1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Shared term graph (STG) syntax for spineless-tagless code generation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This data type represents programs just before code generation (conversion to
@Cmm@): basically, what we have is a stylised form of Core syntax, the style
being one that happens to be ideally suited to spineless tagless code
generation.
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE LambdaCase #-}
module GHC.Stg.Syntax (
StgArg(..),
GenStgTopBinding(..), GenStgBinding(..), GenStgExpr(..), GenStgRhs(..),
GenStgAlt, AltType(..),
StgPass(..), BinderP, XRhsClosure, XLet, XLetNoEscape,
NoExtFieldSilent, noExtFieldSilent,
OutputablePass,
UpdateFlag(..), isUpdatable,
-- a set of synonyms for the vanilla parameterisation
StgTopBinding, StgBinding, StgExpr, StgRhs, StgAlt,
-- a set of synonyms for the code gen parameterisation
CgStgTopBinding, CgStgBinding, CgStgExpr, CgStgRhs, CgStgAlt,
-- a set of synonyms for the lambda lifting parameterisation
LlStgTopBinding, LlStgBinding, LlStgExpr, LlStgRhs, LlStgAlt,
-- a set of synonyms to distinguish in- and out variants
InStgArg, InStgTopBinding, InStgBinding, InStgExpr, InStgRhs, InStgAlt,
OutStgArg, OutStgTopBinding, OutStgBinding, OutStgExpr, OutStgRhs, OutStgAlt,
-- StgOp
StgOp(..),
-- utils
stgRhsArity,
isDllConApp,
stgArgType,
stripStgTicksTop, stripStgTicksTopE,
stgCaseBndrInScope,
bindersOf, bindersOfTop, bindersOfTopBinds,
-- ppr
StgPprOpts(..), initStgPprOpts, panicStgPprOpts,
pprStgArg, pprStgExpr, pprStgRhs, pprStgBinding,
pprGenStgTopBinding, pprStgTopBinding,
pprGenStgTopBindings, pprStgTopBindings
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import GHC.Core ( AltCon, Tickish )
import GHC.Types.CostCentre ( CostCentreStack )
import Data.ByteString ( ByteString )
import Data.Data ( Data )
import Data.List ( intersperse )
import GHC.Core.DataCon
import GHC.Driver.Session
import GHC.Types.ForeignCall ( ForeignCall )
import GHC.Types.Id
import GHC.Types.Name ( isDynLinkName )
import GHC.Types.Var.Set
import GHC.Types.Literal ( Literal, literalType )
import GHC.Unit.Module ( Module )
import GHC.Utils.Outputable
import GHC.Platform
import GHC.Core.Ppr( {- instances -} )
import GHC.Builtin.PrimOps ( PrimOp, PrimCall )
import GHC.Core.TyCon ( PrimRep(..), TyCon )
import GHC.Core.Type ( Type )
import GHC.Types.RepType ( typePrimRep1 )
import GHC.Utils.Misc
import Data.List.NonEmpty ( NonEmpty, toList )
{-
************************************************************************
* *
GenStgBinding
* *
************************************************************************
As usual, expressions are interesting; other things are boring. Here are the
boring things (except note the @GenStgRhs@), parameterised with respect to
binder and occurrence information (just as in @GHC.Core@):
-}
-- | A top-level binding.
data GenStgTopBinding pass
-- See Note [Core top-level string literals]
= StgTopLifted (GenStgBinding pass)
| StgTopStringLit Id ByteString
data GenStgBinding pass
= StgNonRec (BinderP pass) (GenStgRhs pass)
| StgRec [(BinderP pass, GenStgRhs pass)]
{-
************************************************************************
* *
StgArg
* *
************************************************************************
-}
data StgArg
= StgVarArg Id
| StgLitArg Literal
-- | Does this constructor application refer to anything in a different
-- *Windows* DLL?
-- If so, we can't allocate it statically
isDllConApp :: DynFlags -> Module -> DataCon -> [StgArg] -> Bool
isDllConApp dflags this_mod con args
| not (gopt Opt_ExternalDynamicRefs dflags) = False
| platformOS platform == OSMinGW32
= isDynLinkName platform this_mod (dataConName con) || any is_dll_arg args
| otherwise = False
where
platform = targetPlatform dflags
-- NB: typePrimRep1 is legit because any free variables won't have
-- unlifted type (there are no unlifted things at top level)
is_dll_arg :: StgArg -> Bool
is_dll_arg (StgVarArg v) = isAddrRep (typePrimRep1 (idType v))
&& isDynLinkName platform this_mod (idName v)
is_dll_arg _ = False
-- True of machine addresses; these are the things that don't work across DLLs.
-- The key point here is that VoidRep comes out False, so that a top level
-- nullary GADT constructor is False for isDllConApp
--
-- data T a where
-- T1 :: T Int
--
-- gives
--
-- T1 :: forall a. (a~Int) -> T a
--
-- and hence the top-level binding
--
-- $WT1 :: T Int
-- $WT1 = T1 Int (Coercion (Refl Int))
--
-- The coercion argument here gets VoidRep
isAddrRep :: PrimRep -> Bool
isAddrRep AddrRep = True
isAddrRep LiftedRep = True
isAddrRep UnliftedRep = True
isAddrRep _ = False
-- | Type of an @StgArg@
--
-- Very half baked because we have lost the type arguments.
stgArgType :: StgArg -> Type
stgArgType (StgVarArg v) = idType v
stgArgType (StgLitArg lit) = literalType lit
-- | Strip ticks of a given type from an STG expression.
stripStgTicksTop :: (Tickish Id -> Bool) -> GenStgExpr p -> ([Tickish Id], GenStgExpr p)
stripStgTicksTop p = go []
where go ts (StgTick t e) | p t = go (t:ts) e
go ts other = (reverse ts, other)
-- | Strip ticks of a given type from an STG expression returning only the expression.
stripStgTicksTopE :: (Tickish Id -> Bool) -> GenStgExpr p -> GenStgExpr p
stripStgTicksTopE p = go
where go (StgTick t e) | p t = go e
go other = other
-- | Given an alt type and whether the program is unarised, return whether the
-- case binder is in scope.
--
-- Case binders of unboxed tuple or unboxed sum type always dead after the
-- unariser has run. See Note [Post-unarisation invariants].
stgCaseBndrInScope :: AltType -> Bool {- ^ unarised? -} -> Bool
stgCaseBndrInScope alt_ty unarised =
case alt_ty of
AlgAlt _ -> True
PrimAlt _ -> True
MultiValAlt _ -> not unarised
PolyAlt -> True
{-
************************************************************************
* *
STG expressions
* *
************************************************************************
The @GenStgExpr@ data type is parameterised on binder and occurrence info, as
before.
************************************************************************
* *
GenStgExpr
* *
************************************************************************
An application is of a function to a list of atoms (not expressions).
Operationally, we want to push the arguments on the stack and call the function.
(If the arguments were expressions, we would have to build their closures
first.)
There is no constructor for a lone variable; it would appear as @StgApp var []@.
-}
data GenStgExpr pass
= StgApp
Id -- function
[StgArg] -- arguments; may be empty
{-
************************************************************************
* *
StgConApp and StgPrimApp --- saturated applications
* *
************************************************************************
There are specialised forms of application, for constructors, primitives, and
literals.
-}
| StgLit Literal
-- StgConApp is vital for returning unboxed tuples or sums
-- which can't be let-bound
| StgConApp DataCon
[StgArg] -- Saturated
[Type] -- See Note [Types in StgConApp] in GHC.Stg.Unarise
| StgOpApp StgOp -- Primitive op or foreign call
[StgArg] -- Saturated.
Type -- Result type
-- We need to know this so that we can
-- assign result registers
{-
************************************************************************
* *
StgLam
* *
************************************************************************
StgLam is used *only* during CoreToStg's work. Before CoreToStg has finished it
encodes (\x -> e) as (let f = \x -> e in f) TODO: Encode this via an extension
to GenStgExpr à la TTG.
-}
| StgLam
(NonEmpty (BinderP pass))
StgExpr -- Body of lambda
{-
************************************************************************
* *
GenStgExpr: case-expressions
* *
************************************************************************
This has the same boxed/unboxed business as Core case expressions.
-}
| StgCase
(GenStgExpr pass) -- the thing to examine
(BinderP pass) -- binds the result of evaluating the scrutinee
AltType
[GenStgAlt pass]
-- The DEFAULT case is always *first*
-- if it is there at all
{-
************************************************************************
* *
GenStgExpr: let(rec)-expressions
* *
************************************************************************
The various forms of let(rec)-expression encode most of the interesting things
we want to do.
- let-closure x = [free-vars] [args] expr in e
is equivalent to
let x = (\free-vars -> \args -> expr) free-vars
@args@ may be empty (and is for most closures). It isn't under circumstances
like this:
let x = (\y -> y+z)
This gets mangled to
let-closure x = [z] [y] (y+z)
The idea is that we compile code for @(y+z)@ in an environment in which @z@ is
bound to an offset from Node, and `y` is bound to an offset from the stack
pointer.
(A let-closure is an @StgLet@ with a @StgRhsClosure@ RHS.)
- let-constructor x = Constructor [args] in e
(A let-constructor is an @StgLet@ with a @StgRhsCon@ RHS.)
- Letrec-expressions are essentially the same deal as let-closure/
let-constructor, so we use a common structure and distinguish between them
with an @is_recursive@ boolean flag.
- let-unboxed u = <an arbitrary arithmetic expression in unboxed values> in e
All the stuff on the RHS must be fully evaluated. No function calls either!
(We've backed away from this toward case-expressions with suitably-magical
alts ...)
- Advanced stuff here! Not to start with, but makes pattern matching generate
more efficient code.
let-escapes-not fail = expr
in e'
Here the idea is that @e'@ guarantees not to put @fail@ in a data structure,
or pass it to another function. All @e'@ will ever do is tail-call @fail@.
Rather than build a closure for @fail@, all we need do is to record the stack
level at the moment of the @let-escapes-not@; then entering @fail@ is just a
matter of adjusting the stack pointer back down to that point and entering the
code for it.
Another example:
f x y = let z = huge-expression in
if y==1 then z else
if y==2 then z else
1
(A let-escapes-not is an @StgLetNoEscape@.)
- We may eventually want:
let-literal x = Literal in e
And so the code for let(rec)-things:
-}
| StgLet
(XLet pass)
(GenStgBinding pass) -- right hand sides (see below)
(GenStgExpr pass) -- body
| StgLetNoEscape
(XLetNoEscape pass)
(GenStgBinding pass) -- right hand sides (see below)
(GenStgExpr pass) -- body
{-
*************************************************************************
* *
GenStgExpr: hpc, scc and other debug annotations
* *
*************************************************************************
Finally for @hpc@ expressions we introduce a new STG construct.
-}
| StgTick
(Tickish Id)
(GenStgExpr pass) -- sub expression
-- END of GenStgExpr
{-
************************************************************************
* *
STG right-hand sides
* *
************************************************************************
Here's the rest of the interesting stuff for @StgLet@s; the first flavour is for
closures:
-}
data GenStgRhs pass
= StgRhsClosure
(XRhsClosure pass) -- ^ Extension point for non-global free var
-- list just before 'CodeGen'.
CostCentreStack -- ^ CCS to be attached (default is CurrentCCS)
!UpdateFlag -- ^ 'ReEntrant' | 'Updatable' | 'SingleEntry'
[BinderP pass] -- ^ arguments; if empty, then not a function;
-- as above, order is important.
(GenStgExpr pass) -- ^ body
{-
An example may be in order. Consider:
let t = \x -> \y -> ... x ... y ... p ... q in e
Pulling out the free vars and stylising somewhat, we get the equivalent:
let t = (\[p,q] -> \[x,y] -> ... x ... y ... p ...q) p q
Stg-operationally, the @[x,y]@ are on the stack, the @[p,q]@ are offsets from
@Node@ into the closure, and the code ptr for the closure will be exactly that
in parentheses above.
The second flavour of right-hand-side is for constructors (simple but
important):
-}
| StgRhsCon
CostCentreStack -- CCS to be attached (default is CurrentCCS).
-- Top-level (static) ones will end up with
-- DontCareCCS, because we don't count static
-- data in heap profiles, and we don't set CCCS
-- from static closure.
DataCon -- Constructor. Never an unboxed tuple or sum, as those
-- are not allocated.
[StgArg] -- Args
-- | Used as a data type index for the stgSyn AST
data StgPass
= Vanilla
| LiftLams
| CodeGen
-- | Like 'GHC.Hs.Extension.NoExtField', but with an 'Outputable' instance that
-- returns 'empty'.
data NoExtFieldSilent = NoExtFieldSilent
deriving (Data, Eq, Ord)
instance Outputable NoExtFieldSilent where
ppr _ = empty
-- | Used when constructing a term with an unused extension point that should
-- not appear in pretty-printed output at all.
noExtFieldSilent :: NoExtFieldSilent
noExtFieldSilent = NoExtFieldSilent
-- TODO: Maybe move this to GHC.Hs.Extension? I'm not sure about the
-- implications on build time...
-- TODO: Do we really want to the extension point type families to have a closed
-- domain?
type family BinderP (pass :: StgPass)
type instance BinderP 'Vanilla = Id
type instance BinderP 'CodeGen = Id
type family XRhsClosure (pass :: StgPass)
type instance XRhsClosure 'Vanilla = NoExtFieldSilent
-- | Code gen needs to track non-global free vars
type instance XRhsClosure 'CodeGen = DIdSet
type family XLet (pass :: StgPass)
type instance XLet 'Vanilla = NoExtFieldSilent
type instance XLet 'CodeGen = NoExtFieldSilent
type family XLetNoEscape (pass :: StgPass)
type instance XLetNoEscape 'Vanilla = NoExtFieldSilent
type instance XLetNoEscape 'CodeGen = NoExtFieldSilent
stgRhsArity :: StgRhs -> Int
stgRhsArity (StgRhsClosure _ _ _ bndrs _)
= ASSERT( all isId bndrs ) length bndrs
-- The arity never includes type parameters, but they should have gone by now
stgRhsArity (StgRhsCon _ _ _) = 0
{-
************************************************************************
* *
STG case alternatives
* *
************************************************************************
Very like in Core syntax (except no type-world stuff).
The type constructor is guaranteed not to be abstract; that is, we can see its
representation. This is important because the code generator uses it to
determine return conventions etc. But it's not trivial where there's a module
loop involved, because some versions of a type constructor might not have all
the constructors visible. So mkStgAlgAlts (in CoreToStg) ensures that it gets
the TyCon from the constructors or literals (which are guaranteed to have the
Real McCoy) rather than from the scrutinee type.
-}
type GenStgAlt pass
= (AltCon, -- alts: data constructor,
[BinderP pass], -- constructor's parameters,
GenStgExpr pass) -- ...right-hand side.
data AltType
= PolyAlt -- Polymorphic (a lifted type variable)
| MultiValAlt Int -- Multi value of this arity (unboxed tuple or sum)
-- the arity could indeed be 1 for unary unboxed tuple
-- or enum-like unboxed sums
| AlgAlt TyCon -- Algebraic data type; the AltCons will be DataAlts
| PrimAlt PrimRep -- Primitive data type; the AltCons (if any) will be LitAlts
{-
************************************************************************
* *
The Plain STG parameterisation
* *
************************************************************************
This happens to be the only one we use at the moment.
-}
type StgTopBinding = GenStgTopBinding 'Vanilla
type StgBinding = GenStgBinding 'Vanilla
type StgExpr = GenStgExpr 'Vanilla
type StgRhs = GenStgRhs 'Vanilla
type StgAlt = GenStgAlt 'Vanilla
type LlStgTopBinding = GenStgTopBinding 'LiftLams
type LlStgBinding = GenStgBinding 'LiftLams
type LlStgExpr = GenStgExpr 'LiftLams
type LlStgRhs = GenStgRhs 'LiftLams
type LlStgAlt = GenStgAlt 'LiftLams
type CgStgTopBinding = GenStgTopBinding 'CodeGen
type CgStgBinding = GenStgBinding 'CodeGen
type CgStgExpr = GenStgExpr 'CodeGen
type CgStgRhs = GenStgRhs 'CodeGen
type CgStgAlt = GenStgAlt 'CodeGen
{- Many passes apply a substitution, and it's very handy to have type
synonyms to remind us whether or not the substitution has been applied.
See GHC.Core for precedence in Core land
-}
type InStgTopBinding = StgTopBinding
type InStgBinding = StgBinding
type InStgArg = StgArg
type InStgExpr = StgExpr
type InStgRhs = StgRhs
type InStgAlt = StgAlt
type OutStgTopBinding = StgTopBinding
type OutStgBinding = StgBinding
type OutStgArg = StgArg
type OutStgExpr = StgExpr
type OutStgRhs = StgRhs
type OutStgAlt = StgAlt
{-
************************************************************************
* *
UpdateFlag
* *
************************************************************************
This is also used in @LambdaFormInfo@ in the @ClosureInfo@ module.
A @ReEntrant@ closure may be entered multiple times, but should not be updated
or blackholed. An @Updatable@ closure should be updated after evaluation (and
may be blackholed during evaluation). A @SingleEntry@ closure will only be
entered once, and so need not be updated but may safely be blackholed.
-}
data UpdateFlag = ReEntrant | Updatable | SingleEntry
instance Outputable UpdateFlag where
ppr u = char $ case u of
ReEntrant -> 'r'
Updatable -> 'u'
SingleEntry -> 's'
isUpdatable :: UpdateFlag -> Bool
isUpdatable ReEntrant = False
isUpdatable SingleEntry = False
isUpdatable Updatable = True
{-
************************************************************************
* *
StgOp
* *
************************************************************************
An StgOp allows us to group together PrimOps and ForeignCalls. It's quite useful
to move these around together, notably in StgOpApp and COpStmt.
-}
data StgOp
= StgPrimOp PrimOp
| StgPrimCallOp PrimCall
| StgFCallOp ForeignCall Type
-- The Type, which is obtained from the foreign import declaration
-- itself, is needed by the stg-to-cmm pass to determine the offset to
-- apply to unlifted boxed arguments in GHC.StgToCmm.Foreign. See Note
-- [Unlifted boxed arguments to foreign calls]
{-
************************************************************************
* *
Utilities
* *
************************************************************************
-}
bindersOf :: BinderP a ~ Id => GenStgBinding a -> [Id]
bindersOf (StgNonRec binder _) = [binder]
bindersOf (StgRec pairs) = [binder | (binder, _) <- pairs]
bindersOfTop :: BinderP a ~ Id => GenStgTopBinding a -> [Id]
bindersOfTop (StgTopLifted bind) = bindersOf bind
bindersOfTop (StgTopStringLit binder _) = [binder]
bindersOfTopBinds :: BinderP a ~ Id => [GenStgTopBinding a] -> [Id]
bindersOfTopBinds = foldr ((++) . bindersOfTop) []
{-
************************************************************************
* *
Pretty-printing
* *
************************************************************************
Robin Popplestone asked for semi-colon separators on STG binds; here's hoping he
likes terminators instead... Ditto for case alternatives.
-}
type OutputablePass pass =
( Outputable (XLet pass)
, Outputable (XLetNoEscape pass)
, Outputable (XRhsClosure pass)
, OutputableBndr (BinderP pass)
)
-- | STG pretty-printing options
data StgPprOpts = StgPprOpts
{ stgSccEnabled :: !Bool -- ^ Enable cost-centres
}
-- | Initialize STG pretty-printing options from DynFlags
initStgPprOpts :: DynFlags -> StgPprOpts
initStgPprOpts dflags = StgPprOpts
{ stgSccEnabled = sccProfilingEnabled dflags
}
-- | STG pretty-printing options used for panic messages
panicStgPprOpts :: StgPprOpts
panicStgPprOpts = StgPprOpts
{ stgSccEnabled = True
}
pprGenStgTopBinding
:: OutputablePass pass => StgPprOpts -> GenStgTopBinding pass -> SDoc
pprGenStgTopBinding opts b = case b of
StgTopStringLit bndr str -> hang (hsep [pprBndr LetBind bndr, equals]) 4 (pprHsBytes str <> semi)
StgTopLifted bind -> pprGenStgBinding opts bind
pprGenStgBinding :: OutputablePass pass => StgPprOpts -> GenStgBinding pass -> SDoc
pprGenStgBinding opts b = case b of
StgNonRec bndr rhs -> hang (hsep [pprBndr LetBind bndr, equals]) 4 (pprStgRhs opts rhs <> semi)
StgRec pairs -> vcat [ text "Rec {"
, vcat (intersperse blankLine (map ppr_bind pairs))
, text "end Rec }" ]
where
ppr_bind (bndr, expr)
= hang (hsep [pprBndr LetBind bndr, equals])
4 (pprStgRhs opts expr <> semi)
pprGenStgTopBindings :: (OutputablePass pass) => StgPprOpts -> [GenStgTopBinding pass] -> SDoc
pprGenStgTopBindings opts binds
= vcat $ intersperse blankLine (map (pprGenStgTopBinding opts) binds)
pprStgBinding :: StgPprOpts -> StgBinding -> SDoc
pprStgBinding = pprGenStgBinding
pprStgTopBinding :: StgPprOpts -> StgTopBinding -> SDoc
pprStgTopBinding = pprGenStgTopBinding
pprStgTopBindings :: StgPprOpts -> [StgTopBinding] -> SDoc
pprStgTopBindings = pprGenStgTopBindings
instance Outputable StgArg where
ppr = pprStgArg
pprStgArg :: StgArg -> SDoc
pprStgArg (StgVarArg var) = ppr var
pprStgArg (StgLitArg con) = ppr con
pprStgExpr :: OutputablePass pass => StgPprOpts -> GenStgExpr pass -> SDoc
pprStgExpr opts e = case e of
-- special case
StgLit lit -> ppr lit
-- general case
StgApp func args -> hang (ppr func) 4 (interppSP args)
StgConApp con args _ -> hsep [ ppr con, brackets (interppSP args) ]
StgOpApp op args _ -> hsep [ pprStgOp op, brackets (interppSP args)]
StgLam bndrs body -> let ppr_list = brackets . fsep . punctuate comma
in sep [ char '\\' <+> ppr_list (map (pprBndr LambdaBind) (toList bndrs))
<+> text "->"
, pprStgExpr opts body
]
-- special case: let v = <very specific thing>
-- in
-- let ...
-- in
-- ...
--
-- Very special! Suspicious! (SLPJ)
{-
StgLet srt (StgNonRec bndr (StgRhsClosure cc bi free_vars upd_flag args rhs))
expr@(StgLet _ _))
-> ($$)
(hang (hcat [text "let { ", ppr bndr, ptext (sLit " = "),
ppr cc,
pp_binder_info bi,
text " [", whenPprDebug (interppSP free_vars), ptext (sLit "] \\"),
ppr upd_flag, text " [",
interppSP args, char ']'])
8 (sep [hsep [ppr rhs, text "} in"]]))
(ppr expr)
-}
-- special case: let ... in let ...
StgLet ext bind expr@StgLet{} -> ($$)
(sep [hang (text "let" <+> ppr ext <+> text "{")
2 (hsep [pprGenStgBinding opts bind, text "} in"])])
(pprStgExpr opts expr)
-- general case
StgLet ext bind expr
-> sep [ hang (text "let" <+> ppr ext <+> text "{")
2 (pprGenStgBinding opts bind)
, hang (text "} in ") 2 (pprStgExpr opts expr)
]
StgLetNoEscape ext bind expr
-> sep [ hang (text "let-no-escape" <+> ppr ext <+> text "{")
2 (pprGenStgBinding opts bind)
, hang (text "} in ") 2 (pprStgExpr opts expr)
]
StgTick tickish expr -> sdocOption sdocSuppressTicks $ \case
True -> pprStgExpr opts expr
False -> sep [ ppr tickish, pprStgExpr opts expr ]
-- Don't indent for a single case alternative.
StgCase expr bndr alt_type [alt]
-> sep [ sep [ text "case"
, nest 4 (hsep [ pprStgExpr opts expr
, whenPprDebug (dcolon <+> ppr alt_type)
])
, text "of"
, pprBndr CaseBind bndr
, char '{'
]
, pprStgAlt opts False alt
, char '}'
]
StgCase expr bndr alt_type alts
-> sep [ sep [ text "case"
, nest 4 (hsep [ pprStgExpr opts expr
, whenPprDebug (dcolon <+> ppr alt_type)
])
, text "of"
, pprBndr CaseBind bndr, char '{'
]
, nest 2 (vcat (map (pprStgAlt opts True) alts))
, char '}'
]
pprStgAlt :: OutputablePass pass => StgPprOpts -> Bool -> GenStgAlt pass -> SDoc
pprStgAlt opts indent (con, params, expr)
| indent = hang altPattern 4 (pprStgExpr opts expr <> semi)
| otherwise = sep [altPattern, pprStgExpr opts expr <> semi]
where
altPattern = (hsep [ppr con, sep (map (pprBndr CasePatBind) params), text "->"])
pprStgOp :: StgOp -> SDoc
pprStgOp (StgPrimOp op) = ppr op
pprStgOp (StgPrimCallOp op)= ppr op
pprStgOp (StgFCallOp op _) = ppr op
instance Outputable AltType where
ppr PolyAlt = text "Polymorphic"
ppr (MultiValAlt n) = text "MultiAlt" <+> ppr n
ppr (AlgAlt tc) = text "Alg" <+> ppr tc
ppr (PrimAlt tc) = text "Prim" <+> ppr tc
pprStgRhs :: OutputablePass pass => StgPprOpts -> GenStgRhs pass -> SDoc
pprStgRhs opts rhs = case rhs of
StgRhsClosure ext cc upd_flag args body
-> hang (hsep [ if stgSccEnabled opts then ppr cc else empty
, ppUnlessOption sdocSuppressStgExts (ppr ext)
, char '\\' <> ppr upd_flag, brackets (interppSP args)
])
4 (pprStgExpr opts body)
StgRhsCon cc con args
-> hcat [ ppr cc, space, ppr con, text "! ", brackets (sep (map pprStgArg args))]
|