1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1997-1998
\section[BasicTypes]{Miscellaneous types}
This module defines a miscellaneously collection of very simple
types that
\begin{itemize}
\item have no other obvious home
\item don't depend on any other complicated types
\item are used in more than one "part" of the compiler
\end{itemize}
-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
module GHC.Types.Basic (
LeftOrRight(..),
pickLR,
ConTag, ConTagZ, fIRST_TAG,
Arity, RepArity, JoinArity,
Alignment, mkAlignment, alignmentOf, alignmentBytes,
PromotionFlag(..), isPromoted,
FunctionOrData(..),
WarningTxt(..), pprWarningTxtForMsg, StringLiteral(..),
Fixity(..), FixityDirection(..),
defaultFixity, maxPrecedence, minPrecedence,
negateFixity, funTyFixity,
compareFixity,
LexicalFixity(..),
RecFlag(..), isRec, isNonRec, boolToRecFlag,
Origin(..), isGenerated,
RuleName, pprRuleName,
TopLevelFlag(..), isTopLevel, isNotTopLevel,
OverlapFlag(..), OverlapMode(..), setOverlapModeMaybe,
hasOverlappingFlag, hasOverlappableFlag, hasIncoherentFlag,
Boxity(..), isBoxed,
PprPrec(..), topPrec, sigPrec, opPrec, funPrec, starPrec, appPrec,
maybeParen,
TupleSort(..), tupleSortBoxity, boxityTupleSort,
tupleParens,
sumParens, pprAlternative,
-- ** The OneShotInfo type
OneShotInfo(..),
noOneShotInfo, hasNoOneShotInfo, isOneShotInfo,
bestOneShot, worstOneShot,
OccInfo(..), noOccInfo, seqOccInfo, zapFragileOcc, isOneOcc,
isDeadOcc, isStrongLoopBreaker, isWeakLoopBreaker, isManyOccs,
isNoOccInfo, strongLoopBreaker, weakLoopBreaker,
InsideLam(..),
BranchCount, oneBranch,
InterestingCxt(..),
TailCallInfo(..), tailCallInfo, zapOccTailCallInfo,
isAlwaysTailCalled,
EP(..),
DefMethSpec(..),
SwapFlag(..), flipSwap, unSwap, isSwapped,
CompilerPhase(..), PhaseNum,
Activation(..), isActive, competesWith,
isNeverActive, isAlwaysActive, activeInFinalPhase,
activateAfterInitial, activateDuringFinal,
RuleMatchInfo(..), isConLike, isFunLike,
InlineSpec(..), noUserInlineSpec,
InlinePragma(..), defaultInlinePragma, alwaysInlinePragma,
neverInlinePragma, dfunInlinePragma,
isDefaultInlinePragma,
isInlinePragma, isInlinablePragma, isAnyInlinePragma,
inlinePragmaSpec, inlinePragmaSat,
inlinePragmaActivation, inlinePragmaRuleMatchInfo,
setInlinePragmaActivation, setInlinePragmaRuleMatchInfo,
pprInline, pprInlineDebug,
SuccessFlag(..), succeeded, failed, successIf,
IntegralLit(..), FractionalLit(..),
negateIntegralLit, negateFractionalLit,
mkIntegralLit, mkFractionalLit,
integralFractionalLit,
SourceText(..), pprWithSourceText,
IntWithInf, infinity, treatZeroAsInf, mkIntWithInf, intGtLimit,
SpliceExplicitFlag(..),
TypeOrKind(..), isTypeLevel, isKindLevel
) where
import GHC.Prelude
import GHC.Data.FastString
import GHC.Utils.Outputable
import GHC.Types.SrcLoc ( Located,unLoc )
import Data.Data hiding (Fixity, Prefix, Infix)
import Data.Function (on)
import Data.Bits
import qualified Data.Semigroup as Semi
{-
************************************************************************
* *
Binary choice
* *
************************************************************************
-}
data LeftOrRight = CLeft | CRight
deriving( Eq, Data )
pickLR :: LeftOrRight -> (a,a) -> a
pickLR CLeft (l,_) = l
pickLR CRight (_,r) = r
instance Outputable LeftOrRight where
ppr CLeft = text "Left"
ppr CRight = text "Right"
{-
************************************************************************
* *
\subsection[Arity]{Arity}
* *
************************************************************************
-}
-- | The number of value arguments that can be applied to a value before it does
-- "real work". So:
-- fib 100 has arity 0
-- \x -> fib x has arity 1
-- See also Note [Definition of arity] in "GHC.Core.Opt.Arity"
type Arity = Int
-- | Representation Arity
--
-- The number of represented arguments that can be applied to a value before it does
-- "real work". So:
-- fib 100 has representation arity 0
-- \x -> fib x has representation arity 1
-- \(# x, y #) -> fib (x + y) has representation arity 2
type RepArity = Int
-- | The number of arguments that a join point takes. Unlike the arity of a
-- function, this is a purely syntactic property and is fixed when the join
-- point is created (or converted from a value). Both type and value arguments
-- are counted.
type JoinArity = Int
{-
************************************************************************
* *
Constructor tags
* *
************************************************************************
-}
-- | Constructor Tag
--
-- Type of the tags associated with each constructor possibility or superclass
-- selector
type ConTag = Int
-- | A *zero-indexed* constructor tag
type ConTagZ = Int
fIRST_TAG :: ConTag
-- ^ Tags are allocated from here for real constructors
-- or for superclass selectors
fIRST_TAG = 1
{-
************************************************************************
* *
\subsection[Alignment]{Alignment}
* *
************************************************************************
-}
-- | A power-of-two alignment
newtype Alignment = Alignment { alignmentBytes :: Int } deriving (Eq, Ord)
-- Builds an alignment, throws on non power of 2 input. This is not
-- ideal, but convenient for internal use and better then silently
-- passing incorrect data.
mkAlignment :: Int -> Alignment
mkAlignment n
| n == 1 = Alignment 1
| n == 2 = Alignment 2
| n == 4 = Alignment 4
| n == 8 = Alignment 8
| n == 16 = Alignment 16
| n == 32 = Alignment 32
| n == 64 = Alignment 64
| n == 128 = Alignment 128
| n == 256 = Alignment 256
| n == 512 = Alignment 512
| otherwise = panic "mkAlignment: received either a non power of 2 argument or > 512"
-- Calculates an alignment of a number. x is aligned at N bytes means
-- the remainder from x / N is zero. Currently, interested in N <= 8,
-- but can be expanded to N <= 16 or N <= 32 if used within SSE or AVX
-- context.
alignmentOf :: Int -> Alignment
alignmentOf x = case x .&. 7 of
0 -> Alignment 8
4 -> Alignment 4
2 -> Alignment 2
_ -> Alignment 1
instance Outputable Alignment where
ppr (Alignment m) = ppr m
{-
************************************************************************
* *
One-shot information
* *
************************************************************************
-}
{-
Note [OneShotInfo overview]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lambda-bound Ids (and only lambda-bound Ids) may be decorated with
one-shot info. The idea is that if we see
(\x{one-shot}. e)
it means that this lambda will only be applied once. In particular
that means we can float redexes under the lambda without losing
work. For example, consider
let t = expensive in
(\x{one-shot}. case t of { True -> ...; False -> ... })
Because it's a one-shot lambda, we can safely inline t, giving
(\x{one_shot}. case <expensive> of
{ True -> ...; False -> ... })
Moving parts:
* Usage analysis, performed as part of demand-analysis, finds
out whether functions call their argument once. Consider
f g x = Just (case g x of { ... })
Here 'f' is lazy in 'g', but it guarantees to call it no
more than once. So g will get a C1(U) usage demand.
* Occurrence analysis propagates this usage information
(in the demand signature of a function) to its calls.
Example, given 'f' above
f (\x.e) blah
Since f's demand signature says it has a C1(U) usage demand on its
first argument, the occurrence analyser sets the \x to be one-shot.
This is done via the occ_one_shots field of OccEnv.
* Float-in and float-out take account of one-shot-ness
* Occurrence analysis doesn't set "inside-lam" for occurrences inside
a one-shot lambda
Other notes
* A one-shot lambda can use its argument many times. To elaborate
the example above
let t = expensive in
(\x{one-shot}. case t of { True -> x+x; False -> x*x })
Here the '\x' is one-shot, which justifies inlining 't',
but x is used many times. That's absolutely fine.
* It's entirely possible to have
(\x{one-shot}. \y{many-shot}. e)
For example
let t = expensive
g = \x -> let v = x+t in
\y -> x + v
in map (g 5) xs
Here the `\x` is a one-shot binder: `g` is applied to one argument
exactly once. And because the `\x` is one-shot, it would be fine to
float that `let t = expensive` binding inside the `\x`.
But the `\y` is most definitely not one-shot!
-}
-- | If the 'Id' is a lambda-bound variable then it may have lambda-bound
-- variable info. Sometimes we know whether the lambda binding this variable
-- is a "one-shot" lambda; that is, whether it is applied at most once.
--
-- This information may be useful in optimisation, as computations may
-- safely be floated inside such a lambda without risk of duplicating
-- work.
--
-- See also Note [OneShotInfo overview] above.
data OneShotInfo
= NoOneShotInfo -- ^ No information
| OneShotLam -- ^ The lambda is applied at most once.
deriving (Eq)
-- | It is always safe to assume that an 'Id' has no lambda-bound variable information
noOneShotInfo :: OneShotInfo
noOneShotInfo = NoOneShotInfo
isOneShotInfo, hasNoOneShotInfo :: OneShotInfo -> Bool
isOneShotInfo OneShotLam = True
isOneShotInfo _ = False
hasNoOneShotInfo NoOneShotInfo = True
hasNoOneShotInfo _ = False
worstOneShot, bestOneShot :: OneShotInfo -> OneShotInfo -> OneShotInfo
worstOneShot NoOneShotInfo _ = NoOneShotInfo
worstOneShot OneShotLam os = os
bestOneShot NoOneShotInfo os = os
bestOneShot OneShotLam _ = OneShotLam
pprOneShotInfo :: OneShotInfo -> SDoc
pprOneShotInfo NoOneShotInfo = empty
pprOneShotInfo OneShotLam = text "OneShot"
instance Outputable OneShotInfo where
ppr = pprOneShotInfo
{-
************************************************************************
* *
Swap flag
* *
************************************************************************
-}
data SwapFlag
= NotSwapped -- Args are: actual, expected
| IsSwapped -- Args are: expected, actual
instance Outputable SwapFlag where
ppr IsSwapped = text "Is-swapped"
ppr NotSwapped = text "Not-swapped"
flipSwap :: SwapFlag -> SwapFlag
flipSwap IsSwapped = NotSwapped
flipSwap NotSwapped = IsSwapped
isSwapped :: SwapFlag -> Bool
isSwapped IsSwapped = True
isSwapped NotSwapped = False
unSwap :: SwapFlag -> (a->a->b) -> a -> a -> b
unSwap NotSwapped f a b = f a b
unSwap IsSwapped f a b = f b a
{- *********************************************************************
* *
Promotion flag
* *
********************************************************************* -}
-- | Is a TyCon a promoted data constructor or just a normal type constructor?
data PromotionFlag
= NotPromoted
| IsPromoted
deriving ( Eq, Data )
isPromoted :: PromotionFlag -> Bool
isPromoted IsPromoted = True
isPromoted NotPromoted = False
instance Outputable PromotionFlag where
ppr NotPromoted = text "NotPromoted"
ppr IsPromoted = text "IsPromoted"
{-
************************************************************************
* *
\subsection[FunctionOrData]{FunctionOrData}
* *
************************************************************************
-}
data FunctionOrData = IsFunction | IsData
deriving (Eq, Ord, Data)
instance Outputable FunctionOrData where
ppr IsFunction = text "(function)"
ppr IsData = text "(data)"
{-
************************************************************************
* *
Deprecations
* *
************************************************************************
-}
-- | A String Literal in the source, including its original raw format for use by
-- source to source manipulation tools.
data StringLiteral = StringLiteral
{ sl_st :: SourceText, -- literal raw source.
-- See not [Literal source text]
sl_fs :: FastString -- literal string value
} deriving Data
instance Eq StringLiteral where
(StringLiteral _ a) == (StringLiteral _ b) = a == b
instance Outputable StringLiteral where
ppr sl = pprWithSourceText (sl_st sl) (ftext $ sl_fs sl)
-- | Warning Text
--
-- reason/explanation from a WARNING or DEPRECATED pragma
data WarningTxt = WarningTxt (Located SourceText)
[Located StringLiteral]
| DeprecatedTxt (Located SourceText)
[Located StringLiteral]
deriving (Eq, Data)
instance Outputable WarningTxt where
ppr (WarningTxt lsrc ws)
= case unLoc lsrc of
NoSourceText -> pp_ws ws
SourceText src -> text src <+> pp_ws ws <+> text "#-}"
ppr (DeprecatedTxt lsrc ds)
= case unLoc lsrc of
NoSourceText -> pp_ws ds
SourceText src -> text src <+> pp_ws ds <+> text "#-}"
pp_ws :: [Located StringLiteral] -> SDoc
pp_ws [l] = ppr $ unLoc l
pp_ws ws
= text "["
<+> vcat (punctuate comma (map (ppr . unLoc) ws))
<+> text "]"
pprWarningTxtForMsg :: WarningTxt -> SDoc
pprWarningTxtForMsg (WarningTxt _ ws)
= doubleQuotes (vcat (map (ftext . sl_fs . unLoc) ws))
pprWarningTxtForMsg (DeprecatedTxt _ ds)
= text "Deprecated:" <+>
doubleQuotes (vcat (map (ftext . sl_fs . unLoc) ds))
{-
************************************************************************
* *
Rules
* *
************************************************************************
-}
type RuleName = FastString
pprRuleName :: RuleName -> SDoc
pprRuleName rn = doubleQuotes (ftext rn)
{-
************************************************************************
* *
\subsection[Fixity]{Fixity info}
* *
************************************************************************
-}
------------------------
data Fixity = Fixity SourceText Int FixityDirection
-- Note [Pragma source text]
deriving Data
instance Outputable Fixity where
ppr (Fixity _ prec dir) = hcat [ppr dir, space, int prec]
instance Eq Fixity where -- Used to determine if two fixities conflict
(Fixity _ p1 dir1) == (Fixity _ p2 dir2) = p1==p2 && dir1 == dir2
------------------------
data FixityDirection = InfixL | InfixR | InfixN
deriving (Eq, Data)
instance Outputable FixityDirection where
ppr InfixL = text "infixl"
ppr InfixR = text "infixr"
ppr InfixN = text "infix"
------------------------
maxPrecedence, minPrecedence :: Int
maxPrecedence = 9
minPrecedence = 0
defaultFixity :: Fixity
defaultFixity = Fixity NoSourceText maxPrecedence InfixL
negateFixity, funTyFixity :: Fixity
-- Wired-in fixities
negateFixity = Fixity NoSourceText 6 InfixL -- Fixity of unary negate
funTyFixity = Fixity NoSourceText (-1) InfixR -- Fixity of '->', see #15235
{-
Consider
\begin{verbatim}
a `op1` b `op2` c
\end{verbatim}
@(compareFixity op1 op2)@ tells which way to arrange application, or
whether there's an error.
-}
compareFixity :: Fixity -> Fixity
-> (Bool, -- Error please
Bool) -- Associate to the right: a op1 (b op2 c)
compareFixity (Fixity _ prec1 dir1) (Fixity _ prec2 dir2)
= case prec1 `compare` prec2 of
GT -> left
LT -> right
EQ -> case (dir1, dir2) of
(InfixR, InfixR) -> right
(InfixL, InfixL) -> left
_ -> error_please
where
right = (False, True)
left = (False, False)
error_please = (True, False)
-- |Captures the fixity of declarations as they are parsed. This is not
-- necessarily the same as the fixity declaration, as the normal fixity may be
-- overridden using parens or backticks.
data LexicalFixity = Prefix | Infix deriving (Data,Eq)
instance Outputable LexicalFixity where
ppr Prefix = text "Prefix"
ppr Infix = text "Infix"
{-
************************************************************************
* *
\subsection[Top-level/local]{Top-level/not-top level flag}
* *
************************************************************************
-}
data TopLevelFlag
= TopLevel
| NotTopLevel
isTopLevel, isNotTopLevel :: TopLevelFlag -> Bool
isNotTopLevel NotTopLevel = True
isNotTopLevel TopLevel = False
isTopLevel TopLevel = True
isTopLevel NotTopLevel = False
instance Outputable TopLevelFlag where
ppr TopLevel = text "<TopLevel>"
ppr NotTopLevel = text "<NotTopLevel>"
{-
************************************************************************
* *
Boxity flag
* *
************************************************************************
-}
data Boxity
= Boxed
| Unboxed
deriving( Eq, Data )
isBoxed :: Boxity -> Bool
isBoxed Boxed = True
isBoxed Unboxed = False
instance Outputable Boxity where
ppr Boxed = text "Boxed"
ppr Unboxed = text "Unboxed"
{-
************************************************************************
* *
Recursive/Non-Recursive flag
* *
************************************************************************
-}
-- | Recursivity Flag
data RecFlag = Recursive
| NonRecursive
deriving( Eq, Data )
isRec :: RecFlag -> Bool
isRec Recursive = True
isRec NonRecursive = False
isNonRec :: RecFlag -> Bool
isNonRec Recursive = False
isNonRec NonRecursive = True
boolToRecFlag :: Bool -> RecFlag
boolToRecFlag True = Recursive
boolToRecFlag False = NonRecursive
instance Outputable RecFlag where
ppr Recursive = text "Recursive"
ppr NonRecursive = text "NonRecursive"
{-
************************************************************************
* *
Code origin
* *
************************************************************************
-}
data Origin = FromSource
| Generated
deriving( Eq, Data )
isGenerated :: Origin -> Bool
isGenerated Generated = True
isGenerated FromSource = False
instance Outputable Origin where
ppr FromSource = text "FromSource"
ppr Generated = text "Generated"
{-
************************************************************************
* *
Instance overlap flag
* *
************************************************************************
-}
-- | The semantics allowed for overlapping instances for a particular
-- instance. See Note [Safe Haskell isSafeOverlap] (in "GHC.Core.InstEnv") for a
-- explanation of the `isSafeOverlap` field.
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' :
-- 'GHC.Parser.Annotation.AnnOpen' @'\{-\# OVERLAPPABLE'@ or
-- @'\{-\# OVERLAPPING'@ or
-- @'\{-\# OVERLAPS'@ or
-- @'\{-\# INCOHERENT'@,
-- 'GHC.Parser.Annotation.AnnClose' @`\#-\}`@,
-- For details on above see note [Api annotations] in "GHC.Parser.Annotation"
data OverlapFlag = OverlapFlag
{ overlapMode :: OverlapMode
, isSafeOverlap :: Bool
} deriving (Eq, Data)
setOverlapModeMaybe :: OverlapFlag -> Maybe OverlapMode -> OverlapFlag
setOverlapModeMaybe f Nothing = f
setOverlapModeMaybe f (Just m) = f { overlapMode = m }
hasIncoherentFlag :: OverlapMode -> Bool
hasIncoherentFlag mode =
case mode of
Incoherent _ -> True
_ -> False
hasOverlappableFlag :: OverlapMode -> Bool
hasOverlappableFlag mode =
case mode of
Overlappable _ -> True
Overlaps _ -> True
Incoherent _ -> True
_ -> False
hasOverlappingFlag :: OverlapMode -> Bool
hasOverlappingFlag mode =
case mode of
Overlapping _ -> True
Overlaps _ -> True
Incoherent _ -> True
_ -> False
data OverlapMode -- See Note [Rules for instance lookup] in GHC.Core.InstEnv
= NoOverlap SourceText
-- See Note [Pragma source text]
-- ^ This instance must not overlap another `NoOverlap` instance.
-- However, it may be overlapped by `Overlapping` instances,
-- and it may overlap `Overlappable` instances.
| Overlappable SourceText
-- See Note [Pragma source text]
-- ^ Silently ignore this instance if you find a
-- more specific one that matches the constraint
-- you are trying to resolve
--
-- Example: constraint (Foo [Int])
-- instance Foo [Int]
-- instance {-# OVERLAPPABLE #-} Foo [a]
--
-- Since the second instance has the Overlappable flag,
-- the first instance will be chosen (otherwise
-- its ambiguous which to choose)
| Overlapping SourceText
-- See Note [Pragma source text]
-- ^ Silently ignore any more general instances that may be
-- used to solve the constraint.
--
-- Example: constraint (Foo [Int])
-- instance {-# OVERLAPPING #-} Foo [Int]
-- instance Foo [a]
--
-- Since the first instance has the Overlapping flag,
-- the second---more general---instance will be ignored (otherwise
-- it is ambiguous which to choose)
| Overlaps SourceText
-- See Note [Pragma source text]
-- ^ Equivalent to having both `Overlapping` and `Overlappable` flags.
| Incoherent SourceText
-- See Note [Pragma source text]
-- ^ Behave like Overlappable and Overlapping, and in addition pick
-- an arbitrary one if there are multiple matching candidates, and
-- don't worry about later instantiation
--
-- Example: constraint (Foo [b])
-- instance {-# INCOHERENT -} Foo [Int]
-- instance Foo [a]
-- Without the Incoherent flag, we'd complain that
-- instantiating 'b' would change which instance
-- was chosen. See also note [Incoherent instances] in "GHC.Core.InstEnv"
deriving (Eq, Data)
instance Outputable OverlapFlag where
ppr flag = ppr (overlapMode flag) <+> pprSafeOverlap (isSafeOverlap flag)
instance Outputable OverlapMode where
ppr (NoOverlap _) = empty
ppr (Overlappable _) = text "[overlappable]"
ppr (Overlapping _) = text "[overlapping]"
ppr (Overlaps _) = text "[overlap ok]"
ppr (Incoherent _) = text "[incoherent]"
pprSafeOverlap :: Bool -> SDoc
pprSafeOverlap True = text "[safe]"
pprSafeOverlap False = empty
{-
************************************************************************
* *
Precedence
* *
************************************************************************
-}
-- | A general-purpose pretty-printing precedence type.
newtype PprPrec = PprPrec Int deriving (Eq, Ord, Show)
-- See Note [Precedence in types]
topPrec, sigPrec, funPrec, opPrec, starPrec, appPrec :: PprPrec
topPrec = PprPrec 0 -- No parens
sigPrec = PprPrec 1 -- Explicit type signatures
funPrec = PprPrec 2 -- Function args; no parens for constructor apps
-- See [Type operator precedence] for why both
-- funPrec and opPrec exist.
opPrec = PprPrec 2 -- Infix operator
starPrec = PprPrec 3 -- Star syntax for the type of types, i.e. the * in (* -> *)
-- See Note [Star kind precedence]
appPrec = PprPrec 4 -- Constructor args; no parens for atomic
maybeParen :: PprPrec -> PprPrec -> SDoc -> SDoc
maybeParen ctxt_prec inner_prec pretty
| ctxt_prec < inner_prec = pretty
| otherwise = parens pretty
{- Note [Precedence in types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Many pretty-printing functions have type
ppr_ty :: PprPrec -> Type -> SDoc
The PprPrec gives the binding strength of the context. For example, in
T ty1 ty2
we will pretty-print 'ty1' and 'ty2' with the call
(ppr_ty appPrec ty)
to indicate that the context is that of an argument of a TyConApp.
We use this consistently for Type and HsType.
Note [Type operator precedence]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don't keep the fixity of type operators in the operator. So the
pretty printer follows the following precedence order:
TyConPrec Type constructor application
TyOpPrec/FunPrec Operator application and function arrow
We have funPrec and opPrec to represent the precedence of function
arrow and type operators respectively, but currently we implement
funPrec == opPrec, so that we don't distinguish the two. Reason:
it's hard to parse a type like
a ~ b => c * d -> e - f
By treating opPrec = funPrec we end up with more parens
(a ~ b) => (c * d) -> (e - f)
But the two are different constructors of PprPrec so we could make
(->) bind more or less tightly if we wanted.
Note [Star kind precedence]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We parenthesize the (*) kind to avoid two issues:
1. Printing invalid or incorrect code.
For example, instead of type F @(*) x = x
GHC used to print type F @* x = x
However, (@*) is a type operator, not a kind application.
2. Printing kinds that are correct but hard to read.
Should Either * Int be read as Either (*) Int
or as (*) Either Int ?
This depends on whether -XStarIsType is enabled, but it would be
easier if we didn't have to check for the flag when reading the code.
At the same time, we cannot parenthesize (*) blindly.
Consider this Haskell98 kind: ((* -> *) -> *) -> *
With parentheses, it is less readable: (((*) -> (*)) -> (*)) -> (*)
The solution is to assign a special precedence to (*), 'starPrec', which is
higher than 'funPrec' but lower than 'appPrec':
F * * * becomes F (*) (*) (*)
F A * B becomes F A (*) B
Proxy * becomes Proxy (*)
a * -> * becomes a (*) -> *
-}
{-
************************************************************************
* *
Tuples
* *
************************************************************************
-}
data TupleSort
= BoxedTuple
| UnboxedTuple
| ConstraintTuple
deriving( Eq, Data )
instance Outputable TupleSort where
ppr ts = text $
case ts of
BoxedTuple -> "BoxedTuple"
UnboxedTuple -> "UnboxedTuple"
ConstraintTuple -> "ConstraintTuple"
tupleSortBoxity :: TupleSort -> Boxity
tupleSortBoxity BoxedTuple = Boxed
tupleSortBoxity UnboxedTuple = Unboxed
tupleSortBoxity ConstraintTuple = Boxed
boxityTupleSort :: Boxity -> TupleSort
boxityTupleSort Boxed = BoxedTuple
boxityTupleSort Unboxed = UnboxedTuple
tupleParens :: TupleSort -> SDoc -> SDoc
tupleParens BoxedTuple p = parens p
tupleParens UnboxedTuple p = text "(#" <+> p <+> ptext (sLit "#)")
tupleParens ConstraintTuple p -- In debug-style write (% Eq a, Ord b %)
= ifPprDebug (text "(%" <+> p <+> ptext (sLit "%)"))
(parens p)
{-
************************************************************************
* *
Sums
* *
************************************************************************
-}
sumParens :: SDoc -> SDoc
sumParens p = ptext (sLit "(#") <+> p <+> ptext (sLit "#)")
-- | Pretty print an alternative in an unboxed sum e.g. "| a | |".
pprAlternative :: (a -> SDoc) -- ^ The pretty printing function to use
-> a -- ^ The things to be pretty printed
-> ConTag -- ^ Alternative (one-based)
-> Arity -- ^ Arity
-> SDoc -- ^ 'SDoc' where the alternative havs been pretty
-- printed and finally packed into a paragraph.
pprAlternative pp x alt arity =
fsep (replicate (alt - 1) vbar ++ [pp x] ++ replicate (arity - alt) vbar)
{-
************************************************************************
* *
\subsection[Generic]{Generic flag}
* *
************************************************************************
This is the "Embedding-Projection pair" datatype, it contains
two pieces of code (normally either RenamedExpr's or Id's)
If we have a such a pair (EP from to), the idea is that 'from' and 'to'
represents functions of type
from :: T -> Tring
to :: Tring -> T
And we should have
to (from x) = x
T and Tring are arbitrary, but typically T is the 'main' type while
Tring is the 'representation' type. (This just helps us remember
whether to use 'from' or 'to'.
-}
-- | Embedding Projection pair
data EP a = EP { fromEP :: a, -- :: T -> Tring
toEP :: a } -- :: Tring -> T
{-
Embedding-projection pairs are used in several places:
First of all, each type constructor has an EP associated with it, the
code in EP converts (datatype T) from T to Tring and back again.
Secondly, when we are filling in Generic methods (in the typechecker,
tcMethodBinds), we are constructing bimaps by induction on the structure
of the type of the method signature.
************************************************************************
* *
\subsection{Occurrence information}
* *
************************************************************************
This data type is used exclusively by the simplifier, but it appears in a
SubstResult, which is currently defined in GHC.Types.Var.Env, which is pretty
near the base of the module hierarchy. So it seemed simpler to put the defn of
OccInfo here, safely at the bottom
-}
-- | identifier Occurrence Information
data OccInfo
= ManyOccs { occ_tail :: !TailCallInfo }
-- ^ There are many occurrences, or unknown occurrences
| IAmDead -- ^ Marks unused variables. Sometimes useful for
-- lambda and case-bound variables.
| OneOcc { occ_in_lam :: !InsideLam
, occ_n_br :: {-# UNPACK #-} !BranchCount
, occ_int_cxt :: !InterestingCxt
, occ_tail :: !TailCallInfo }
-- ^ Occurs exactly once (per branch), not inside a rule
-- | This identifier breaks a loop of mutually recursive functions. The field
-- marks whether it is only a loop breaker due to a reference in a rule
| IAmALoopBreaker { occ_rules_only :: !RulesOnly
, occ_tail :: !TailCallInfo }
-- Note [LoopBreaker OccInfo]
deriving (Eq)
type RulesOnly = Bool
type BranchCount = Int
-- For OneOcc, the BranchCount says how many syntactic occurrences there are
-- At the moment we really only check for 1 or >1, but in principle
-- we could pay attention to how *many* occurences there are
-- (notably in postInlineUnconditionally).
-- But meanwhile, Ints are very efficiently represented.
oneBranch :: BranchCount
oneBranch = 1
{-
Note [LoopBreaker OccInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~~
IAmALoopBreaker True <=> A "weak" or rules-only loop breaker
Do not preInlineUnconditionally
IAmALoopBreaker False <=> A "strong" loop breaker
Do not inline at all
See OccurAnal Note [Weak loop breakers]
-}
noOccInfo :: OccInfo
noOccInfo = ManyOccs { occ_tail = NoTailCallInfo }
isNoOccInfo :: OccInfo -> Bool
isNoOccInfo ManyOccs { occ_tail = NoTailCallInfo } = True
isNoOccInfo _ = False
isManyOccs :: OccInfo -> Bool
isManyOccs ManyOccs{} = True
isManyOccs _ = False
seqOccInfo :: OccInfo -> ()
seqOccInfo occ = occ `seq` ()
-----------------
-- | Interesting Context
data InterestingCxt
= IsInteresting
-- ^ Function: is applied
-- Data value: scrutinised by a case with at least one non-DEFAULT branch
| NotInteresting
deriving (Eq)
-- | If there is any 'interesting' identifier occurrence, then the
-- aggregated occurrence info of that identifier is considered interesting.
instance Semi.Semigroup InterestingCxt where
NotInteresting <> x = x
IsInteresting <> _ = IsInteresting
instance Monoid InterestingCxt where
mempty = NotInteresting
mappend = (Semi.<>)
-----------------
-- | Inside Lambda
data InsideLam
= IsInsideLam
-- ^ Occurs inside a non-linear lambda
-- Substituting a redex for this occurrence is
-- dangerous because it might duplicate work.
| NotInsideLam
deriving (Eq)
-- | If any occurrence of an identifier is inside a lambda, then the
-- occurrence info of that identifier marks it as occurring inside a lambda
instance Semi.Semigroup InsideLam where
NotInsideLam <> x = x
IsInsideLam <> _ = IsInsideLam
instance Monoid InsideLam where
mempty = NotInsideLam
mappend = (Semi.<>)
-----------------
data TailCallInfo = AlwaysTailCalled JoinArity -- See Note [TailCallInfo]
| NoTailCallInfo
deriving (Eq)
tailCallInfo :: OccInfo -> TailCallInfo
tailCallInfo IAmDead = NoTailCallInfo
tailCallInfo other = occ_tail other
zapOccTailCallInfo :: OccInfo -> OccInfo
zapOccTailCallInfo IAmDead = IAmDead
zapOccTailCallInfo occ = occ { occ_tail = NoTailCallInfo }
isAlwaysTailCalled :: OccInfo -> Bool
isAlwaysTailCalled occ
= case tailCallInfo occ of AlwaysTailCalled{} -> True
NoTailCallInfo -> False
instance Outputable TailCallInfo where
ppr (AlwaysTailCalled ar) = sep [ text "Tail", int ar ]
ppr _ = empty
-----------------
strongLoopBreaker, weakLoopBreaker :: OccInfo
strongLoopBreaker = IAmALoopBreaker False NoTailCallInfo
weakLoopBreaker = IAmALoopBreaker True NoTailCallInfo
isWeakLoopBreaker :: OccInfo -> Bool
isWeakLoopBreaker (IAmALoopBreaker{}) = True
isWeakLoopBreaker _ = False
isStrongLoopBreaker :: OccInfo -> Bool
isStrongLoopBreaker (IAmALoopBreaker { occ_rules_only = False }) = True
-- Loop-breaker that breaks a non-rule cycle
isStrongLoopBreaker _ = False
isDeadOcc :: OccInfo -> Bool
isDeadOcc IAmDead = True
isDeadOcc _ = False
isOneOcc :: OccInfo -> Bool
isOneOcc (OneOcc {}) = True
isOneOcc _ = False
zapFragileOcc :: OccInfo -> OccInfo
-- Keep only the most robust data: deadness, loop-breaker-hood
zapFragileOcc (OneOcc {}) = noOccInfo
zapFragileOcc occ = zapOccTailCallInfo occ
instance Outputable OccInfo where
-- only used for debugging; never parsed. KSW 1999-07
ppr (ManyOccs tails) = pprShortTailCallInfo tails
ppr IAmDead = text "Dead"
ppr (IAmALoopBreaker rule_only tails)
= text "LoopBreaker" <> pp_ro <> pprShortTailCallInfo tails
where
pp_ro | rule_only = char '!'
| otherwise = empty
ppr (OneOcc inside_lam one_branch int_cxt tail_info)
= text "Once" <> pp_lam inside_lam <> ppr one_branch <> pp_args int_cxt <> pp_tail
where
pp_lam IsInsideLam = char 'L'
pp_lam NotInsideLam = empty
pp_args IsInteresting = char '!'
pp_args NotInteresting = empty
pp_tail = pprShortTailCallInfo tail_info
pprShortTailCallInfo :: TailCallInfo -> SDoc
pprShortTailCallInfo (AlwaysTailCalled ar) = char 'T' <> brackets (int ar)
pprShortTailCallInfo NoTailCallInfo = empty
{-
Note [TailCallInfo]
~~~~~~~~~~~~~~~~~~~
The occurrence analyser determines what can be made into a join point, but it
doesn't change the binder into a JoinId because then it would be inconsistent
with the occurrences. Thus it's left to the simplifier (or to simpleOptExpr) to
change the IdDetails.
The AlwaysTailCalled marker actually means slightly more than simply that the
function is always tail-called. See Note [Invariants on join points].
This info is quite fragile and should not be relied upon unless the occurrence
analyser has *just* run. Use 'Id.isJoinId_maybe' for the permanent state of
the join-point-hood of a binder; a join id itself will not be marked
AlwaysTailCalled.
Note that there is a 'TailCallInfo' on a 'ManyOccs' value. One might expect that
being tail-called would mean that the variable could only appear once per branch
(thus getting a `OneOcc { }` occurrence info), but a join
point can also be invoked from other join points, not just from case branches:
let j1 x = ...
j2 y = ... j1 z {- tail call -} ...
in case w of
A -> j1 v
B -> j2 u
C -> j2 q
Here both 'j1' and 'j2' will get marked AlwaysTailCalled, but j1 will get
ManyOccs and j2 will get `OneOcc { occ_n_br = 2 }`.
************************************************************************
* *
Default method specification
* *
************************************************************************
The DefMethSpec enumeration just indicates what sort of default method
is used for a class. It is generated from source code, and present in
interface files; it is converted to Class.DefMethInfo before begin put in a
Class object.
-}
-- | Default Method Specification
data DefMethSpec ty
= VanillaDM -- Default method given with polymorphic code
| GenericDM ty -- Default method given with code of this type
instance Outputable (DefMethSpec ty) where
ppr VanillaDM = text "{- Has default method -}"
ppr (GenericDM {}) = text "{- Has generic default method -}"
{-
************************************************************************
* *
\subsection{Success flag}
* *
************************************************************************
-}
data SuccessFlag = Succeeded | Failed
instance Outputable SuccessFlag where
ppr Succeeded = text "Succeeded"
ppr Failed = text "Failed"
successIf :: Bool -> SuccessFlag
successIf True = Succeeded
successIf False = Failed
succeeded, failed :: SuccessFlag -> Bool
succeeded Succeeded = True
succeeded Failed = False
failed Succeeded = False
failed Failed = True
{-
************************************************************************
* *
\subsection{Source Text}
* *
************************************************************************
Keeping Source Text for source to source conversions
Note [Pragma source text]
~~~~~~~~~~~~~~~~~~~~~~~~~
The lexer does a case-insensitive match for pragmas, as well as
accepting both UK and US spelling variants.
So
{-# SPECIALISE #-}
{-# SPECIALIZE #-}
{-# Specialize #-}
will all generate ITspec_prag token for the start of the pragma.
In order to be able to do source to source conversions, the original
source text for the token needs to be preserved, hence the
`SourceText` field.
So the lexer will then generate
ITspec_prag "{ -# SPECIALISE"
ITspec_prag "{ -# SPECIALIZE"
ITspec_prag "{ -# Specialize"
for the cases above.
[without the space between '{' and '-', otherwise this comment won't parse]
Note [Literal source text]
~~~~~~~~~~~~~~~~~~~~~~~~~~
The lexer/parser converts literals from their original source text
versions to an appropriate internal representation. This is a problem
for tools doing source to source conversions, so the original source
text is stored in literals where this can occur.
Motivating examples for HsLit
HsChar '\n' == '\x20`
HsCharPrim '\x41`# == `A`
HsString "\x20\x41" == " A"
HsStringPrim "\x20"# == " "#
HsInt 001 == 1
HsIntPrim 002# == 2#
HsWordPrim 003## == 3##
HsInt64Prim 004## == 4##
HsWord64Prim 005## == 5##
HsInteger 006 == 6
For OverLitVal
HsIntegral 003 == 0x003
HsIsString "\x41nd" == "And"
-}
-- Note [Literal source text],[Pragma source text]
data SourceText = SourceText String
| NoSourceText -- ^ For when code is generated, e.g. TH,
-- deriving. The pretty printer will then make
-- its own representation of the item.
deriving (Data, Show, Eq )
instance Outputable SourceText where
ppr (SourceText s) = text "SourceText" <+> text s
ppr NoSourceText = text "NoSourceText"
-- | Special combinator for showing string literals.
pprWithSourceText :: SourceText -> SDoc -> SDoc
pprWithSourceText NoSourceText d = d
pprWithSourceText (SourceText src) _ = text src
{-
************************************************************************
* *
\subsection{Activation}
* *
************************************************************************
When a rule or inlining is active
Note [Compiler phases]
~~~~~~~~~~~~~~~~~~~~~~
The CompilerPhase says which phase the simplifier is running in:
* InitialPhase: before all user-visible phases
* Phase 2,1,0: user-visible phases; the phase number
controls rule ordering an inlining.
* FinalPhase: used for all subsequent simplifier
runs. By delaying inlining of wrappers to FinalPhase we can
ensure that RULE have a good chance to fire. See
Note [Wrapper activation] in GHC.Core.Opt.WorkWrap
NB: FinalPhase is run repeatedly, not just once.
NB: users don't have access to InitialPhase or FinalPhase.
They write {-# INLINE[n] f #-}, meaning (Phase n)
The phase sequencing is done by GHC.Opt.Simplify.Driver
-}
-- | Phase Number
type PhaseNum = Int -- Compilation phase
-- Phases decrease towards zero
-- Zero is the last phase
data CompilerPhase
= InitialPhase -- The first phase -- number = infinity!
| Phase PhaseNum -- User-specificable phases
| FinalPhase -- The last phase -- number = -infinity!
deriving Eq
instance Outputable CompilerPhase where
ppr (Phase n) = int n
ppr InitialPhase = text "InitialPhase"
ppr FinalPhase = text "FinalPhase"
-- See note [Pragma source text]
data Activation
= AlwaysActive
| ActiveBefore SourceText PhaseNum -- Active only *strictly before* this phase
| ActiveAfter SourceText PhaseNum -- Active in this phase and later
| FinalActive -- Active in final phase only
| NeverActive
deriving( Eq, Data )
-- Eq used in comparing rules in GHC.Hs.Decls
activateAfterInitial :: Activation
-- Active in the first phase after the initial phase
-- Currently we have just phases [2,1,0,FinalPhase,FinalPhase,...]
-- Where FinalPhase means GHC's internal simplification steps
-- after all rules have run
activateAfterInitial = ActiveAfter NoSourceText 2
activateDuringFinal :: Activation
-- Active in the final simplification phase (which is repeated)
activateDuringFinal = FinalActive
isActive :: CompilerPhase -> Activation -> Bool
isActive InitialPhase act = activeInInitialPhase act
isActive (Phase p) act = activeInPhase p act
isActive FinalPhase act = activeInFinalPhase act
activeInInitialPhase :: Activation -> Bool
activeInInitialPhase AlwaysActive = True
activeInInitialPhase (ActiveBefore {}) = True
activeInInitialPhase _ = False
activeInPhase :: PhaseNum -> Activation -> Bool
activeInPhase _ AlwaysActive = True
activeInPhase _ NeverActive = False
activeInPhase _ FinalActive = False
activeInPhase p (ActiveAfter _ n) = p <= n
activeInPhase p (ActiveBefore _ n) = p > n
activeInFinalPhase :: Activation -> Bool
activeInFinalPhase AlwaysActive = True
activeInFinalPhase FinalActive = True
activeInFinalPhase (ActiveAfter {}) = True
activeInFinalPhase _ = False
isNeverActive, isAlwaysActive :: Activation -> Bool
isNeverActive NeverActive = True
isNeverActive _ = False
isAlwaysActive AlwaysActive = True
isAlwaysActive _ = False
competesWith :: Activation -> Activation -> Bool
-- See Note [Activation competition]
competesWith AlwaysActive _ = True
competesWith NeverActive _ = False
competesWith _ NeverActive = False
competesWith FinalActive FinalActive = True
competesWith FinalActive _ = False
competesWith (ActiveBefore {}) AlwaysActive = True
competesWith (ActiveBefore {}) FinalActive = False
competesWith (ActiveBefore {}) (ActiveBefore {}) = True
competesWith (ActiveBefore _ a) (ActiveAfter _ b) = a < b
competesWith (ActiveAfter {}) AlwaysActive = False
competesWith (ActiveAfter {}) FinalActive = True
competesWith (ActiveAfter {}) (ActiveBefore {}) = False
competesWith (ActiveAfter _ a) (ActiveAfter _ b) = a >= b
{- Note [Competing activations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sometimes a RULE and an inlining may compete, or two RULES.
See Note [Rules and inlining/other rules] in GHC.HsToCore.
We say that act1 "competes with" act2 iff
act1 is active in the phase when act2 *becomes* active
NB: remember that phases count *down*: 2, 1, 0!
It's too conservative to ensure that the two are never simultaneously
active. For example, a rule might be always active, and an inlining
might switch on in phase 2. We could switch off the rule, but it does
no harm.
-}
{- *********************************************************************
* *
InlinePragma, InlineSpec, RuleMatchInfo
* *
********************************************************************* -}
data InlinePragma -- Note [InlinePragma]
= InlinePragma
{ inl_src :: SourceText -- Note [Pragma source text]
, inl_inline :: InlineSpec -- See Note [inl_inline and inl_act]
, inl_sat :: Maybe Arity -- Just n <=> Inline only when applied to n
-- explicit (non-type, non-dictionary) args
-- That is, inl_sat describes the number of *source-code*
-- arguments the thing must be applied to. We add on the
-- number of implicit, dictionary arguments when making
-- the Unfolding, and don't look at inl_sat further
, inl_act :: Activation -- Says during which phases inlining is allowed
-- See Note [inl_inline and inl_act]
, inl_rule :: RuleMatchInfo -- Should the function be treated like a constructor?
} deriving( Eq, Data )
-- | Rule Match Information
data RuleMatchInfo = ConLike -- See Note [CONLIKE pragma]
| FunLike
deriving( Eq, Data, Show )
-- Show needed for GHC.Parser.Lexer
-- | Inline Specification
data InlineSpec -- What the user's INLINE pragma looked like
= Inline -- User wrote INLINE
| Inlinable -- User wrote INLINABLE
| NoInline -- User wrote NOINLINE
| NoUserInline -- User did not write any of INLINE/INLINABLE/NOINLINE
-- e.g. in `defaultInlinePragma` or when created by CSE
deriving( Eq, Data, Show )
-- Show needed for GHC.Parser.Lexer
{- Note [InlinePragma]
~~~~~~~~~~~~~~~~~~~~~~
This data type mirrors what you can write in an INLINE or NOINLINE pragma in
the source program.
If you write nothing at all, you get defaultInlinePragma:
inl_inline = NoUserInline
inl_act = AlwaysActive
inl_rule = FunLike
It's not possible to get that combination by *writing* something, so
if an Id has defaultInlinePragma it means the user didn't specify anything.
If inl_inline = Inline or Inlineable, then the Id should have an InlineRule unfolding.
If you want to know where InlinePragmas take effect: Look in GHC.HsToCore.Binds.makeCorePair
Note [inl_inline and inl_act]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* inl_inline says what the user wrote: did she say INLINE, NOINLINE,
INLINABLE, or nothing at all
* inl_act says in what phases the unfolding is active or inactive
E.g If you write INLINE[1] then inl_act will be set to ActiveAfter 1
If you write NOINLINE[1] then inl_act will be set to ActiveBefore 1
If you write NOINLINE[~1] then inl_act will be set to ActiveAfter 1
So note that inl_act does not say what pragma you wrote: it just
expresses its consequences
* inl_act just says when the unfolding is active; it doesn't say what
to inline. If you say INLINE f, then f's inl_act will be AlwaysActive,
but in addition f will get a "stable unfolding" with UnfoldingGuidance
that tells the inliner to be pretty eager about it.
Note [CONLIKE pragma]
~~~~~~~~~~~~~~~~~~~~~
The ConLike constructor of a RuleMatchInfo is aimed at the following.
Consider first
{-# RULE "r/cons" forall a as. r (a:as) = f (a+1) #-}
g b bs = let x = b:bs in ..x...x...(r x)...
Now, the rule applies to the (r x) term, because GHC "looks through"
the definition of 'x' to see that it is (b:bs).
Now consider
{-# RULE "r/f" forall v. r (f v) = f (v+1) #-}
g v = let x = f v in ..x...x...(r x)...
Normally the (r x) would *not* match the rule, because GHC would be
scared about duplicating the redex (f v), so it does not "look
through" the bindings.
However the CONLIKE modifier says to treat 'f' like a constructor in
this situation, and "look through" the unfolding for x. So (r x)
fires, yielding (f (v+1)).
This is all controlled with a user-visible pragma:
{-# NOINLINE CONLIKE [1] f #-}
The main effects of CONLIKE are:
- The occurrence analyser (OccAnal) and simplifier (Simplify) treat
CONLIKE thing like constructors, by ANF-ing them
- New function GHC.Core.Utils.exprIsExpandable is like exprIsCheap, but
additionally spots applications of CONLIKE functions
- A CoreUnfolding has a field that caches exprIsExpandable
- The rule matcher consults this field. See
Note [Expanding variables] in GHC.Core.Rules.
-}
isConLike :: RuleMatchInfo -> Bool
isConLike ConLike = True
isConLike _ = False
isFunLike :: RuleMatchInfo -> Bool
isFunLike FunLike = True
isFunLike _ = False
noUserInlineSpec :: InlineSpec -> Bool
noUserInlineSpec NoUserInline = True
noUserInlineSpec _ = False
defaultInlinePragma, alwaysInlinePragma, neverInlinePragma, dfunInlinePragma
:: InlinePragma
defaultInlinePragma = InlinePragma { inl_src = SourceText "{-# INLINE"
, inl_act = AlwaysActive
, inl_rule = FunLike
, inl_inline = NoUserInline
, inl_sat = Nothing }
alwaysInlinePragma = defaultInlinePragma { inl_inline = Inline }
neverInlinePragma = defaultInlinePragma { inl_act = NeverActive }
inlinePragmaSpec :: InlinePragma -> InlineSpec
inlinePragmaSpec = inl_inline
-- A DFun has an always-active inline activation so that
-- exprIsConApp_maybe can "see" its unfolding
-- (However, its actual Unfolding is a DFunUnfolding, which is
-- never inlined other than via exprIsConApp_maybe.)
dfunInlinePragma = defaultInlinePragma { inl_act = AlwaysActive
, inl_rule = ConLike }
isDefaultInlinePragma :: InlinePragma -> Bool
isDefaultInlinePragma (InlinePragma { inl_act = activation
, inl_rule = match_info
, inl_inline = inline })
= noUserInlineSpec inline && isAlwaysActive activation && isFunLike match_info
isInlinePragma :: InlinePragma -> Bool
isInlinePragma prag = case inl_inline prag of
Inline -> True
_ -> False
isInlinablePragma :: InlinePragma -> Bool
isInlinablePragma prag = case inl_inline prag of
Inlinable -> True
_ -> False
isAnyInlinePragma :: InlinePragma -> Bool
-- INLINE or INLINABLE
isAnyInlinePragma prag = case inl_inline prag of
Inline -> True
Inlinable -> True
_ -> False
inlinePragmaSat :: InlinePragma -> Maybe Arity
inlinePragmaSat = inl_sat
inlinePragmaActivation :: InlinePragma -> Activation
inlinePragmaActivation (InlinePragma { inl_act = activation }) = activation
inlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo
inlinePragmaRuleMatchInfo (InlinePragma { inl_rule = info }) = info
setInlinePragmaActivation :: InlinePragma -> Activation -> InlinePragma
setInlinePragmaActivation prag activation = prag { inl_act = activation }
setInlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo -> InlinePragma
setInlinePragmaRuleMatchInfo prag info = prag { inl_rule = info }
instance Outputable Activation where
ppr AlwaysActive = empty
ppr NeverActive = brackets (text "~")
ppr (ActiveBefore _ n) = brackets (char '~' <> int n)
ppr (ActiveAfter _ n) = brackets (int n)
ppr FinalActive = text "[final]"
instance Outputable RuleMatchInfo where
ppr ConLike = text "CONLIKE"
ppr FunLike = text "FUNLIKE"
instance Outputable InlineSpec where
ppr Inline = text "INLINE"
ppr NoInline = text "NOINLINE"
ppr Inlinable = text "INLINABLE"
ppr NoUserInline = text "NOUSERINLINE" -- what is better?
instance Outputable InlinePragma where
ppr = pprInline
pprInline :: InlinePragma -> SDoc
pprInline = pprInline' True
pprInlineDebug :: InlinePragma -> SDoc
pprInlineDebug = pprInline' False
pprInline' :: Bool -- True <=> do not display the inl_inline field
-> InlinePragma
-> SDoc
pprInline' emptyInline (InlinePragma { inl_inline = inline, inl_act = activation
, inl_rule = info, inl_sat = mb_arity })
= pp_inl inline <> pp_act inline activation <+> pp_sat <+> pp_info
where
pp_inl x = if emptyInline then empty else ppr x
pp_act Inline AlwaysActive = empty
pp_act NoInline NeverActive = empty
pp_act _ act = ppr act
pp_sat | Just ar <- mb_arity = parens (text "sat-args=" <> int ar)
| otherwise = empty
pp_info | isFunLike info = empty
| otherwise = ppr info
{- *********************************************************************
* *
Integer literals
* *
********************************************************************* -}
-- | Integral Literal
--
-- Used (instead of Integer) to represent negative zegative zero which is
-- required for NegativeLiterals extension to correctly parse `-0::Double`
-- as negative zero. See also #13211.
data IntegralLit
= IL { il_text :: SourceText
, il_neg :: Bool -- See Note [Negative zero]
, il_value :: Integer
}
deriving (Data, Show)
mkIntegralLit :: Integral a => a -> IntegralLit
mkIntegralLit i = IL { il_text = SourceText (show i_integer)
, il_neg = i < 0
, il_value = i_integer }
where
i_integer :: Integer
i_integer = toInteger i
negateIntegralLit :: IntegralLit -> IntegralLit
negateIntegralLit (IL text neg value)
= case text of
SourceText ('-':src) -> IL (SourceText src) False (negate value)
SourceText src -> IL (SourceText ('-':src)) True (negate value)
NoSourceText -> IL NoSourceText (not neg) (negate value)
-- | Fractional Literal
--
-- Used (instead of Rational) to represent exactly the floating point literal that we
-- encountered in the user's source program. This allows us to pretty-print exactly what
-- the user wrote, which is important e.g. for floating point numbers that can't represented
-- as Doubles (we used to via Double for pretty-printing). See also #2245.
data FractionalLit
= FL { fl_text :: SourceText -- How the value was written in the source
, fl_neg :: Bool -- See Note [Negative zero]
, fl_value :: Rational -- Numeric value of the literal
}
deriving (Data, Show)
-- The Show instance is required for the derived GHC.Parser.Lexer.Token instance when DEBUG is on
mkFractionalLit :: Real a => a -> FractionalLit
mkFractionalLit r = FL { fl_text = SourceText (show (realToFrac r::Double))
-- Converting to a Double here may technically lose
-- precision (see #15502). We could alternatively
-- convert to a Rational for the most accuracy, but
-- it would cause Floats and Doubles to be displayed
-- strangely, so we opt not to do this. (In contrast
-- to mkIntegralLit, where we always convert to an
-- Integer for the highest accuracy.)
, fl_neg = r < 0
, fl_value = toRational r }
negateFractionalLit :: FractionalLit -> FractionalLit
negateFractionalLit (FL text neg value)
= case text of
SourceText ('-':src) -> FL (SourceText src) False value
SourceText src -> FL (SourceText ('-':src)) True value
NoSourceText -> FL NoSourceText (not neg) (negate value)
integralFractionalLit :: Bool -> Integer -> FractionalLit
integralFractionalLit neg i = FL { fl_text = SourceText (show i),
fl_neg = neg,
fl_value = fromInteger i }
-- Comparison operations are needed when grouping literals
-- for compiling pattern-matching (module GHC.HsToCore.Match.Literal)
instance Eq IntegralLit where
(==) = (==) `on` il_value
instance Ord IntegralLit where
compare = compare `on` il_value
instance Outputable IntegralLit where
ppr (IL (SourceText src) _ _) = text src
ppr (IL NoSourceText _ value) = text (show value)
instance Eq FractionalLit where
(==) = (==) `on` fl_value
instance Ord FractionalLit where
compare = compare `on` fl_value
instance Outputable FractionalLit where
ppr f = pprWithSourceText (fl_text f) (rational (fl_value f))
{-
************************************************************************
* *
IntWithInf
* *
************************************************************************
Represents an integer or positive infinity
-}
-- | An integer or infinity
data IntWithInf = Int {-# UNPACK #-} !Int
| Infinity
deriving Eq
-- | A representation of infinity
infinity :: IntWithInf
infinity = Infinity
instance Ord IntWithInf where
compare Infinity Infinity = EQ
compare (Int _) Infinity = LT
compare Infinity (Int _) = GT
compare (Int a) (Int b) = a `compare` b
instance Outputable IntWithInf where
ppr Infinity = char '∞'
ppr (Int n) = int n
instance Num IntWithInf where
(+) = plusWithInf
(*) = mulWithInf
abs Infinity = Infinity
abs (Int n) = Int (abs n)
signum Infinity = Int 1
signum (Int n) = Int (signum n)
fromInteger = Int . fromInteger
(-) = panic "subtracting IntWithInfs"
intGtLimit :: Int -> IntWithInf -> Bool
intGtLimit _ Infinity = False
intGtLimit n (Int m) = n > m
-- | Add two 'IntWithInf's
plusWithInf :: IntWithInf -> IntWithInf -> IntWithInf
plusWithInf Infinity _ = Infinity
plusWithInf _ Infinity = Infinity
plusWithInf (Int a) (Int b) = Int (a + b)
-- | Multiply two 'IntWithInf's
mulWithInf :: IntWithInf -> IntWithInf -> IntWithInf
mulWithInf Infinity _ = Infinity
mulWithInf _ Infinity = Infinity
mulWithInf (Int a) (Int b) = Int (a * b)
-- | Turn a positive number into an 'IntWithInf', where 0 represents infinity
treatZeroAsInf :: Int -> IntWithInf
treatZeroAsInf 0 = Infinity
treatZeroAsInf n = Int n
-- | Inject any integer into an 'IntWithInf'
mkIntWithInf :: Int -> IntWithInf
mkIntWithInf = Int
data SpliceExplicitFlag
= ExplicitSplice | -- ^ <=> $(f x y)
ImplicitSplice -- ^ <=> f x y, i.e. a naked top level expression
deriving Data
{- *********************************************************************
* *
Types vs Kinds
* *
********************************************************************* -}
-- | Flag to see whether we're type-checking terms or kind-checking types
data TypeOrKind = TypeLevel | KindLevel
deriving Eq
instance Outputable TypeOrKind where
ppr TypeLevel = text "TypeLevel"
ppr KindLevel = text "KindLevel"
isTypeLevel :: TypeOrKind -> Bool
isTypeLevel TypeLevel = True
isTypeLevel KindLevel = False
isKindLevel :: TypeOrKind -> Bool
isKindLevel TypeLevel = False
isKindLevel KindLevel = True
|