1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[Id]{@Ids@: Value and constructor identifiers}
-}
{-# LANGUAGE CPP #-}
-- |
-- #name_types#
-- GHC uses several kinds of name internally:
--
-- * 'GHC.Types.Name.Occurrence.OccName': see "GHC.Types.Name.Occurrence#name_types"
--
-- * 'GHC.Types.Name.Reader.RdrName': see "GHC.Types.Name.Reader#name_types"
--
-- * 'GHC.Types.Name.Name': see "GHC.Types.Name#name_types"
--
-- * 'GHC.Types.Id.Id' represents names that not only have a 'GHC.Types.Name.Name' but also a
-- 'GHC.Core.TyCo.Rep.Type' and some additional details (a 'GHC.Types.Id.Info.IdInfo' and
-- one of LocalIdDetails or GlobalIdDetails) that are added,
-- modified and inspected by various compiler passes. These 'GHC.Types.Var.Var' names
-- may either be global or local, see "GHC.Types.Var#globalvslocal"
--
-- * 'GHC.Types.Var.Var': see "GHC.Types.Var#name_types"
module GHC.Types.Id (
-- * The main types
Var, Id, isId,
-- * In and Out variants
InVar, InId,
OutVar, OutId,
-- ** Simple construction
mkGlobalId, mkVanillaGlobal, mkVanillaGlobalWithInfo,
mkLocalId, mkLocalCoVar, mkLocalIdOrCoVar,
mkLocalIdWithInfo, mkExportedLocalId, mkExportedVanillaId,
mkSysLocal, mkSysLocalM, mkSysLocalOrCoVar, mkSysLocalOrCoVarM,
mkUserLocal, mkUserLocalOrCoVar,
mkTemplateLocals, mkTemplateLocalsNum, mkTemplateLocal,
mkScaledTemplateLocal,
mkWorkerId,
-- ** Taking an Id apart
idName, idType, idMult, idScaledType, idUnique, idInfo, idDetails,
recordSelectorTyCon,
-- ** Modifying an Id
setIdName, setIdUnique, GHC.Types.Id.setIdType, setIdMult,
updateIdTypeButNotMult, updateIdTypeAndMult, updateIdTypeAndMultM,
setIdExported, setIdNotExported,
globaliseId, localiseId,
setIdInfo, lazySetIdInfo, modifyIdInfo, maybeModifyIdInfo,
zapLamIdInfo, zapIdDemandInfo, zapIdUsageInfo, zapIdUsageEnvInfo,
zapIdUsedOnceInfo, zapIdTailCallInfo,
zapFragileIdInfo, zapIdStrictness, zapStableUnfolding,
transferPolyIdInfo, scaleIdBy, scaleVarBy,
-- ** Predicates on Ids
isImplicitId, isDeadBinder,
isStrictId,
isExportedId, isLocalId, isGlobalId,
isRecordSelector, isNaughtyRecordSelector,
isPatSynRecordSelector,
isDataConRecordSelector,
isClassOpId_maybe, isDFunId,
isPrimOpId, isPrimOpId_maybe,
isFCallId, isFCallId_maybe,
isDataConWorkId, isDataConWorkId_maybe,
isDataConWrapId, isDataConWrapId_maybe,
isDataConId_maybe,
idDataCon,
isConLikeId, isDeadEndId, idIsFrom,
hasNoBinding,
-- ** Join variables
JoinId, isJoinId, isJoinId_maybe, idJoinArity,
asJoinId, asJoinId_maybe, zapJoinId,
-- ** Inline pragma stuff
idInlinePragma, setInlinePragma, modifyInlinePragma,
idInlineActivation, setInlineActivation, idRuleMatchInfo,
-- ** One-shot lambdas
isOneShotBndr, isProbablyOneShotLambda,
setOneShotLambda, clearOneShotLambda,
updOneShotInfo, setIdOneShotInfo,
isStateHackType, stateHackOneShot, typeOneShot,
-- ** Reading 'IdInfo' fields
idArity,
idCallArity, idFunRepArity,
idUnfolding, realIdUnfolding,
idSpecialisation, idCoreRules, idHasRules,
idCafInfo, idLFInfo_maybe,
idOneShotInfo, idStateHackOneShotInfo,
idOccInfo,
isNeverLevPolyId,
-- ** Writing 'IdInfo' fields
setIdUnfolding, setCaseBndrEvald,
setIdArity,
setIdCallArity,
setIdSpecialisation,
setIdCafInfo,
setIdOccInfo, zapIdOccInfo,
setIdLFInfo,
setIdDemandInfo,
setIdStrictness,
setIdCprInfo,
idDemandInfo,
idStrictness,
idCprInfo,
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import GHC.Driver.Session
import GHC.Core ( CoreRule, isStableUnfolding, evaldUnfolding,
isCompulsoryUnfolding, Unfolding( NoUnfolding ) )
import GHC.Types.Id.Info
import GHC.Types.Basic
-- Imported and re-exported
import GHC.Types.Var( Id, CoVar, JoinId,
InId, InVar,
OutId, OutVar,
idInfo, idDetails, setIdDetails, globaliseId,
isId, isLocalId, isGlobalId, isExportedId,
setIdMult, updateIdTypeAndMult, updateIdTypeButNotMult, updateIdTypeAndMultM)
import qualified GHC.Types.Var as Var
import GHC.Core.Type
import GHC.Types.RepType
import GHC.Builtin.Types.Prim
import GHC.Core.DataCon
import GHC.Types.Demand
import GHC.Types.Cpr
import GHC.Types.Name
import GHC.Unit.Module
import GHC.Core.Class
import {-# SOURCE #-} GHC.Builtin.PrimOps (PrimOp)
import GHC.Types.ForeignCall
import GHC.Data.Maybe
import GHC.Types.SrcLoc
import GHC.Utils.Outputable
import GHC.Types.Unique
import GHC.Types.Unique.Supply
import GHC.Data.FastString
import GHC.Utils.Misc
import GHC.Core.Multiplicity
-- infixl so you can say (id `set` a `set` b)
infixl 1 `setIdUnfolding`,
`setIdArity`,
`setIdCallArity`,
`setIdOccInfo`,
`setIdOneShotInfo`,
`setIdSpecialisation`,
`setInlinePragma`,
`setInlineActivation`,
`idCafInfo`,
`setIdDemandInfo`,
`setIdStrictness`,
`setIdCprInfo`,
`asJoinId`,
`asJoinId_maybe`
{-
************************************************************************
* *
\subsection{Basic Id manipulation}
* *
************************************************************************
-}
idName :: Id -> Name
idName = Var.varName
idUnique :: Id -> Unique
idUnique = Var.varUnique
idType :: Id -> Kind
idType = Var.varType
idMult :: Id -> Mult
idMult = Var.varMult
idScaledType :: Id -> Scaled Type
idScaledType id = Scaled (idMult id) (idType id)
scaleIdBy :: Mult -> Id -> Id
scaleIdBy m id = setIdMult id (m `mkMultMul` idMult id)
-- | Like 'scaleIdBy', but skips non-Ids. Useful for scaling
-- a mixed list of ids and tyvars.
scaleVarBy :: Mult -> Var -> Var
scaleVarBy m id
| isId id = scaleIdBy m id
| otherwise = id
setIdName :: Id -> Name -> Id
setIdName = Var.setVarName
setIdUnique :: Id -> Unique -> Id
setIdUnique = Var.setVarUnique
-- | Not only does this set the 'Id' 'Type', it also evaluates the type to try and
-- reduce space usage
setIdType :: Id -> Type -> Id
setIdType id ty = seqType ty `seq` Var.setVarType id ty
setIdExported :: Id -> Id
setIdExported = Var.setIdExported
setIdNotExported :: Id -> Id
setIdNotExported = Var.setIdNotExported
localiseId :: Id -> Id
-- Make an Id with the same unique and type as the
-- incoming Id, but with an *Internal* Name and *LocalId* flavour
localiseId id
| ASSERT( isId id ) isLocalId id && isInternalName name
= id
| otherwise
= Var.mkLocalVar (idDetails id) (localiseName name) (Var.varMult id) (idType id) (idInfo id)
where
name = idName id
lazySetIdInfo :: Id -> IdInfo -> Id
lazySetIdInfo = Var.lazySetIdInfo
setIdInfo :: Id -> IdInfo -> Id
setIdInfo id info = info `seq` (lazySetIdInfo id info)
-- Try to avoid space leaks by seq'ing
modifyIdInfo :: HasDebugCallStack => (IdInfo -> IdInfo) -> Id -> Id
modifyIdInfo fn id = setIdInfo id (fn (idInfo id))
-- maybeModifyIdInfo tries to avoid unnecessary thrashing
maybeModifyIdInfo :: Maybe IdInfo -> Id -> Id
maybeModifyIdInfo (Just new_info) id = lazySetIdInfo id new_info
maybeModifyIdInfo Nothing id = id
{-
************************************************************************
* *
\subsection{Simple Id construction}
* *
************************************************************************
Absolutely all Ids are made by mkId. It is just like Var.mkId,
but in addition it pins free-tyvar-info onto the Id's type,
where it can easily be found.
Note [Free type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~
At one time we cached the free type variables of the type of an Id
at the root of the type in a TyNote. The idea was to avoid repeating
the free-type-variable calculation. But it turned out to slow down
the compiler overall. I don't quite know why; perhaps finding free
type variables of an Id isn't all that common whereas applying a
substitution (which changes the free type variables) is more common.
Anyway, we removed it in March 2008.
-}
-- | For an explanation of global vs. local 'Id's, see "GHC.Types.Var.Var#globalvslocal"
mkGlobalId :: IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalId = Var.mkGlobalVar
-- | Make a global 'Id' without any extra information at all
mkVanillaGlobal :: Name -> Type -> Id
mkVanillaGlobal name ty = mkVanillaGlobalWithInfo name ty vanillaIdInfo
-- | Make a global 'Id' with no global information but some generic 'IdInfo'
mkVanillaGlobalWithInfo :: Name -> Type -> IdInfo -> Id
mkVanillaGlobalWithInfo = mkGlobalId VanillaId
-- | For an explanation of global vs. local 'Id's, see "GHC.Types.Var#globalvslocal"
mkLocalId :: HasDebugCallStack => Name -> Mult -> Type -> Id
mkLocalId name w ty = ASSERT( not (isCoVarType ty) )
mkLocalIdWithInfo name w ty vanillaIdInfo
-- | Make a local CoVar
mkLocalCoVar :: Name -> Type -> CoVar
mkLocalCoVar name ty
= ASSERT( isCoVarType ty )
Var.mkLocalVar CoVarId name Many ty vanillaIdInfo
-- | Like 'mkLocalId', but checks the type to see if it should make a covar
mkLocalIdOrCoVar :: Name -> Mult -> Type -> Id
mkLocalIdOrCoVar name w ty
-- We should ASSERT(eqType w Many) in the isCoVarType case.
-- However, currently this assertion does not hold.
-- In tests with -fdefer-type-errors, such as T14584a,
-- we create a linear 'case' where the scrutinee is a coercion
-- (see castBottomExpr). This problem is covered by #17291.
| isCoVarType ty = mkLocalCoVar name ty
| otherwise = mkLocalId name w ty
-- proper ids only; no covars!
mkLocalIdWithInfo :: HasDebugCallStack => Name -> Mult -> Type -> IdInfo -> Id
mkLocalIdWithInfo name w ty info = ASSERT( not (isCoVarType ty) )
Var.mkLocalVar VanillaId name w ty info
-- Note [Free type variables]
-- | Create a local 'Id' that is marked as exported.
-- This prevents things attached to it from being removed as dead code.
-- See Note [Exported LocalIds]
mkExportedLocalId :: IdDetails -> Name -> Type -> Id
mkExportedLocalId details name ty = Var.mkExportedLocalVar details name ty vanillaIdInfo
-- Note [Free type variables]
mkExportedVanillaId :: Name -> Type -> Id
mkExportedVanillaId name ty = Var.mkExportedLocalVar VanillaId name ty vanillaIdInfo
-- Note [Free type variables]
-- | Create a system local 'Id'. These are local 'Id's (see "Var#globalvslocal")
-- that are created by the compiler out of thin air
mkSysLocal :: FastString -> Unique -> Mult -> Type -> Id
mkSysLocal fs uniq w ty = ASSERT( not (isCoVarType ty) )
mkLocalId (mkSystemVarName uniq fs) w ty
-- | Like 'mkSysLocal', but checks to see if we have a covar type
mkSysLocalOrCoVar :: FastString -> Unique -> Mult -> Type -> Id
mkSysLocalOrCoVar fs uniq w ty
= mkLocalIdOrCoVar (mkSystemVarName uniq fs) w ty
mkSysLocalM :: MonadUnique m => FastString -> Mult -> Type -> m Id
mkSysLocalM fs w ty = getUniqueM >>= (\uniq -> return (mkSysLocal fs uniq w ty))
mkSysLocalOrCoVarM :: MonadUnique m => FastString -> Mult -> Type -> m Id
mkSysLocalOrCoVarM fs w ty
= getUniqueM >>= (\uniq -> return (mkSysLocalOrCoVar fs uniq w ty))
-- | Create a user local 'Id'. These are local 'Id's (see "GHC.Types.Var#globalvslocal") with a name and location that the user might recognize
mkUserLocal :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id
mkUserLocal occ uniq w ty loc = ASSERT( not (isCoVarType ty) )
mkLocalId (mkInternalName uniq occ loc) w ty
-- | Like 'mkUserLocal', but checks if we have a coercion type
mkUserLocalOrCoVar :: OccName -> Unique -> Mult -> Type -> SrcSpan -> Id
mkUserLocalOrCoVar occ uniq w ty loc
= mkLocalIdOrCoVar (mkInternalName uniq occ loc) w ty
{-
Make some local @Ids@ for a template @CoreExpr@. These have bogus
@Uniques@, but that's OK because the templates are supposed to be
instantiated before use.
-}
-- | Workers get local names. "CoreTidy" will externalise these if necessary
mkWorkerId :: Unique -> Id -> Type -> Id
mkWorkerId uniq unwrkr ty
= mkLocalId (mkDerivedInternalName mkWorkerOcc uniq (getName unwrkr)) Many ty
-- | Create a /template local/: a family of system local 'Id's in bijection with @Int@s, typically used in unfoldings
mkTemplateLocal :: Int -> Type -> Id
mkTemplateLocal i ty = mkScaledTemplateLocal i (unrestricted ty)
mkScaledTemplateLocal :: Int -> Scaled Type -> Id
mkScaledTemplateLocal i (Scaled w ty) = mkSysLocalOrCoVar (fsLit "v") (mkBuiltinUnique i) w ty
-- "OrCoVar" since this is used in a superclass selector,
-- and "~" and "~~" have coercion "superclasses".
-- | Create a template local for a series of types
mkTemplateLocals :: [Type] -> [Id]
mkTemplateLocals = mkTemplateLocalsNum 1
-- | Create a template local for a series of type, but start from a specified template local
mkTemplateLocalsNum :: Int -> [Type] -> [Id]
mkTemplateLocalsNum n tys = zipWith mkTemplateLocal [n..] tys
{- Note [Exported LocalIds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use mkExportedLocalId for things like
- Dictionary functions (DFunId)
- Wrapper and matcher Ids for pattern synonyms
- Default methods for classes
- Pattern-synonym matcher and builder Ids
- etc
They marked as "exported" in the sense that they should be kept alive
even if apparently unused in other bindings, and not dropped as dead
code by the occurrence analyser. (But "exported" here does not mean
"brought into lexical scope by an import declaration". Indeed these
things are always internal Ids that the user never sees.)
It's very important that they are *LocalIds*, not GlobalIds, for lots
of reasons:
* We want to treat them as free variables for the purpose of
dependency analysis (e.g. GHC.Core.FVs.exprFreeVars).
* Look them up in the current substitution when we come across
occurrences of them (in Subst.lookupIdSubst). Lacking this we
can get an out-of-date unfolding, which can in turn make the
simplifier go into an infinite loop (#9857)
* Ensure that for dfuns that the specialiser does not float dict uses
above their defns, which would prevent good simplifications happening.
* The strictness analyser treats a occurrence of a GlobalId as
imported and assumes it contains strictness in its IdInfo, which
isn't true if the thing is bound in the same module as the
occurrence.
In CoreTidy we must make all these LocalIds into GlobalIds, so that in
importing modules (in --make mode) we treat them as properly global.
That is what is happening in, say tidy_insts in GHC.Iface.Tidy.
************************************************************************
* *
\subsection{Special Ids}
* *
************************************************************************
-}
-- | If the 'Id' is that for a record selector, extract the 'sel_tycon'. Panic otherwise.
recordSelectorTyCon :: Id -> RecSelParent
recordSelectorTyCon id
= case Var.idDetails id of
RecSelId { sel_tycon = parent } -> parent
_ -> panic "recordSelectorTyCon"
isRecordSelector :: Id -> Bool
isNaughtyRecordSelector :: Id -> Bool
isPatSynRecordSelector :: Id -> Bool
isDataConRecordSelector :: Id -> Bool
isPrimOpId :: Id -> Bool
isFCallId :: Id -> Bool
isDataConWorkId :: Id -> Bool
isDataConWrapId :: Id -> Bool
isDFunId :: Id -> Bool
isClassOpId_maybe :: Id -> Maybe Class
isPrimOpId_maybe :: Id -> Maybe PrimOp
isFCallId_maybe :: Id -> Maybe ForeignCall
isDataConWorkId_maybe :: Id -> Maybe DataCon
isDataConWrapId_maybe :: Id -> Maybe DataCon
isRecordSelector id = case Var.idDetails id of
RecSelId {} -> True
_ -> False
isDataConRecordSelector id = case Var.idDetails id of
RecSelId {sel_tycon = RecSelData _} -> True
_ -> False
isPatSynRecordSelector id = case Var.idDetails id of
RecSelId {sel_tycon = RecSelPatSyn _} -> True
_ -> False
isNaughtyRecordSelector id = case Var.idDetails id of
RecSelId { sel_naughty = n } -> n
_ -> False
isClassOpId_maybe id = case Var.idDetails id of
ClassOpId cls -> Just cls
_other -> Nothing
isPrimOpId id = case Var.idDetails id of
PrimOpId _ -> True
_ -> False
isDFunId id = case Var.idDetails id of
DFunId {} -> True
_ -> False
isPrimOpId_maybe id = case Var.idDetails id of
PrimOpId op -> Just op
_ -> Nothing
isFCallId id = case Var.idDetails id of
FCallId _ -> True
_ -> False
isFCallId_maybe id = case Var.idDetails id of
FCallId call -> Just call
_ -> Nothing
isDataConWorkId id = case Var.idDetails id of
DataConWorkId _ -> True
_ -> False
isDataConWorkId_maybe id = case Var.idDetails id of
DataConWorkId con -> Just con
_ -> Nothing
isDataConWrapId id = case Var.idDetails id of
DataConWrapId _ -> True
_ -> False
isDataConWrapId_maybe id = case Var.idDetails id of
DataConWrapId con -> Just con
_ -> Nothing
isDataConId_maybe :: Id -> Maybe DataCon
isDataConId_maybe id = case Var.idDetails id of
DataConWorkId con -> Just con
DataConWrapId con -> Just con
_ -> Nothing
isJoinId :: Var -> Bool
-- It is convenient in GHC.Core.Opt.SetLevels.lvlMFE to apply isJoinId
-- to the free vars of an expression, so it's convenient
-- if it returns False for type variables
isJoinId id
| isId id = case Var.idDetails id of
JoinId {} -> True
_ -> False
| otherwise = False
isJoinId_maybe :: Var -> Maybe JoinArity
isJoinId_maybe id
| isId id = ASSERT2( isId id, ppr id )
case Var.idDetails id of
JoinId arity -> Just arity
_ -> Nothing
| otherwise = Nothing
idDataCon :: Id -> DataCon
-- ^ Get from either the worker or the wrapper 'Id' to the 'DataCon'. Currently used only in the desugarer.
--
-- INVARIANT: @idDataCon (dataConWrapId d) = d@: remember, 'dataConWrapId' can return either the wrapper or the worker
idDataCon id = isDataConId_maybe id `orElse` pprPanic "idDataCon" (ppr id)
hasNoBinding :: Id -> Bool
-- ^ Returns @True@ of an 'Id' which may not have a
-- binding, even though it is defined in this module.
-- Data constructor workers used to be things of this kind, but they aren't any
-- more. Instead, we inject a binding for them at the CorePrep stage. The
-- exception to this is unboxed tuples and sums datacons, which definitely have
-- no binding
hasNoBinding id = case Var.idDetails id of
PrimOpId _ -> True -- See Note [Eta expanding primops] in GHC.Builtin.PrimOps
FCallId _ -> True
DataConWorkId dc -> isUnboxedTupleCon dc || isUnboxedSumCon dc
_ -> isCompulsoryUnfolding (idUnfolding id)
-- See Note [Levity-polymorphic Ids]
isImplicitId :: Id -> Bool
-- ^ 'isImplicitId' tells whether an 'Id's info is implied by other
-- declarations, so we don't need to put its signature in an interface
-- file, even if it's mentioned in some other interface unfolding.
isImplicitId id
= case Var.idDetails id of
FCallId {} -> True
ClassOpId {} -> True
PrimOpId {} -> True
DataConWorkId {} -> True
DataConWrapId {} -> True
-- These are implied by their type or class decl;
-- remember that all type and class decls appear in the interface file.
-- The dfun id is not an implicit Id; it must *not* be omitted, because
-- it carries version info for the instance decl
_ -> False
idIsFrom :: Module -> Id -> Bool
idIsFrom mod id = nameIsLocalOrFrom mod (idName id)
{- Note [Levity-polymorphic Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some levity-polymorphic Ids must be applied and inlined, not left
un-saturated. Example:
unsafeCoerceId :: forall r1 r2 (a::TYPE r1) (b::TYPE r2). a -> b
This has a compulsory unfolding because we can't lambda-bind those
arguments. But the compulsory unfolding may leave levity-polymorphic
lambdas if it is not applied to enough arguments; e.g. (#14561)
bad :: forall (a :: TYPE r). a -> a
bad = unsafeCoerce#
The desugar has special magic to detect such cases: GHC.HsToCore.Expr.badUseOfLevPolyPrimop.
And we want that magic to apply to levity-polymorphic compulsory-inline things.
The easiest way to do this is for hasNoBinding to return True of all things
that have compulsory unfolding. Some Ids with a compulsory unfolding also
have a binding, but it does not harm to say they don't here, and its a very
simple way to fix #14561.
-}
isDeadBinder :: Id -> Bool
isDeadBinder bndr | isId bndr = isDeadOcc (idOccInfo bndr)
| otherwise = False -- TyVars count as not dead
{-
************************************************************************
* *
Join variables
* *
************************************************************************
-}
idJoinArity :: JoinId -> JoinArity
idJoinArity id = isJoinId_maybe id `orElse` pprPanic "idJoinArity" (ppr id)
asJoinId :: Id -> JoinArity -> JoinId
asJoinId id arity = WARN(not (isLocalId id),
text "global id being marked as join var:" <+> ppr id)
WARN(not (is_vanilla_or_join id),
ppr id <+> pprIdDetails (idDetails id))
id `setIdDetails` JoinId arity
where
is_vanilla_or_join id = case Var.idDetails id of
VanillaId -> True
JoinId {} -> True
_ -> False
zapJoinId :: Id -> Id
-- May be a regular id already
zapJoinId jid | isJoinId jid = zapIdTailCallInfo (jid `setIdDetails` VanillaId)
-- Core Lint may complain if still marked
-- as AlwaysTailCalled
| otherwise = jid
asJoinId_maybe :: Id -> Maybe JoinArity -> Id
asJoinId_maybe id (Just arity) = asJoinId id arity
asJoinId_maybe id Nothing = zapJoinId id
{-
************************************************************************
* *
\subsection{IdInfo stuff}
* *
************************************************************************
-}
---------------------------------
-- ARITY
idArity :: Id -> Arity
idArity id = arityInfo (idInfo id)
setIdArity :: Id -> Arity -> Id
setIdArity id arity = modifyIdInfo (`setArityInfo` arity) id
idCallArity :: Id -> Arity
idCallArity id = callArityInfo (idInfo id)
setIdCallArity :: Id -> Arity -> Id
setIdCallArity id arity = modifyIdInfo (`setCallArityInfo` arity) id
idFunRepArity :: Id -> RepArity
idFunRepArity x = countFunRepArgs (idArity x) (idType x)
-- | Returns true if an application to n args diverges or throws an exception
-- See Note [Dead ends] in "GHC.Types.Demand".
isDeadEndId :: Var -> Bool
isDeadEndId v
| isId v = isDeadEndSig (idStrictness v)
| otherwise = False
-- | Accesses the 'Id''s 'strictnessInfo'.
idStrictness :: Id -> StrictSig
idStrictness id = strictnessInfo (idInfo id)
setIdStrictness :: Id -> StrictSig -> Id
setIdStrictness id sig = modifyIdInfo (`setStrictnessInfo` sig) id
idCprInfo :: Id -> CprSig
idCprInfo id = cprInfo (idInfo id)
setIdCprInfo :: Id -> CprSig -> Id
setIdCprInfo id sig = modifyIdInfo (\info -> setCprInfo info sig) id
zapIdStrictness :: Id -> Id
zapIdStrictness id = modifyIdInfo (`setStrictnessInfo` nopSig) id
-- | This predicate says whether the 'Id' has a strict demand placed on it or
-- has a type such that it can always be evaluated strictly (i.e an
-- unlifted type, as of GHC 7.6). We need to
-- check separately whether the 'Id' has a so-called \"strict type\" because if
-- the demand for the given @id@ hasn't been computed yet but @id@ has a strict
-- type, we still want @isStrictId id@ to be @True@.
isStrictId :: Id -> Bool
isStrictId id
= ASSERT2( isId id, text "isStrictId: not an id: " <+> ppr id )
not (isJoinId id) && (
(isStrictType (idType id)) ||
-- Take the best of both strictnesses - old and new
(isStrictDmd (idDemandInfo id))
)
---------------------------------
-- UNFOLDING
idUnfolding :: Id -> Unfolding
-- Do not expose the unfolding of a loop breaker!
idUnfolding id
| isStrongLoopBreaker (occInfo info) = NoUnfolding
| otherwise = unfoldingInfo info
where
info = idInfo id
realIdUnfolding :: Id -> Unfolding
-- Expose the unfolding if there is one, including for loop breakers
realIdUnfolding id = unfoldingInfo (idInfo id)
setIdUnfolding :: Id -> Unfolding -> Id
setIdUnfolding id unfolding = modifyIdInfo (`setUnfoldingInfo` unfolding) id
idDemandInfo :: Id -> Demand
idDemandInfo id = demandInfo (idInfo id)
setIdDemandInfo :: Id -> Demand -> Id
setIdDemandInfo id dmd = modifyIdInfo (`setDemandInfo` dmd) id
setCaseBndrEvald :: StrictnessMark -> Id -> Id
-- Used for variables bound by a case expressions, both the case-binder
-- itself, and any pattern-bound variables that are argument of a
-- strict constructor. It just marks the variable as already-evaluated,
-- so that (for example) a subsequent 'seq' can be dropped
setCaseBndrEvald str id
| isMarkedStrict str = id `setIdUnfolding` evaldUnfolding
| otherwise = id
---------------------------------
-- SPECIALISATION
-- See Note [Specialisations and RULES in IdInfo] in GHC.Types.Id.Info
idSpecialisation :: Id -> RuleInfo
idSpecialisation id = ruleInfo (idInfo id)
idCoreRules :: Id -> [CoreRule]
idCoreRules id = ruleInfoRules (idSpecialisation id)
idHasRules :: Id -> Bool
idHasRules id = not (isEmptyRuleInfo (idSpecialisation id))
setIdSpecialisation :: Id -> RuleInfo -> Id
setIdSpecialisation id spec_info = modifyIdInfo (`setRuleInfo` spec_info) id
---------------------------------
-- CAF INFO
idCafInfo :: Id -> CafInfo
idCafInfo id = cafInfo (idInfo id)
setIdCafInfo :: Id -> CafInfo -> Id
setIdCafInfo id caf_info = modifyIdInfo (`setCafInfo` caf_info) id
---------------------------------
-- Lambda form info
idLFInfo_maybe :: Id -> Maybe LambdaFormInfo
idLFInfo_maybe = lfInfo . idInfo
setIdLFInfo :: Id -> LambdaFormInfo -> Id
setIdLFInfo id lf = modifyIdInfo (`setLFInfo` lf) id
---------------------------------
-- Occurrence INFO
idOccInfo :: Id -> OccInfo
idOccInfo id = occInfo (idInfo id)
setIdOccInfo :: Id -> OccInfo -> Id
setIdOccInfo id occ_info = modifyIdInfo (`setOccInfo` occ_info) id
zapIdOccInfo :: Id -> Id
zapIdOccInfo b = b `setIdOccInfo` noOccInfo
{-
---------------------------------
-- INLINING
The inline pragma tells us to be very keen to inline this Id, but it's still
OK not to if optimisation is switched off.
-}
idInlinePragma :: Id -> InlinePragma
idInlinePragma id = inlinePragInfo (idInfo id)
setInlinePragma :: Id -> InlinePragma -> Id
setInlinePragma id prag = modifyIdInfo (`setInlinePragInfo` prag) id
modifyInlinePragma :: Id -> (InlinePragma -> InlinePragma) -> Id
modifyInlinePragma id fn = modifyIdInfo (\info -> info `setInlinePragInfo` (fn (inlinePragInfo info))) id
idInlineActivation :: Id -> Activation
idInlineActivation id = inlinePragmaActivation (idInlinePragma id)
setInlineActivation :: Id -> Activation -> Id
setInlineActivation id act = modifyInlinePragma id (\prag -> setInlinePragmaActivation prag act)
idRuleMatchInfo :: Id -> RuleMatchInfo
idRuleMatchInfo id = inlinePragmaRuleMatchInfo (idInlinePragma id)
isConLikeId :: Id -> Bool
isConLikeId id = isConLike (idRuleMatchInfo id)
{-
---------------------------------
-- ONE-SHOT LAMBDAS
-}
idOneShotInfo :: Id -> OneShotInfo
idOneShotInfo id = oneShotInfo (idInfo id)
-- | Like 'idOneShotInfo', but taking the Horrible State Hack in to account
-- See Note [The state-transformer hack] in "GHC.Core.Opt.Arity"
idStateHackOneShotInfo :: Id -> OneShotInfo
idStateHackOneShotInfo id
| isStateHackType (idType id) = stateHackOneShot
| otherwise = idOneShotInfo id
-- | Returns whether the lambda associated with the 'Id' is certainly applied at most once
-- This one is the "business end", called externally.
-- It works on type variables as well as Ids, returning True
-- Its main purpose is to encapsulate the Horrible State Hack
-- See Note [The state-transformer hack] in "GHC.Core.Opt.Arity"
isOneShotBndr :: Var -> Bool
isOneShotBndr var
| isTyVar var = True
| OneShotLam <- idStateHackOneShotInfo var = True
| otherwise = False
-- | Should we apply the state hack to values of this 'Type'?
stateHackOneShot :: OneShotInfo
stateHackOneShot = OneShotLam
typeOneShot :: Type -> OneShotInfo
typeOneShot ty
| isStateHackType ty = stateHackOneShot
| otherwise = NoOneShotInfo
isStateHackType :: Type -> Bool
isStateHackType ty
| hasNoStateHack unsafeGlobalDynFlags
= False
| otherwise
= case tyConAppTyCon_maybe ty of
Just tycon -> tycon == statePrimTyCon
_ -> False
-- This is a gross hack. It claims that
-- every function over realWorldStatePrimTy is a one-shot
-- function. This is pretty true in practice, and makes a big
-- difference. For example, consider
-- a `thenST` \ r -> ...E...
-- The early full laziness pass, if it doesn't know that r is one-shot
-- will pull out E (let's say it doesn't mention r) to give
-- let lvl = E in a `thenST` \ r -> ...lvl...
-- When `thenST` gets inlined, we end up with
-- let lvl = E in \s -> case a s of (r, s') -> ...lvl...
-- and we don't re-inline E.
--
-- It would be better to spot that r was one-shot to start with, but
-- I don't want to rely on that.
--
-- Another good example is in fill_in in PrelPack.hs. We should be able to
-- spot that fill_in has arity 2 (and when Keith is done, we will) but we can't yet.
isProbablyOneShotLambda :: Id -> Bool
isProbablyOneShotLambda id = case idStateHackOneShotInfo id of
OneShotLam -> True
NoOneShotInfo -> False
setOneShotLambda :: Id -> Id
setOneShotLambda id = modifyIdInfo (`setOneShotInfo` OneShotLam) id
clearOneShotLambda :: Id -> Id
clearOneShotLambda id = modifyIdInfo (`setOneShotInfo` NoOneShotInfo) id
setIdOneShotInfo :: Id -> OneShotInfo -> Id
setIdOneShotInfo id one_shot = modifyIdInfo (`setOneShotInfo` one_shot) id
updOneShotInfo :: Id -> OneShotInfo -> Id
-- Combine the info in the Id with new info
updOneShotInfo id one_shot
| do_upd = setIdOneShotInfo id one_shot
| otherwise = id
where
do_upd = case (idOneShotInfo id, one_shot) of
(NoOneShotInfo, _) -> True
(OneShotLam, _) -> False
-- The OneShotLambda functions simply fiddle with the IdInfo flag
-- But watch out: this may change the type of something else
-- f = \x -> e
-- If we change the one-shot-ness of x, f's type changes
zapInfo :: (IdInfo -> Maybe IdInfo) -> Id -> Id
zapInfo zapper id = maybeModifyIdInfo (zapper (idInfo id)) id
zapLamIdInfo :: Id -> Id
zapLamIdInfo = zapInfo zapLamInfo
zapFragileIdInfo :: Id -> Id
zapFragileIdInfo = zapInfo zapFragileInfo
zapIdDemandInfo :: Id -> Id
zapIdDemandInfo = zapInfo zapDemandInfo
zapIdUsageInfo :: Id -> Id
zapIdUsageInfo = zapInfo zapUsageInfo
zapIdUsageEnvInfo :: Id -> Id
zapIdUsageEnvInfo = zapInfo zapUsageEnvInfo
zapIdUsedOnceInfo :: Id -> Id
zapIdUsedOnceInfo = zapInfo zapUsedOnceInfo
zapIdTailCallInfo :: Id -> Id
zapIdTailCallInfo = zapInfo zapTailCallInfo
zapStableUnfolding :: Id -> Id
zapStableUnfolding id
| isStableUnfolding (realIdUnfolding id) = setIdUnfolding id NoUnfolding
| otherwise = id
{-
Note [transferPolyIdInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~
This transfer is used in three places:
FloatOut (long-distance let-floating)
GHC.Core.Opt.Simplify.Utils.abstractFloats (short-distance let-floating)
StgLiftLams (selectively lambda-lift local functions to top-level)
Consider the short-distance let-floating:
f = /\a. let g = rhs in ...
Then if we float thus
g' = /\a. rhs
f = /\a. ...[g' a/g]....
we *do not* want to lose g's
* strictness information
* arity
* inline pragma (though that is bit more debatable)
* occurrence info
Mostly this is just an optimisation, but it's *vital* to
transfer the occurrence info. Consider
NonRec { f = /\a. let Rec { g* = ..g.. } in ... }
where the '*' means 'LoopBreaker'. Then if we float we must get
Rec { g'* = /\a. ...(g' a)... }
NonRec { f = /\a. ...[g' a/g]....}
where g' is also marked as LoopBreaker. If not, terrible things
can happen if we re-simplify the binding (and the Simplifier does
sometimes simplify a term twice); see #4345.
It's not so simple to retain
* worker info
* rules
so we simply discard those. Sooner or later this may bite us.
If we abstract wrt one or more *value* binders, we must modify the
arity and strictness info before transferring it. E.g.
f = \x. e
-->
g' = \y. \x. e
+ substitute (g' y) for g
Notice that g' has an arity one more than the original g
-}
transferPolyIdInfo :: Id -- Original Id
-> [Var] -- Abstract wrt these variables
-> Id -- New Id
-> Id
transferPolyIdInfo old_id abstract_wrt new_id
= modifyIdInfo transfer new_id
where
arity_increase = count isId abstract_wrt -- Arity increases by the
-- number of value binders
old_info = idInfo old_id
old_arity = arityInfo old_info
old_inline_prag = inlinePragInfo old_info
old_occ_info = occInfo old_info
new_arity = old_arity + arity_increase
new_occ_info = zapOccTailCallInfo old_occ_info
old_strictness = strictnessInfo old_info
new_strictness = prependArgsStrictSig arity_increase old_strictness
old_cpr = cprInfo old_info
transfer new_info = new_info `setArityInfo` new_arity
`setInlinePragInfo` old_inline_prag
`setOccInfo` new_occ_info
`setStrictnessInfo` new_strictness
`setCprInfo` old_cpr
isNeverLevPolyId :: Id -> Bool
isNeverLevPolyId = isNeverLevPolyIdInfo . idInfo
|