1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
-- (c) The University of Glasgow 2006
{-# LANGUAGE CPP, ScopedTypeVariables, ViewPatterns #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module GHC.Data.Graph.Directed (
Graph, graphFromEdgedVerticesOrd, graphFromEdgedVerticesUniq,
SCC(..), Node(..), flattenSCC, flattenSCCs,
stronglyConnCompG,
topologicalSortG,
verticesG, edgesG, hasVertexG,
reachableG, reachablesG, transposeG,
emptyG,
findCycle,
-- For backwards compatibility with the simpler version of Digraph
stronglyConnCompFromEdgedVerticesOrd,
stronglyConnCompFromEdgedVerticesOrdR,
stronglyConnCompFromEdgedVerticesUniq,
stronglyConnCompFromEdgedVerticesUniqR,
-- Simple way to classify edges
EdgeType(..), classifyEdges
) where
#include "GhclibHsVersions.h"
------------------------------------------------------------------------------
-- A version of the graph algorithms described in:
--
-- ``Lazy Depth-First Search and Linear IntGraph Algorithms in Haskell''
-- by David King and John Launchbury
--
-- Also included is some additional code for printing tree structures ...
--
-- If you ever find yourself in need of algorithms for classifying edges,
-- or finding connected/biconnected components, consult the history; Sigbjorn
-- Finne contributed some implementations in 1997, although we've since
-- removed them since they were not used anywhere in GHC.
------------------------------------------------------------------------------
import GHC.Prelude
import GHC.Utils.Misc ( minWith, count )
import GHC.Utils.Outputable
import GHC.Data.Maybe ( expectJust )
-- std interfaces
import Data.Maybe
import Data.Array
import Data.List hiding (transpose)
import qualified Data.Map as Map
import qualified Data.Set as Set
import qualified Data.Graph as G
import Data.Graph hiding (Graph, Edge, transposeG, reachable)
import Data.Tree
import GHC.Types.Unique
import GHC.Types.Unique.FM
{-
************************************************************************
* *
* Graphs and Graph Construction
* *
************************************************************************
Note [Nodes, keys, vertices]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* A 'node' is a big blob of client-stuff
* Each 'node' has a unique (client) 'key', but the latter
is in Ord and has fast comparison
* Digraph then maps each 'key' to a Vertex (Int) which is
arranged densely in 0.n
-}
data Graph node = Graph {
gr_int_graph :: IntGraph,
gr_vertex_to_node :: Vertex -> node,
gr_node_to_vertex :: node -> Maybe Vertex
}
data Edge node = Edge node node
{-| Representation for nodes of the Graph.
* The @payload@ is user data, just carried around in this module
* The @key@ is the node identifier.
Key has an Ord instance for performance reasons.
* The @[key]@ are the dependencies of the node;
it's ok to have extra keys in the dependencies that
are not the key of any Node in the graph
-}
data Node key payload = DigraphNode {
node_payload :: payload, -- ^ User data
node_key :: key, -- ^ User defined node id
node_dependencies :: [key] -- ^ Dependencies/successors of the node
}
instance (Outputable a, Outputable b) => Outputable (Node a b) where
ppr (DigraphNode a b c) = ppr (a, b, c)
emptyGraph :: Graph a
emptyGraph = Graph (array (1, 0) []) (error "emptyGraph") (const Nothing)
-- See Note [Deterministic SCC]
graphFromEdgedVertices
:: ReduceFn key payload
-> [Node key payload] -- The graph; its ok for the
-- out-list to contain keys which aren't
-- a vertex key, they are ignored
-> Graph (Node key payload)
graphFromEdgedVertices _reduceFn [] = emptyGraph
graphFromEdgedVertices reduceFn edged_vertices =
Graph graph vertex_fn (key_vertex . key_extractor)
where key_extractor = node_key
(bounds, vertex_fn, key_vertex, numbered_nodes) =
reduceFn edged_vertices key_extractor
graph = array bounds [ (v, sort $ mapMaybe key_vertex ks)
| (v, (node_dependencies -> ks)) <- numbered_nodes]
-- We normalize outgoing edges by sorting on node order, so
-- that the result doesn't depend on the order of the edges
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
graphFromEdgedVerticesOrd
:: Ord key
=> [Node key payload] -- The graph; its ok for the
-- out-list to contain keys which aren't
-- a vertex key, they are ignored
-> Graph (Node key payload)
graphFromEdgedVerticesOrd = graphFromEdgedVertices reduceNodesIntoVerticesOrd
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
graphFromEdgedVerticesUniq
:: Uniquable key
=> [Node key payload] -- The graph; its ok for the
-- out-list to contain keys which aren't
-- a vertex key, they are ignored
-> Graph (Node key payload)
graphFromEdgedVerticesUniq = graphFromEdgedVertices reduceNodesIntoVerticesUniq
type ReduceFn key payload =
[Node key payload] -> (Node key payload -> key) ->
(Bounds, Vertex -> Node key payload
, key -> Maybe Vertex, [(Vertex, Node key payload)])
{-
Note [reduceNodesIntoVertices implementations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
reduceNodesIntoVertices is parameterized by the container type.
This is to accommodate key types that don't have an Ord instance
and hence preclude the use of Data.Map. An example of such type
would be Unique, there's no way to implement Ord Unique
deterministically.
For such types, there's a version with a Uniquable constraint.
This leaves us with two versions of every function that depends on
reduceNodesIntoVertices, one with Ord constraint and the other with
Uniquable constraint.
For example: graphFromEdgedVerticesOrd and graphFromEdgedVerticesUniq.
The Uniq version should be a tiny bit more efficient since it uses
Data.IntMap internally.
-}
reduceNodesIntoVertices
:: ([(key, Vertex)] -> m)
-> (key -> m -> Maybe Vertex)
-> ReduceFn key payload
reduceNodesIntoVertices fromList lookup nodes key_extractor =
(bounds, (!) vertex_map, key_vertex, numbered_nodes)
where
max_v = length nodes - 1
bounds = (0, max_v) :: (Vertex, Vertex)
-- Keep the order intact to make the result depend on input order
-- instead of key order
numbered_nodes = zip [0..] nodes
vertex_map = array bounds numbered_nodes
key_map = fromList
[ (key_extractor node, v) | (v, node) <- numbered_nodes ]
key_vertex k = lookup k key_map
-- See Note [reduceNodesIntoVertices implementations]
reduceNodesIntoVerticesOrd :: Ord key => ReduceFn key payload
reduceNodesIntoVerticesOrd = reduceNodesIntoVertices Map.fromList Map.lookup
-- See Note [reduceNodesIntoVertices implementations]
reduceNodesIntoVerticesUniq :: Uniquable key => ReduceFn key payload
reduceNodesIntoVerticesUniq = reduceNodesIntoVertices listToUFM (flip lookupUFM)
{-
************************************************************************
* *
* SCC
* *
************************************************************************
-}
type WorkItem key payload
= (Node key payload, -- Tip of the path
[payload]) -- Rest of the path;
-- [a,b,c] means c depends on b, b depends on a
-- | Find a reasonably short cycle a->b->c->a, in a strongly
-- connected component. The input nodes are presumed to be
-- a SCC, so you can start anywhere.
findCycle :: forall payload key. Ord key
=> [Node key payload] -- The nodes. The dependencies can
-- contain extra keys, which are ignored
-> Maybe [payload] -- A cycle, starting with node
-- so each depends on the next
findCycle graph
= go Set.empty (new_work root_deps []) []
where
env :: Map.Map key (Node key payload)
env = Map.fromList [ (node_key node, node) | node <- graph ]
-- Find the node with fewest dependencies among the SCC modules
-- This is just a heuristic to find some plausible root module
root :: Node key payload
root = fst (minWith snd [ (node, count (`Map.member` env)
(node_dependencies node))
| node <- graph ])
DigraphNode root_payload root_key root_deps = root
-- 'go' implements Dijkstra's algorithm, more or less
go :: Set.Set key -- Visited
-> [WorkItem key payload] -- Work list, items length n
-> [WorkItem key payload] -- Work list, items length n+1
-> Maybe [payload] -- Returned cycle
-- Invariant: in a call (go visited ps qs),
-- visited = union (map tail (ps ++ qs))
go _ [] [] = Nothing -- No cycles
go visited [] qs = go visited qs []
go visited (((DigraphNode payload key deps), path) : ps) qs
| key == root_key = Just (root_payload : reverse path)
| key `Set.member` visited = go visited ps qs
| key `Map.notMember` env = go visited ps qs
| otherwise = go (Set.insert key visited)
ps (new_qs ++ qs)
where
new_qs = new_work deps (payload : path)
new_work :: [key] -> [payload] -> [WorkItem key payload]
new_work deps path = [ (n, path) | Just n <- map (`Map.lookup` env) deps ]
{-
************************************************************************
* *
* Strongly Connected Component wrappers for Graph
* *
************************************************************************
Note: the components are returned topologically sorted: later components
depend on earlier ones, but not vice versa i.e. later components only have
edges going from them to earlier ones.
-}
{-
Note [Deterministic SCC]
~~~~~~~~~~~~~~~~~~~~~~~~
stronglyConnCompFromEdgedVerticesUniq,
stronglyConnCompFromEdgedVerticesUniqR,
stronglyConnCompFromEdgedVerticesOrd and
stronglyConnCompFromEdgedVerticesOrdR
provide a following guarantee:
Given a deterministically ordered list of nodes it returns a deterministically
ordered list of strongly connected components, where the list of vertices
in an SCC is also deterministically ordered.
Note that the order of edges doesn't need to be deterministic for this to work.
We use the order of nodes to normalize the order of edges.
-}
stronglyConnCompG :: Graph node -> [SCC node]
stronglyConnCompG graph = decodeSccs graph forest
where forest = {-# SCC "Digraph.scc" #-} scc (gr_int_graph graph)
decodeSccs :: Graph node -> Forest Vertex -> [SCC node]
decodeSccs Graph { gr_int_graph = graph, gr_vertex_to_node = vertex_fn } forest
= map decode forest
where
decode (Node v []) | mentions_itself v = CyclicSCC [vertex_fn v]
| otherwise = AcyclicSCC (vertex_fn v)
decode other = CyclicSCC (dec other [])
where dec (Node v ts) vs = vertex_fn v : foldr dec vs ts
mentions_itself v = v `elem` (graph ! v)
-- The following two versions are provided for backwards compatibility:
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
stronglyConnCompFromEdgedVerticesOrd
:: Ord key
=> [Node key payload]
-> [SCC payload]
stronglyConnCompFromEdgedVerticesOrd
= map (fmap node_payload) . stronglyConnCompFromEdgedVerticesOrdR
-- The following two versions are provided for backwards compatibility:
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
stronglyConnCompFromEdgedVerticesUniq
:: Uniquable key
=> [Node key payload]
-> [SCC payload]
stronglyConnCompFromEdgedVerticesUniq
= map (fmap node_payload) . stronglyConnCompFromEdgedVerticesUniqR
-- The "R" interface is used when you expect to apply SCC to
-- (some of) the result of SCC, so you don't want to lose the dependency info
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
stronglyConnCompFromEdgedVerticesOrdR
:: Ord key
=> [Node key payload]
-> [SCC (Node key payload)]
stronglyConnCompFromEdgedVerticesOrdR =
stronglyConnCompG . graphFromEdgedVertices reduceNodesIntoVerticesOrd
-- The "R" interface is used when you expect to apply SCC to
-- (some of) the result of SCC, so you don't want to lose the dependency info
-- See Note [Deterministic SCC]
-- See Note [reduceNodesIntoVertices implementations]
stronglyConnCompFromEdgedVerticesUniqR
:: Uniquable key
=> [Node key payload]
-> [SCC (Node key payload)]
stronglyConnCompFromEdgedVerticesUniqR =
stronglyConnCompG . graphFromEdgedVertices reduceNodesIntoVerticesUniq
{-
************************************************************************
* *
* Misc wrappers for Graph
* *
************************************************************************
-}
topologicalSortG :: Graph node -> [node]
topologicalSortG graph = map (gr_vertex_to_node graph) result
where result = {-# SCC "Digraph.topSort" #-} topSort (gr_int_graph graph)
reachableG :: Graph node -> node -> [node]
reachableG graph from = map (gr_vertex_to_node graph) result
where from_vertex = expectJust "reachableG" (gr_node_to_vertex graph from)
result = {-# SCC "Digraph.reachable" #-} reachable (gr_int_graph graph) [from_vertex]
-- | Given a list of roots return all reachable nodes.
reachablesG :: Graph node -> [node] -> [node]
reachablesG graph froms = map (gr_vertex_to_node graph) result
where result = {-# SCC "Digraph.reachable" #-}
reachable (gr_int_graph graph) vs
vs = [ v | Just v <- map (gr_node_to_vertex graph) froms ]
hasVertexG :: Graph node -> node -> Bool
hasVertexG graph node = isJust $ gr_node_to_vertex graph node
verticesG :: Graph node -> [node]
verticesG graph = map (gr_vertex_to_node graph) $ vertices (gr_int_graph graph)
edgesG :: Graph node -> [Edge node]
edgesG graph = map (\(v1, v2) -> Edge (v2n v1) (v2n v2)) $ edges (gr_int_graph graph)
where v2n = gr_vertex_to_node graph
transposeG :: Graph node -> Graph node
transposeG graph = Graph (G.transposeG (gr_int_graph graph))
(gr_vertex_to_node graph)
(gr_node_to_vertex graph)
emptyG :: Graph node -> Bool
emptyG g = graphEmpty (gr_int_graph g)
{-
************************************************************************
* *
* Showing Graphs
* *
************************************************************************
-}
instance Outputable node => Outputable (Graph node) where
ppr graph = vcat [
hang (text "Vertices:") 2 (vcat (map ppr $ verticesG graph)),
hang (text "Edges:") 2 (vcat (map ppr $ edgesG graph))
]
instance Outputable node => Outputable (Edge node) where
ppr (Edge from to) = ppr from <+> text "->" <+> ppr to
graphEmpty :: G.Graph -> Bool
graphEmpty g = lo > hi
where (lo, hi) = bounds g
{-
************************************************************************
* *
* IntGraphs
* *
************************************************************************
-}
type IntGraph = G.Graph
{-
------------------------------------------------------------
-- Depth first search numbering
------------------------------------------------------------
-}
-- Data.Tree has flatten for Tree, but nothing for Forest
preorderF :: Forest a -> [a]
preorderF ts = concatMap flatten ts
{-
------------------------------------------------------------
-- Finding reachable vertices
------------------------------------------------------------
-}
-- This generalizes reachable which was found in Data.Graph
reachable :: IntGraph -> [Vertex] -> [Vertex]
reachable g vs = preorderF (dfs g vs)
{-
************************************************************************
* *
* Classify Edge Types
* *
************************************************************************
-}
-- Remark: While we could generalize this algorithm this comes at a runtime
-- cost and with no advantages. If you find yourself using this with graphs
-- not easily represented using Int nodes please consider rewriting this
-- using the more general Graph type.
-- | Edge direction based on DFS Classification
data EdgeType
= Forward
| Cross
| Backward -- ^ Loop back towards the root node.
-- Eg backjumps in loops
| SelfLoop -- ^ v -> v
deriving (Eq,Ord)
instance Outputable EdgeType where
ppr Forward = text "Forward"
ppr Cross = text "Cross"
ppr Backward = text "Backward"
ppr SelfLoop = text "SelfLoop"
newtype Time = Time Int deriving (Eq,Ord,Num,Outputable)
--Allow for specialization
{-# INLINEABLE classifyEdges #-}
-- | Given a start vertex, a way to get successors from a node
-- and a list of (directed) edges classify the types of edges.
classifyEdges :: forall key. Uniquable key => key -> (key -> [key])
-> [(key,key)] -> [((key, key), EdgeType)]
classifyEdges root getSucc edges =
--let uqe (from,to) = (getUnique from, getUnique to)
--in pprTrace "Edges:" (ppr $ map uqe edges) $
zip edges $ map classify edges
where
(_time, starts, ends) = addTimes (0,emptyUFM,emptyUFM) root
classify :: (key,key) -> EdgeType
classify (from,to)
| startFrom < startTo
, endFrom > endTo
= Forward
| startFrom > startTo
, endFrom < endTo
= Backward
| startFrom > startTo
, endFrom > endTo
= Cross
| getUnique from == getUnique to
= SelfLoop
| otherwise
= pprPanic "Failed to classify edge of Graph"
(ppr (getUnique from, getUnique to))
where
getTime event node
| Just time <- lookupUFM event node
= time
| otherwise
= pprPanic "Failed to classify edge of CFG - not not timed"
(text "edges" <> ppr (getUnique from, getUnique to)
<+> ppr starts <+> ppr ends )
startFrom = getTime starts from
startTo = getTime starts to
endFrom = getTime ends from
endTo = getTime ends to
addTimes :: (Time, UniqFM key Time, UniqFM key Time) -> key
-> (Time, UniqFM key Time, UniqFM key Time)
addTimes (time,starts,ends) n
--Dont reenter nodes
| elemUFM n starts
= (time,starts,ends)
| otherwise =
let
starts' = addToUFM starts n time
time' = time + 1
succs = getSucc n :: [key]
(time'',starts'',ends') = foldl' addTimes (time',starts',ends) succs
ends'' = addToUFM ends' n time''
in
(time'' + 1, starts'', ends'')
|