't have a function that recursively
applies substitutions inside the kinds of variable occurrences (and
probably rightly so).
So, we work as follows:
1. Start with the current substitution (which we are
trying to fixpoint
[ xs :-> F a (z :: a) (rest :: G a (z :: a))
, a :-> b ]
2. Take all the free vars of the range of the substitution:
{a, z, rest, b}
NB: the free variable finder closes over
the kinds of variable occurrences
3. If none are in the domain of the substitution, stop.
We have found a fixpoint.
4. Remove the variables that are bound by the substitution, leaving
{z, rest, b}
5. Do a topo-sort to put them in dependency order:
[ b :: *, z :: a, rest :: G a z ]
6. Apply the substitution left-to-right to the kinds of these
tyvars, extending it each time with a new binding, so we
finish up with
[ xs :-> ..as before..
, a :-> b
, b :-> b :: *
, z :-> z :: b
, rest :-> rest :: G b (z :: b) ]
Note that rest now has the right kind
7. Apply this extended substitution (once) to the range of
the /original/ substitution. (Note that we do the
extended substitution would go on forever if you tried
to find its fixpoint, because it maps z to z.)
8. And go back to step 1
In Step 6 we use the free vars from Step 2 as the initial
in-scope set, because all of those variables appear in the
range of the substitution, so they must all be in the in-scope
set. But NB that the type substitution engine does not look up
variables in the in-scope set; it is used only to ensure no
shadowing.
-}
niFixTCvSubst :: TvSubstEnv -> TCvSubst
-- Find the idempotent fixed point of the non-idempotent substitution
-- This is surprisingly tricky:
-- see Note [Finding the substitution fixpoint]
-- ToDo: use laziness instead of iteration?
niFixTCvSubst tenv
| not_fixpoint = niFixTCvSubst (mapVarEnv (substTy subst) tenv)
| otherwise = subst
where
range_fvs :: FV
range_fvs = tyCoFVsOfTypes (nonDetEltsUFM tenv)
-- It's OK to use nonDetEltsUFM here because the
-- order of range_fvs, range_tvs is immaterial
range_tvs :: [TyVar]
range_tvs = fvVarList range_fvs
not_fixpoint = any in_domain range_tvs
in_domain tv = tv `elemVarEnv` tenv
free_tvs = scopedSort (filterOut in_domain range_tvs)
-- See Note [Finding the substitution fixpoint], Step 6
init_in_scope = mkInScopeSet (fvVarSet range_fvs)
subst = foldl' add_free_tv
(mkTvSubst init_in_scope tenv)
free_tvs
add_free_tv :: TCvSubst -> TyVar -> TCvSubst
add_free_tv subst tv
= extendTvSubst subst tv (mkTyVarTy tv')
where
tv' = updateTyVarKind (substTy subst) tv
niSubstTvSet :: TvSubstEnv -> TyCoVarSet -> TyCoVarSet
-- Apply the non-idempotent substitution to a set of type variables,
-- remembering that the substitution isn't necessarily idempotent
-- This is used in the occurs check, before extending the substitution
niSubstTvSet tsubst tvs
= nonDetStrictFoldUniqSet (unionVarSet . get) emptyVarSet tvs
-- It's OK to use a non-deterministic fold here because we immediately forget
-- the ordering by creating a set.
where
get tv
| Just ty <- lookupVarEnv tsubst tv
= niSubstTvSet tsubst (tyCoVarsOfType ty)
| otherwise
= unitVarSet tv
{-
************************************************************************
* *
unify_ty: the main workhorse
* *
************************************************************************
Note [Specification of unification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The pure unifier, unify_ty, defined in this module, tries to work out
a substitution to make two types say True to eqType. NB: eqType is
itself not purely syntactic; it accounts for CastTys;
see Note [Non-trivial definitional equality] in GHC.Core.TyCo.Rep
Unlike the "impure unifiers" in the typechecker (the eager unifier in
GHC.Tc.Utils.Unify, and the constraint solver itself in GHC.Tc.Solver.Canonical), the pure
unifier It does /not/ work up to ~.
The algorithm implemented here is rather delicate, and we depend on it
to uphold certain properties. This is a summary of these required
properties. Any reference to "flattening" refers to the flattening
algorithm in GHC.Core.FamInstEnv (See Note [Flattening] in GHC.Core.FamInstEnv), not
the flattening algorithm in the solver.
Notation:
θ,φ substitutions
ξ type-function-free types
τ,σ other types
τ♭ type τ, flattened
≡ eqType
(U1) Soundness.
If (unify τ₁ τ₂) = Unifiable θ, then θ(τ₁) ≡ θ(τ₂).
θ is a most general unifier for τ₁ and τ₂.
(U2) Completeness.
If (unify ξ₁ ξ₂) = SurelyApart,
then there exists no substitution θ such that θ(ξ₁) ≡ θ(ξ₂).
These two properties are stated as Property 11 in the "Closed Type Families"
paper (POPL'14). Below, this paper is called [CTF].
(U3) Apartness under substitution.
If (unify ξ τ♭) = SurelyApart, then (unify ξ θ(τ)♭) = SurelyApart,
for any θ. (Property 12 from [CTF])
(U4) Apart types do not unify.
If (unify ξ τ♭) = SurelyApart, then there exists no θ
such that θ(ξ) = θ(τ). (Property 13 from [CTF])
THEOREM. Completeness w.r.t ~
If (unify τ₁♭ τ₂♭) = SurelyApart,
then there exists no proof that (τ₁ ~ τ₂).
PROOF. See appendix of [CTF].
The unification algorithm is used for type family injectivity, as described
in the "Injective Type Families" paper (Haskell'15), called [ITF]. When run
in this mode, it has the following properties.
(I1) If (unify σ τ) = SurelyApart, then σ and τ are not unifiable, even
after arbitrary type family reductions. Note that σ and τ are
not flattened here.
(I2) If (unify σ τ) = MaybeApart θ, and if some
φ exists such that φ(σ) ~ φ(τ), then φ extends θ.
Furthermore, the RULES matching algorithm requires this property,
but only when using this algorithm for matching:
(M1) If (match σ τ) succeeds with θ, then all matchable tyvars
in σ are bound in θ.
Property M1 means that we must extend the substitution with,
say (a ↦ a) when appropriate during matching.
See also Note [Self-substitution when matching].
(M2) Completeness of matching.
If θ(σ) = τ, then (match σ τ) = Unifiable φ,
where θ is an extension of φ.
Sadly, property M2 and I2 conflict. Consider
type family F1 a b where
F1 Int Bool = Char
F1 Double String = Char
Consider now two matching problems:
P1. match (F1 a Bool) (F1 Int Bool)
P2. match (F1 a Bool) (F1 Double String)
In case P1, we must find (a ↦ Int) to satisfy M2.
In case P2, we must /not/ find (a ↦ Double), in order to satisfy I2. (Note
that the correct mapping for I2 is (a ↦ Int). There is no way to discover
this, but we mustn't map a to anything else!)
We thus must parameterize the algorithm over whether it's being used
for an injectivity check (refrain from looking at non-injective arguments
to type families) or not (do indeed look at those arguments). This is
implemented by the uf_inj_tf field of UmEnv.
(It's all a question of whether or not to include equation (7) from Fig. 2
of [ITF].)
This extra parameter is a bit fiddly, perhaps, but seemingly less so than
having two separate, almost-identical algorithms.
Note [Self-substitution when matching]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What should happen when we're *matching* (not unifying) a1 with a1? We
should get a substitution [a1 |-> a1]. A successful match should map all
the template variables (except ones that disappear when expanding synonyms).
But when unifying, we don't want to do this, because we'll then fall into
a loop.
This arrangement affects the code in three places:
- If we're matching a refined template variable, don't recur. Instead, just
check for equality. That is, if we know [a |-> Maybe a] and are matching
(a ~? Maybe Int), we want to just fail.
- Skip the occurs check when matching. This comes up in two places, because
matching against variables is handled separately from matching against
full-on types.
Note that this arrangement was provoked by a real failure, where the same
unique ended up in the template as in the target. (It was a rule firing when
compiling Data.List.NonEmpty.)
Note [Matching coercion variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
type family F a
data G a where
MkG :: F a ~ Bool => G a
type family Foo (x :: G a) :: F a
type instance Foo MkG = False
We would like that to be accepted. For that to work, we need to introduce
a coercion variable on the left and then use it on the right. Accordingly,
at use sites of Foo, we need to be able to use matching to figure out the
value for the coercion. (See the desugared version:
axFoo :: [a :: *, c :: F a ~ Bool]. Foo (MkG c) = False |> (sym c)
) We never want this action to happen during *unification* though, when
all bets are off.
Note [Kind coercions in Unify]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We wish to match/unify while ignoring casts. But, we can't just ignore
them completely, or we'll end up with ill-kinded substitutions. For example,
say we're matching `a` with `ty |> co`. If we just drop the cast, we'll
return [a |-> ty], but `a` and `ty` might have different kinds. We can't
just match/unify their kinds, either, because this might gratuitously
fail. After all, `co` is the witness that the kinds are the same -- they
may look nothing alike.
So, we pass a kind coercion to the match/unify worker. This coercion witnesses
the equality between the substed kind of the left-hand type and the substed
kind of the right-hand type. Note that we do not unify kinds at the leaves
(as we did previously). We thus have
INVARIANT: In the call
unify_ty ty1 ty2 kco
it must be that subst(kco) :: subst(kind(ty1)) ~N subst(kind(ty2)), where
`subst` is the ambient substitution in the UM monad.
To get this coercion, we first have to match/unify
the kinds before looking at the types. Happily, we need look only one level
up, as all kinds are guaranteed to have kind *.
When we're working with type applications (either TyConApp or AppTy) we
need to worry about establishing INVARIANT, as the kinds of the function
& arguments aren't (necessarily) included in the kind of the result.
When unifying two TyConApps, this is easy, because the two TyCons are
the same. Their kinds are thus the same. As long as we unify left-to-right,
we'll be sure to unify types' kinds before the types themselves. (For example,
think about Proxy :: forall k. k -> *. Unifying the first args matches up
the kinds of the second args.)
For AppTy, we must unify the kinds of the functions, but once these are
unified, we can continue unifying arguments without worrying further about
kinds.
The interface to this module includes both "...Ty" functions and
"...TyKi" functions. The former assume that INVARIANT is already
established, either because the kinds are the same or because the
list of types being passed in are the well-typed arguments to some
type constructor (see two paragraphs above). The latter take a separate
pre-pass over the kinds to establish INVARIANT. Sometimes, it's important
not to take the second pass, as it caused #12442.
We thought, at one point, that this was all unnecessary: why should
casts be in types in the first place? But they are sometimes. In
dependent/should_compile/KindEqualities2, we see, for example the
constraint Num (Int |> (blah ; sym blah)). We naturally want to find
a dictionary for that constraint, which requires dealing with
coercions in this manner.
Note [Matching in the presence of casts (1)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When matching, it is crucial that no variables from the template
end up in the range of the matching substitution (obviously!).
When unifying, that's not a constraint; instead we take the fixpoint
of the substitution at the end.
So what should we do with this, when matching?
unify_ty (tmpl |> co) tgt kco
Previously, wrongly, we pushed 'co' in the (horrid) accumulating
'kco' argument like this:
unify_ty (tmpl |> co) tgt kco
= unify_ty tmpl tgt (kco ; co)
But that is obviously wrong because 'co' (from the template) ends
up in 'kco', which in turn ends up in the range of the substitution.
This all came up in #13910. Because we match tycon arguments
left-to-right, the ambient substitution will already have a matching
substitution for any kinds; so there is an easy fix: just apply
the substitution-so-far to the coercion from the LHS.
Note that
* When matching, the first arg of unify_ty is always the template;
we never swap round.
* The above argument is distressingly indirect. We seek a
better way.
* One better way is to ensure that type patterns (the template
in the matching process) have no casts. See #14119.
Note [Matching in the presence of casts (2)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is another wrinkle (#17395). Suppose (T :: forall k. k -> Type)
and we are matching
tcMatchTy (T k (a::k)) (T j (b::j))
Then we'll match k :-> j, as expected. But then in unify_tys
we invoke
unify_tys env (a::k) (b::j) (Refl j)
Although we have unified k and j, it's very important that we put
(Refl j), /not/ (Refl k) as the fourth argument to unify_tys.
If we put (Refl k) we'd end up with the substitution
a :-> b |> Refl k
which is bogus because one of the template variables, k,
appears in the range of the substitution. Eek.
Similar care is needed in unify_ty_app.
Note [Polykinded tycon applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose T :: forall k. Type -> K
and we are unifying
ty1: T @Type Int :: Type
ty2: T @(Type->Type) Int Int :: Type
These two TyConApps have the same TyCon at the front but they
(legitimately) have different numbers of arguments. They
are surelyApart, so we can report that without looking any
further (see #15704).
-}
-------------- unify_ty: the main workhorse -----------
type AmIUnifying = Bool -- True <=> Unifying
-- False <=> Matching
unify_ty :: UMEnv
-> Type -> Type -- Types to be unified and a co
-> CoercionN -- A coercion between their kinds
-- See Note [Kind coercions in Unify]
-> UM ()
-- See Note [Specification of unification]
-- Respects newtypes, PredTypes
unify_ty env ty1 ty2 kco
-- TODO: More commentary needed here
| Just ty1' <- tcView ty1 = unify_ty env ty1' ty2 kco
| Just ty2' <- tcView ty2 = unify_ty env ty1 ty2' kco
| CastTy ty1' co <- ty1 = if um_unif env
then unify_ty env ty1' ty2 (co `mkTransCo` kco)
else -- See Note [Matching in the presence of casts (1)]
do { subst <- getSubst env
; let co' = substCo subst co
; unify_ty env ty1' ty2 (co' `mkTransCo` kco) }
| CastTy ty2' co <- ty2 = unify_ty env ty1 ty2' (kco `mkTransCo` mkSymCo co)
unify_ty env (TyVarTy tv1) ty2 kco
= uVar env tv1 ty2 kco
unify_ty env ty1 (TyVarTy tv2) kco
| um_unif env -- If unifying, can swap args
= uVar (umSwapRn env) tv2 ty1 (mkSymCo kco)
unify_ty env ty1 ty2 _kco
| Just (tc1, tys1) <- mb_tc_app1
, Just (tc2, tys2) <- mb_tc_app2
, tc1 == tc2 || (tcIsLiftedTypeKind ty1 && tcIsLiftedTypeKind ty2)
= if isInjectiveTyCon tc1 Nominal
then unify_tys env tys1 tys2
else do { let inj | isTypeFamilyTyCon tc1
= case tyConInjectivityInfo tc1 of
NotInjective -> repeat False
Injective bs -> bs
| otherwise
= repeat False
(inj_tys1, noninj_tys1) = partitionByList inj tys1
(inj_tys2, noninj_tys2) = partitionByList inj tys2
; unify_tys env inj_tys1 inj_tys2
; unless (um_inj_tf env) $ -- See (end of) Note [Specification of unification]
don'tBeSoSure $ unify_tys env noninj_tys1 noninj_tys2 }
| Just (tc1, _) <- mb_tc_app1
, not (isGenerativeTyCon tc1 Nominal)
-- E.g. unify_ty (F ty1) b = MaybeApart
-- because the (F ty1) behaves like a variable
-- NB: if unifying, we have already dealt
-- with the 'ty2 = variable' case
= maybeApart
| Just (tc2, _) <- mb_tc_app2
, not (isGenerativeTyCon tc2 Nominal)
, um_unif env
-- E.g. unify_ty [a] (F ty2) = MaybeApart, when unifying (only)
-- because the (F ty2) behaves like a variable
-- NB: we have already dealt with the 'ty1 = variable' case
= maybeApart
where
mb_tc_app1 = tcSplitTyConApp_maybe ty1
mb_tc_app2 = tcSplitTyConApp_maybe ty2
-- Applications need a bit of care!
-- They can match FunTy and TyConApp, so use splitAppTy_maybe
-- NB: we've already dealt with type variables,
-- so if one type is an App the other one jolly well better be too
unify_ty env (AppTy ty1a ty1b) ty2 _kco
| Just (ty2a, ty2b) <- tcRepSplitAppTy_maybe ty2
= unify_ty_app env ty1a [ty1b] ty2a [ty2b]
unify_ty env ty1 (AppTy ty2a ty2b) _kco
| Just (ty1a, ty1b) <- tcRepSplitAppTy_maybe ty1
= unify_ty_app env ty1a [ty1b] ty2a [ty2b]
unify_ty _ (LitTy x) (LitTy y) _kco | x == y = return ()
unify_ty env (ForAllTy (Bndr tv1 _) ty1) (ForAllTy (Bndr tv2 _) ty2) kco
= do { unify_ty env (varType tv1) (varType tv2) (mkNomReflCo liftedTypeKind)
; let env' = umRnBndr2 env tv1 tv2
; unify_ty env' ty1 ty2 kco }
-- See Note [Matching coercion variables]
unify_ty env (CoercionTy co1) (CoercionTy co2) kco
= do { c_subst <- getCvSubstEnv
; case co1 of
CoVarCo cv
| not (um_unif env)
, not (cv `elemVarEnv` c_subst)
, BindMe <- tvBindFlag env cv
-> do { checkRnEnv env (tyCoVarsOfCo co2)
; let (_, co_l, co_r) = decomposeFunCo Nominal kco
-- Because the coercion is nominal, it should be safe to
-- ignore the multiplicity coercion.
-- cv :: t1 ~ t2
-- co2 :: s1 ~ s2
-- co_l :: t1 ~ s1
-- co_r :: t2 ~ s2
; extendCvEnv cv (co_l `mkTransCo`
co2 `mkTransCo`
mkSymCo co_r) }
_ -> return () }
unify_ty _ _ _ _ = surelyApart
unify_ty_app :: UMEnv -> Type -> [Type] -> Type -> [Type] -> UM ()
unify_ty_app env ty1 ty1args ty2 ty2args
| Just (ty1', ty1a) <- repSplitAppTy_maybe ty1
, Just (ty2', ty2a) <- repSplitAppTy_maybe ty2
= unify_ty_app env ty1' (ty1a : ty1args) ty2' (ty2a : ty2args)
| otherwise
= do { let ki1 = typeKind ty1
ki2 = typeKind ty2
-- See Note [Kind coercions in Unify]
; unify_ty env ki1 ki2 (mkNomReflCo liftedTypeKind)
; unify_ty env ty1 ty2 (mkNomReflCo ki2)
-- Very important: 'ki2' not 'ki1'
-- See Note [Matching in the presence of casts (2)]
; unify_tys env ty1args ty2args }
unify_tys :: UMEnv -> [Type] -> [Type] -> UM ()
unify_tys env orig_xs orig_ys
= go orig_xs orig_ys
where
go [] [] = return ()
go (x:xs) (y:ys)
-- See Note [Kind coercions in Unify]
= do { unify_ty env x y (mkNomReflCo $ typeKind y)
-- Very important: 'y' not 'x'
-- See Note [Matching in the presence of casts (2)]
; go xs ys }
go _ _ = surelyApart
-- Possibly different saturations of a polykinded tycon
-- See Note [Polykinded tycon applications]
---------------------------------
uVar :: UMEnv
-> InTyVar -- Variable to be unified
-> Type -- with this Type
-> Coercion -- :: kind tv ~N kind ty
-> UM ()
uVar env tv1 ty kco
= do { -- Apply the ambient renaming
let tv1' = umRnOccL env tv1
-- Check to see whether tv1 is refined by the substitution
; subst <- getTvSubstEnv
; case (lookupVarEnv subst tv1') of
Just ty' | um_unif env -- Unifying, so call
-> unify_ty env ty' ty kco -- back into unify
| otherwise
-> -- Matching, we don't want to just recur here.
-- this is because the range of the subst is the target
-- type, not the template type. So, just check for
-- normal type equality.
guard ((ty' `mkCastTy` kco) `eqType` ty)
Nothing -> uUnrefined env tv1' ty ty kco } -- No, continue
uUnrefined :: UMEnv
-> OutTyVar -- variable to be unified
-> Type -- with this Type
-> Type -- (version w/ expanded synonyms)
-> Coercion -- :: kind tv ~N kind ty
-> UM ()
-- We know that tv1 isn't refined
uUnrefined env tv1' ty2 ty2' kco
| Just ty2'' <- coreView ty2'
= uUnrefined env tv1' ty2 ty2'' kco -- Unwrap synonyms
-- This is essential, in case we have
-- type Foo a = a
-- and then unify a ~ Foo a
| TyVarTy tv2 <- ty2'
= do { let tv2' = umRnOccR env tv2
; unless (tv1' == tv2' && um_unif env) $ do
-- If we are unifying a ~ a, just return immediately
-- Do not extend the substitution
-- See Note [Self-substitution when matching]
-- Check to see whether tv2 is refined
{ subst <- getTvSubstEnv
; case lookupVarEnv subst tv2 of
{ Just ty' | um_unif env -> uUnrefined env tv1' ty' ty' kco
; _ ->
do { -- So both are unrefined
-- Bind one or the other, depending on which is bindable
; let b1 = tvBindFlag env tv1'
b2 = tvBindFlag env tv2'
ty1 = mkTyVarTy tv1'
; case (b1, b2) of
(BindMe, _) -> bindTv env tv1' (ty2 `mkCastTy` mkSymCo kco)
(_, BindMe) | um_unif env
-> bindTv (umSwapRn env) tv2 (ty1 `mkCastTy` kco)
_ | tv1' == tv2' -> return ()
-- How could this happen? If we're only matching and if
-- we're comparing forall-bound variables.
_ -> maybeApart -- See Note [Unification with skolems]
}}}}
uUnrefined env tv1' ty2 _ kco -- ty2 is not a type variable
= case tvBindFlag env tv1' of
Skolem -> maybeApart -- See Note [Unification with skolems]
BindMe -> bindTv env tv1' (ty2 `mkCastTy` mkSymCo kco)
bindTv :: UMEnv -> OutTyVar -> Type -> UM ()
-- OK, so we want to extend the substitution with tv := ty
-- But first, we must do a couple of checks
bindTv env tv1 ty2
= do { let free_tvs2 = tyCoVarsOfType ty2
-- Make sure tys mentions no local variables
-- E.g. (forall a. b) ~ (forall a. [a])
-- We should not unify b := [a]!
; checkRnEnv env free_tvs2
-- Occurs check, see Note [Fine-grained unification]
-- Make sure you include 'kco' (which ty2 does) #14846
; occurs <- occursCheck env tv1 free_tvs2
; if occurs then maybeApart
else extendTvEnv tv1 ty2 }
occursCheck :: UMEnv -> TyVar -> VarSet -> UM Bool
occursCheck env tv free_tvs
| um_unif env
= do { tsubst <- getTvSubstEnv
; return (tv `elemVarSet` niSubstTvSet tsubst free_tvs) }
| otherwise -- Matching; no occurs check
= return False -- See Note [Self-substitution when matching]
{-
%************************************************************************
%* *
Binding decisions
* *
************************************************************************
-}
data BindFlag
= BindMe -- A regular type variable
| Skolem -- This type variable is a skolem constant
-- Don't bind it; it only matches itself
deriving Eq
{-
************************************************************************
* *
Unification monad
* *
************************************************************************
-}
{- Note [The one-shot state monad trick]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Many places in GHC use a state monad, and we really want those
functions to be eta-expanded (#18202). Consider
newtype M a = MkM (State -> (State, a))
instance Monad M where
mf >>= k = MkM (\s -> case mf of MkM f ->
case f s of (s',r) ->
case k r of MkM g ->
g s')
foo :: Int -> M Int
foo x = g y >>= \r -> h r
where
y = expensive x
In general, you might say (map (foo 4) xs), and expect (expensive 4)
to be evaluated only once. So foo should have arity 1 (not 2).
But that's rare, and if you /aren't/ re-using (M a) values it's much
more efficient to make foo have arity 2.
See https://www.joachim-breitner.de/blog/763-Faster_Winter_5__Eta-Expanding_ReaderT
So here is the trick. Define
data M a = MkM' (State -> (State, a))
pattern MkM f <- MkM' f
where
MkM f = MkM' (oneShot f)
The patten synonm means that whenever we write (MkM f), we'll
actually get (MkM' (oneShot f)), so we'll pin a one-shot flag
on f's lambda-binder. Now look at foo:
foo = \x. g (expensive x) >>= \r -> h r
= \x. let mf = g (expensive x)
k = \r -> h r
in MkM' (oneShot (\s -> case mf of MkM' f ->
case f s of (s',r) ->
case k r of MkM' g ->
g s'))
-- The MkM' are just newtype casts nt_co
= \x. let mf = g (expensive x)
k = \r -> h r
in (\s{os}. case (mf |> nt_co) s of (s',r) ->
(k r) |> nt_co s')
|> sym nt_co
-- Float into that \s{os}
= \x. (\s{os}. case (g (expensive x) |> nt_co) s of (s',r) ->
h r |> nt_co s')
|> sym nt_co
and voila! In summary:
* It's a very simple, two-line change
* It eta-expands all uses of the monad, automatically
* It is very similar to the built-in "state hack" (see
GHC.Core.Opt.Arity Note [The state-transformer hack]) but the trick
described here is applicable on a monad-by-monad basis under
programmer control.
* Beware: itt changes the behaviour of
map (foo 3) xs
ToDo: explain what to do if you want to do this
-}
data UMEnv
= UMEnv { um_unif :: AmIUnifying
, um_inj_tf :: Bool
-- Checking for injectivity?
-- See (end of) Note [Specification of unification]
, um_rn_env :: RnEnv2
-- Renaming InTyVars to OutTyVars; this eliminates
-- shadowing, and lines up matching foralls on the left
-- and right
, um_skols :: TyVarSet
-- OutTyVars bound by a forall in this unification;
-- Do not bind these in the substitution!
-- See the function tvBindFlag
, um_bind_fun :: TyVar -> BindFlag
-- User-supplied BindFlag function,
-- for variables not in um_skols
}
data UMState = UMState
{ um_tv_env :: TvSubstEnv
, um_cv_env :: CvSubstEnv }
newtype UM a
= UM' { unUM :: UMState -> UnifyResultM (UMState, a) }
-- See Note [The one-shot state monad trick]
deriving (Functor)
pattern UM :: (UMState -> UnifyResultM (UMState, a)) -> UM a
-- See Note [The one-shot state monad trick]
pattern UM m <- UM' m
where
UM m = UM' (oneShot m)
instance Applicative UM where
pure a = UM (\s -> pure (s, a))
(<*>) = ap
instance Monad UM where
m >>= k = UM (\state ->
do { (state', v) <- unUM m state
; unUM (k v) state' })
-- need this instance because of a use of 'guard' above
instance Alternative UM where
empty = UM (\_ -> Control.Applicative.empty)
m1 <|> m2 = UM (\state ->
unUM m1 state <|>
unUM m2 state)
instance MonadPlus UM
instance MonadFail UM where
fail _ = UM (\_ -> SurelyApart) -- failed pattern match
initUM :: TvSubstEnv -- subst to extend
-> CvSubstEnv
-> UM a -> UnifyResultM a
initUM subst_env cv_subst_env um
= case unUM um state of
Unifiable (_, subst) -> Unifiable subst
MaybeApart (_, subst) -> MaybeApart subst
SurelyApart -> SurelyApart
where
state = UMState { um_tv_env = subst_env
, um_cv_env = cv_subst_env }
tvBindFlag :: UMEnv -> OutTyVar -> BindFlag
tvBindFlag env tv
| tv `elemVarSet` um_skols env = Skolem
| otherwise = um_bind_fun env tv
getTvSubstEnv :: UM TvSubstEnv
getTvSubstEnv = UM $ \state -> Unifiable (state, um_tv_env state)
getCvSubstEnv :: UM CvSubstEnv
getCvSubstEnv = UM $ \state -> Unifiable (state, um_cv_env state)
getSubst :: UMEnv -> UM TCvSubst
getSubst env = do { tv_env <- getTvSubstEnv
; cv_env <- getCvSubstEnv
; let in_scope = rnInScopeSet (um_rn_env env)
; return (mkTCvSubst in_scope (tv_env, cv_env)) }
extendTvEnv :: TyVar -> Type -> UM ()
extendTvEnv tv ty = UM $ \state ->
Unifiable (state { um_tv_env = extendVarEnv (um_tv_env state) tv ty }, ())
extendCvEnv :: CoVar -> Coercion -> UM ()
extendCvEnv cv co = UM $ \state ->
Unifiable (state { um_cv_env = extendVarEnv (um_cv_env state) cv co }, ())
umRnBndr2 :: UMEnv -> TyCoVar -> TyCoVar -> UMEnv
umRnBndr2 env v1 v2
= env { um_rn_env = rn_env', um_skols = um_skols env `extendVarSet` v' }
where
(rn_env', v') = rnBndr2_var (um_rn_env env) v1 v2
checkRnEnv :: UMEnv -> VarSet -> UM ()
checkRnEnv env varset
| isEmptyVarSet skol_vars = return ()
| varset `disjointVarSet` skol_vars = return ()
| otherwise = maybeApart
-- ToDo: why MaybeApart?
-- I think SurelyApart would be right
where
skol_vars = um_skols env
-- NB: That isEmptyVarSet guard is a critical optimization;
-- it means we don't have to calculate the free vars of
-- the type, often saving quite a bit of allocation.
-- | Converts any SurelyApart to a MaybeApart
don'tBeSoSure :: UM () -> UM ()
don'tBeSoSure um = UM $ \ state ->
case unUM um state of
SurelyApart -> MaybeApart (state, ())
other -> other
umRnOccL :: UMEnv -> TyVar -> TyVar
umRnOccL env v = rnOccL (um_rn_env env) v
umRnOccR :: UMEnv -> TyVar -> TyVar
umRnOccR env v = rnOccR (um_rn_env env) v
umSwapRn :: UMEnv -> UMEnv
umSwapRn env = env { um_rn_env = rnSwap (um_rn_env env) }
maybeApart :: UM ()
maybeApart = UM (\state -> MaybeApart (state, ()))
surelyApart :: UM a
surelyApart = UM (\_ -> SurelyApart)
{-
%************************************************************************
%* *
Matching a (lifted) type against a coercion
%* *
%************************************************************************
This section defines essentially an inverse to liftCoSubst. It is defined
here to avoid a dependency from Coercion on this module.
-}
data MatchEnv = ME { me_tmpls :: TyVarSet
, me_env :: RnEnv2 }
-- | 'liftCoMatch' is sort of inverse to 'liftCoSubst'. In particular, if
-- @liftCoMatch vars ty co == Just s@, then @liftCoSubst s ty == co@,
-- where @==@ there means that the result of 'liftCoSubst' has the same
-- type as the original co; but may be different under the hood.
-- That is, it matches a type against a coercion of the same
-- "shape", and returns a lifting substitution which could have been
-- used to produce the given coercion from the given type.
-- Note that this function is incomplete -- it might return Nothing
-- when there does indeed exist a possible lifting context.
--
-- This function is incomplete in that it doesn't respect the equality
-- in `eqType`. That is, it's possible that this will succeed for t1 and
-- fail for t2, even when t1 `eqType` t2. That's because it depends on
-- there being a very similar structure between the type and the coercion.
-- This incompleteness shouldn't be all that surprising, especially because
-- it depends on the structure of the coercion, which is a silly thing to do.
--
-- The lifting context produced doesn't have to be exacting in the roles
-- of the mappings. This is because any use of the lifting context will
-- also require a desired role. Thus, this algorithm prefers mapping to
-- nominal coercions where it can do so.
liftCoMatch :: TyCoVarSet -> Type -> Coercion -> Maybe LiftingContext
liftCoMatch tmpls ty co
= do { cenv1 <- ty_co_match menv emptyVarEnv ki ki_co ki_ki_co ki_ki_co
; cenv2 <- ty_co_match menv cenv1 ty co
(mkNomReflCo co_lkind) (mkNomReflCo co_rkind)
; return (LC (mkEmptyTCvSubst in_scope) cenv2) }
where
menv = ME { me_tmpls = tmpls, me_env = mkRnEnv2 in_scope }
in_scope = mkInScopeSet (tmpls `unionVarSet` tyCoVarsOfCo co)
-- Like tcMatchTy, assume all the interesting variables
-- in ty are in tmpls
ki = typeKind ty
ki_co = promoteCoercion co
ki_ki_co = mkNomReflCo liftedTypeKind
Pair co_lkind co_rkind = coercionKind ki_co
-- | 'ty_co_match' does all the actual work for 'liftCoMatch'.
ty_co_match :: MatchEnv -- ^ ambient helpful info
-> LiftCoEnv -- ^ incoming subst
-> Type -- ^ ty, type to match
-> Coercion -- ^ co, coercion to match against
-> Coercion -- ^ :: kind of L type of substed ty ~N L kind of co
-> Coercion -- ^ :: kind of R type of substed ty ~N R kind of co
-> Maybe LiftCoEnv
ty_co_match menv subst ty co lkco rkco
| Just ty' <- coreView ty = ty_co_match menv subst ty' co lkco rkco
-- handle Refl case:
| tyCoVarsOfType ty `isNotInDomainOf` subst
, Just (ty', _) <- isReflCo_maybe co
, ty `eqType` ty'
= Just subst
where
isNotInDomainOf :: VarSet -> VarEnv a -> Bool
isNotInDomainOf set env
= noneSet (\v -> elemVarEnv v env) set
noneSet :: (Var -> Bool) -> VarSet -> Bool
noneSet f = allVarSet (not . f)
ty_co_match menv subst ty co lkco rkco
| CastTy ty' co' <- ty
-- See Note [Matching in the presence of casts (1)]
= let empty_subst = mkEmptyTCvSubst (rnInScopeSet (me_env menv))
substed_co_l = substCo (liftEnvSubstLeft empty_subst subst) co'
substed_co_r = substCo (liftEnvSubstRight empty_subst subst) co'
in
ty_co_match menv subst ty' co (substed_co_l `mkTransCo` lkco)
(substed_co_r `mkTransCo` rkco)
| SymCo co' <- co
= swapLiftCoEnv <$> ty_co_match menv (swapLiftCoEnv subst) ty co' rkco lkco
-- Match a type variable against a non-refl coercion
ty_co_match menv subst (TyVarTy tv1) co lkco rkco
| Just co1' <- lookupVarEnv subst tv1' -- tv1' is already bound to co1
= if eqCoercionX (nukeRnEnvL rn_env) co1' co
then Just subst
else Nothing -- no match since tv1 matches two different coercions
| tv1' `elemVarSet` me_tmpls menv -- tv1' is a template var
= if any (inRnEnvR rn_env) (tyCoVarsOfCoList co)
then Nothing -- occurs check failed
else Just $ extendVarEnv subst tv1' $
castCoercionKind co (mkSymCo lkco) (mkSymCo rkco)
| otherwise
= Nothing
where
rn_env = me_env menv
tv1' = rnOccL rn_env tv1
-- just look through SubCo's. We don't really care about roles here.
ty_co_match menv subst ty (SubCo co) lkco rkco
= ty_co_match menv subst ty co lkco rkco
ty_co_match menv subst (AppTy ty1a ty1b) co _lkco _rkco
| Just (co2, arg2) <- splitAppCo_maybe co -- c.f. Unify.match on AppTy
= ty_co_match_app menv subst ty1a [ty1b] co2 [arg2]
ty_co_match menv subst ty1 (AppCo co2 arg2) _lkco _rkco
| Just (ty1a, ty1b) <- repSplitAppTy_maybe ty1
-- yes, the one from Type, not TcType; this is for coercion optimization
= ty_co_match_app menv subst ty1a [ty1b] co2 [arg2]
ty_co_match menv subst (TyConApp tc1 tys) (TyConAppCo _ tc2 cos) _lkco _rkco
= ty_co_match_tc menv subst tc1 tys tc2 cos
ty_co_match menv subst (FunTy _ w ty1 ty2) co _lkco _rkco
-- Despite the fact that (->) is polymorphic in five type variables (two
-- runtime rep, a multiplicity and two types), we shouldn't need to
-- explicitly unify the runtime reps here; unifying the types themselves
-- should be sufficient. See Note [Representation of function types].
| Just (tc, [co_mult, _,_,co1,co2]) <- splitTyConAppCo_maybe co
, tc == funTyCon
= let Pair lkcos rkcos = traverse (fmap mkNomReflCo . coercionKind) [co_mult,co1,co2]
in ty_co_match_args menv subst [w, ty1, ty2] [co_mult, co1, co2] lkcos rkcos
ty_co_match menv subst (ForAllTy (Bndr tv1 _) ty1)
(ForAllCo tv2 kind_co2 co2)
lkco rkco
| isTyVar tv1 && isTyVar tv2
= do { subst1 <- ty_co_match menv subst (tyVarKind tv1) kind_co2
ki_ki_co ki_ki_co
; let rn_env0 = me_env menv
rn_env1 = rnBndr2 rn_env0 tv1 tv2
menv' = menv { me_env = rn_env1 }
; ty_co_match menv' subst1 ty1 co2 lkco rkco }
where
ki_ki_co = mkNomReflCo liftedTypeKind
-- ty_co_match menv subst (ForAllTy (Bndr cv1 _) ty1)
-- (ForAllCo cv2 kind_co2 co2)
-- lkco rkco
-- | isCoVar cv1 && isCoVar cv2
-- We seems not to have enough information for this case
-- 1. Given:
-- cv1 :: (s1 :: k1) ~r (s2 :: k2)
-- kind_co2 :: (s1' ~ s2') ~N (t1 ~ t2)
-- eta1 = mkNthCo role 2 (downgradeRole r Nominal kind_co2)
-- :: s1' ~ t1
-- eta2 = mkNthCo role 3 (downgradeRole r Nominal kind_co2)
-- :: s2' ~ t2
-- Wanted:
-- subst1 <- ty_co_match menv subst s1 eta1 kco1 kco2
-- subst2 <- ty_co_match menv subst1 s2 eta2 kco3 kco4
-- Question: How do we get kcoi?
-- 2. Given:
-- lkco :: <*> -- See Note [Weird typing rule for ForAllTy] in GHC.Core.TyCo.Rep
-- rkco :: <*>
-- Wanted:
-- ty_co_match menv' subst2 ty1 co2 lkco' rkco'
-- Question: How do we get lkco' and rkco'?
ty_co_match _ subst (CoercionTy {}) _ _ _
= Just subst -- don't inspect coercions
ty_co_match menv subst ty (GRefl r t (MCo co)) lkco rkco
= ty_co_match menv subst ty (GRefl r t MRefl) lkco (rkco `mkTransCo` mkSymCo co)
ty_co_match menv subst ty co1 lkco rkco
| Just (CastTy t co, r) <- isReflCo_maybe co1
-- In @pushRefl@, pushing reflexive coercion inside CastTy will give us
-- t |> co ~ t ; <t> ; t ~ t |> co
-- But transitive coercions are not helpful. Therefore we deal
-- with it here: we do recursion on the smaller reflexive coercion,
-- while propagating the correct kind coercions.
= let kco' = mkSymCo co
in ty_co_match menv subst ty (mkReflCo r t) (lkco `mkTransCo` kco')
(rkco `mkTransCo` kco')
ty_co_match menv subst ty co lkco rkco
| Just co' <- pushRefl co = ty_co_match menv subst ty co' lkco rkco
| otherwise = Nothing
ty_co_match_tc :: MatchEnv -> LiftCoEnv
-> TyCon -> [Type]
-> TyCon -> [Coercion]
-> Maybe LiftCoEnv
ty_co_match_tc menv subst tc1 tys1 tc2 cos2
= do { guard (tc1 == tc2)
; ty_co_match_args menv subst tys1 cos2 lkcos rkcos }
where
Pair lkcos rkcos
= traverse (fmap mkNomReflCo . coercionKind) cos2
ty_co_match_app :: MatchEnv -> LiftCoEnv
-> Type -> [Type] -> Coercion -> [Coercion]
-> Maybe LiftCoEnv
ty_co_match_app menv subst ty1 ty1args co2 co2args
| Just (ty1', ty1a) <- repSplitAppTy_maybe ty1
, Just (co2', co2a) <- splitAppCo_maybe co2
= ty_co_match_app menv subst ty1' (ty1a : ty1args) co2' (co2a : co2args)
| otherwise
= do { subst1 <- ty_co_match menv subst ki1 ki2 ki_ki_co ki_ki_co
; let Pair lkco rkco = mkNomReflCo <$> coercionKind ki2
; subst2 <- ty_co_match menv subst1 ty1 co2 lkco rkco
; let Pair lkcos rkcos = traverse (fmap mkNomReflCo . coercionKind) co2args
; ty_co_match_args menv subst2 ty1args co2args lkcos rkcos }
where
ki1 = typeKind ty1
ki2 = promoteCoercion co2
ki_ki_co = mkNomReflCo liftedTypeKind
ty_co_match_args :: MatchEnv -> LiftCoEnv -> [Type]
-> [Coercion] -> [Coercion] -> [Coercion]
-> Maybe LiftCoEnv
ty_co_match_args _ subst [] [] _ _ = Just subst
ty_co_match_args menv subst (ty:tys) (arg:args) (lkco:lkcos) (rkco:rkcos)
= do { subst' <- ty_co_match menv subst ty arg lkco rkco
; ty_co_match_args menv subst' tys args lkcos rkcos }
ty_co_match_args _ _ _ _ _ _ = Nothing
pushRefl :: Coercion -> Maybe Coercion
pushRefl co =
case (isReflCo_maybe co) of
Just (AppTy ty1 ty2, Nominal)
-> Just (AppCo (mkReflCo Nominal ty1) (mkNomReflCo ty2))
Just (FunTy _ w ty1 ty2, r)
| Just rep1 <- getRuntimeRep_maybe ty1
, Just rep2 <- getRuntimeRep_maybe ty2
-> Just (TyConAppCo r funTyCon [ multToCo w, mkReflCo r rep1, mkReflCo r rep2
, mkReflCo r ty1, mkReflCo r ty2 ])
Just (TyConApp tc tys, r)
-> Just (TyConAppCo r tc (zipWith mkReflCo (tyConRolesX r tc) tys))
Just (ForAllTy (Bndr tv _) ty, r)
-> Just (ForAllCo tv (mkNomReflCo (varType tv)) (mkReflCo r ty))
-- NB: NoRefl variant. Otherwise, we get a loop!
_ -> Nothing
|