1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
module GHC.Types.RepType
(
-- * Code generator views onto Types
UnaryType, NvUnaryType, isNvUnaryType,
unwrapType,
-- * Predicates on types
isVoidTy,
-- * Type representation for the code generator
typePrimRep, typePrimRep1,
runtimeRepPrimRep, typePrimRepArgs,
PrimRep(..), primRepToType,
countFunRepArgs, countConRepArgs, tyConPrimRep, tyConPrimRep1,
-- * Unboxed sum representation type
ubxSumRepType, layoutUbxSum, typeSlotTy, SlotTy (..),
slotPrimRep, primRepSlot
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import GHC.Types.Basic (Arity, RepArity)
import GHC.Core.DataCon
import GHC.Utils.Outputable
import GHC.Builtin.Names
import GHC.Core.Coercion
import GHC.Core.TyCon
import GHC.Core.TyCo.Rep
import GHC.Core.Type
import GHC.Utils.Misc
import GHC.Builtin.Types.Prim
import {-# SOURCE #-} GHC.Builtin.Types ( anyTypeOfKind )
import Data.List (sort)
import qualified Data.IntSet as IS
{- **********************************************************************
* *
Representation types
* *
********************************************************************** -}
type NvUnaryType = Type
type UnaryType = Type
-- Both are always a value type; i.e. its kind is TYPE rr
-- for some rr; moreover the rr is never a variable.
--
-- NvUnaryType : never an unboxed tuple or sum, or void
--
-- UnaryType : never an unboxed tuple or sum;
-- can be Void# or (# #)
isNvUnaryType :: Type -> Bool
isNvUnaryType ty
| [_] <- typePrimRep ty
= True
| otherwise
= False
-- INVARIANT: the result list is never empty.
typePrimRepArgs :: HasDebugCallStack => Type -> [PrimRep]
typePrimRepArgs ty
| [] <- reps
= [VoidRep]
| otherwise
= reps
where
reps = typePrimRep ty
-- | Gets rid of the stuff that prevents us from understanding the
-- runtime representation of a type. Including:
-- 1. Casts
-- 2. Newtypes
-- 3. Foralls
-- 4. Synonyms
-- But not type/data families, because we don't have the envs to hand.
unwrapType :: Type -> Type
unwrapType ty
| Just (_, unwrapped)
<- topNormaliseTypeX stepper mappend inner_ty
= unwrapped
| otherwise
= inner_ty
where
inner_ty = go ty
go t | Just t' <- coreView t = go t'
go (ForAllTy _ t) = go t
go (CastTy t _) = go t
go t = t
-- cf. Coercion.unwrapNewTypeStepper
stepper rec_nts tc tys
| Just (ty', _) <- instNewTyCon_maybe tc tys
= case checkRecTc rec_nts tc of
Just rec_nts' -> NS_Step rec_nts' (go ty') ()
Nothing -> NS_Abort -- infinite newtypes
| otherwise
= NS_Done
countFunRepArgs :: Arity -> Type -> RepArity
countFunRepArgs 0 _
= 0
countFunRepArgs n ty
| FunTy _ _ arg res <- unwrapType ty
= length (typePrimRepArgs arg) + countFunRepArgs (n - 1) res
| otherwise
= pprPanic "countFunRepArgs: arity greater than type can handle" (ppr (n, ty, typePrimRep ty))
countConRepArgs :: DataCon -> RepArity
countConRepArgs dc = go (dataConRepArity dc) (dataConRepType dc)
where
go :: Arity -> Type -> RepArity
go 0 _
= 0
go n ty
| FunTy _ _ arg res <- unwrapType ty
= length (typePrimRep arg) + go (n - 1) res
| otherwise
= pprPanic "countConRepArgs: arity greater than type can handle" (ppr (n, ty, typePrimRep ty))
-- | True if the type has zero width.
isVoidTy :: Type -> Bool
isVoidTy = null . typePrimRep
{- **********************************************************************
* *
Unboxed sums
See Note [Translating unboxed sums to unboxed tuples] in GHC.Stg.Unarise
* *
********************************************************************** -}
type SortedSlotTys = [SlotTy]
-- | Given the arguments of a sum type constructor application,
-- return the unboxed sum rep type.
--
-- E.g.
--
-- (# Int# | Maybe Int | (# Int#, Float# #) #)
--
-- We call `ubxSumRepType [ [IntRep], [LiftedRep], [IntRep, FloatRep] ]`,
-- which returns [WordSlot, PtrSlot, WordSlot, FloatSlot]
--
-- INVARIANT: Result slots are sorted (via Ord SlotTy), except that at the head
-- of the list we have the slot for the tag.
ubxSumRepType :: [[PrimRep]] -> [SlotTy]
ubxSumRepType constrs0
-- These first two cases never classify an actual unboxed sum, which always
-- has at least two disjuncts. But it could happen if a user writes, e.g.,
-- forall (a :: TYPE (SumRep [IntRep])). ...
-- which could never be instantiated. We still don't want to panic.
| constrs0 `lengthLessThan` 2
= [WordSlot]
| otherwise
= let
combine_alts :: [SortedSlotTys] -- slots of constructors
-> SortedSlotTys -- final slots
combine_alts constrs = foldl' merge [] constrs
merge :: SortedSlotTys -> SortedSlotTys -> SortedSlotTys
merge existing_slots []
= existing_slots
merge [] needed_slots
= needed_slots
merge (es : ess) (s : ss)
| Just s' <- s `fitsIn` es
= -- found a slot, use it
s' : merge ess ss
| s < es
= -- we need a new slot and this is the right place for it
s : merge (es : ess) ss
| otherwise
= -- keep searching for a slot
es : merge ess (s : ss)
-- Nesting unboxed tuples and sums is OK, so we need to flatten first.
rep :: [PrimRep] -> SortedSlotTys
rep ty = sort (map primRepSlot ty)
sumRep = WordSlot : combine_alts (map rep constrs0)
-- WordSlot: for the tag of the sum
in
sumRep
layoutUbxSum :: SortedSlotTys -- Layout of sum. Does not include tag.
-- We assume that they are in increasing order
-> [SlotTy] -- Slot types of things we want to map to locations in the
-- sum layout
-> [Int] -- Where to map 'things' in the sum layout
layoutUbxSum sum_slots0 arg_slots0 =
go arg_slots0 IS.empty
where
go :: [SlotTy] -> IS.IntSet -> [Int]
go [] _
= []
go (arg : args) used
= let slot_idx = findSlot arg 0 sum_slots0 used
in slot_idx : go args (IS.insert slot_idx used)
findSlot :: SlotTy -> Int -> SortedSlotTys -> IS.IntSet -> Int
findSlot arg slot_idx (slot : slots) useds
| not (IS.member slot_idx useds)
, Just slot == arg `fitsIn` slot
= slot_idx
| otherwise
= findSlot arg (slot_idx + 1) slots useds
findSlot _ _ [] _
= pprPanic "findSlot" (text "Can't find slot" $$ ppr sum_slots0 $$ ppr arg_slots0)
--------------------------------------------------------------------------------
-- We have 3 kinds of slots:
--
-- - Pointer slot: Only shared between actual pointers to Haskell heap (i.e.
-- boxed objects). These come in two variants: Lifted and unlifted (see
-- #19645).
--
-- - Word slots: Shared between IntRep, WordRep, Int64Rep, Word64Rep, AddrRep.
--
-- - Float slots: Shared between floating point types.
--
-- - Void slots: Shared between void types. Not used in sums.
--
-- TODO(michalt): We should probably introduce `SlotTy`s for 8-/16-/32-bit
-- values, so that we can pack things more tightly.
data SlotTy = PtrLiftedSlot | PtrUnliftedSlot | WordSlot | Word64Slot | FloatSlot | DoubleSlot
deriving (Eq, Ord)
-- Constructor order is important! If slot A could fit into slot B
-- then slot A must occur first. E.g. FloatSlot before DoubleSlot
--
-- We are assuming that WordSlot is smaller than or equal to Word64Slot
-- (would not be true on a 128-bit machine)
instance Outputable SlotTy where
ppr PtrLiftedSlot = text "PtrLiftedSlot"
ppr PtrUnliftedSlot = text "PtrUnliftedSlot"
ppr Word64Slot = text "Word64Slot"
ppr WordSlot = text "WordSlot"
ppr DoubleSlot = text "DoubleSlot"
ppr FloatSlot = text "FloatSlot"
typeSlotTy :: UnaryType -> Maybe SlotTy
typeSlotTy ty
| isVoidTy ty
= Nothing
| otherwise
= Just (primRepSlot (typePrimRep1 ty))
primRepSlot :: PrimRep -> SlotTy
primRepSlot VoidRep = pprPanic "primRepSlot" (text "No slot for VoidRep")
primRepSlot LiftedRep = PtrLiftedSlot
primRepSlot UnliftedRep = PtrUnliftedSlot
primRepSlot IntRep = WordSlot
primRepSlot Int8Rep = WordSlot
primRepSlot Int16Rep = WordSlot
primRepSlot Int32Rep = WordSlot
primRepSlot Int64Rep = Word64Slot
primRepSlot WordRep = WordSlot
primRepSlot Word8Rep = WordSlot
primRepSlot Word16Rep = WordSlot
primRepSlot Word32Rep = WordSlot
primRepSlot Word64Rep = Word64Slot
primRepSlot AddrRep = WordSlot
primRepSlot FloatRep = FloatSlot
primRepSlot DoubleRep = DoubleSlot
primRepSlot VecRep{} = pprPanic "primRepSlot" (text "No slot for VecRep")
slotPrimRep :: SlotTy -> PrimRep
slotPrimRep PtrLiftedSlot = LiftedRep
slotPrimRep PtrUnliftedSlot = UnliftedRep
slotPrimRep Word64Slot = Word64Rep
slotPrimRep WordSlot = WordRep
slotPrimRep DoubleSlot = DoubleRep
slotPrimRep FloatSlot = FloatRep
-- | Returns the bigger type if one fits into the other. (commutative)
--
-- Note that lifted and unlifted pointers are *not* in a fits-in relation for
-- the reasons described in Note [Don't merge lifted and unlifted slots] in
-- GHC.Stg.Unarise.
fitsIn :: SlotTy -> SlotTy -> Maybe SlotTy
fitsIn ty1 ty2
| ty1 == ty2
= Just ty1
| isWordSlot ty1 && isWordSlot ty2
= Just (max ty1 ty2)
| isFloatSlot ty1 && isFloatSlot ty2
= Just (max ty1 ty2)
| otherwise
= Nothing
where
isWordSlot Word64Slot = True
isWordSlot WordSlot = True
isWordSlot _ = False
isFloatSlot DoubleSlot = True
isFloatSlot FloatSlot = True
isFloatSlot _ = False
{- **********************************************************************
* *
PrimRep
* *
*************************************************************************
Note [RuntimeRep and PrimRep]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This Note describes the relationship between GHC.Types.RuntimeRep
(of levity-polymorphism fame) and GHC.Core.TyCon.PrimRep, as these types
are closely related.
A "primitive entity" is one that can be
* stored in one register
* manipulated with one machine instruction
Examples include:
* a 32-bit integer
* a 32-bit float
* a 64-bit float
* a machine address (heap pointer), etc.
* a quad-float (on a machine with SIMD register and instructions)
* ...etc...
The "representation or a primitive entity" specifies what kind of register is
needed and how many bits are required. The data type GHC.Core.TyCon.PrimRep
enumerates all the possibilities.
data PrimRep
= VoidRep
| LiftedRep -- ^ Lifted pointer
| UnliftedRep -- ^ Unlifted pointer
| Int8Rep -- ^ Signed, 8-bit value
| Int16Rep -- ^ Signed, 16-bit value
...etc...
| VecRep Int PrimElemRep -- ^ SIMD fixed-width vector
The Haskell source language is a bit more flexible: a single value may need multiple PrimReps.
For example
utup :: (# Int, Int #) -> Bool
utup x = ...
Here x :: (# Int, Int #), and that takes two registers, and two instructions to move around.
Unboxed sums are similar.
Every Haskell expression e has a type ty, whose kind is of form TYPE rep
e :: ty :: TYPE rep
where rep :: RuntimeRep. Here rep describes the runtime representation for e's value,
but RuntimeRep has some extra cases:
data RuntimeRep = VecRep VecCount VecElem -- ^ a SIMD vector type
| TupleRep [RuntimeRep] -- ^ An unboxed tuple of the given reps
| SumRep [RuntimeRep] -- ^ An unboxed sum of the given reps
| LiftedRep -- ^ lifted; represented by a pointer
| UnliftedRep -- ^ unlifted; represented by a pointer
| IntRep -- ^ signed, word-sized value
...etc...
It's all in 1-1 correspondence with PrimRep except for TupleRep and SumRep,
which describe unboxed products and sums respectively. RuntimeRep is defined
in the library ghc-prim:GHC.Types. It is also "wired-in" to GHC: see
GHC.Builtin.Types.runtimeRepTyCon. The unarisation pass, in GHC.Stg.Unarise, transforms the
program, so that every variable has a type that has a PrimRep. For
example, unarisation transforms our utup function above, to take two Int
arguments instead of one (# Int, Int #) argument.
See also Note [Getting from RuntimeRep to PrimRep] and Note [VoidRep].
Note [VoidRep]
~~~~~~~~~~~~~~
PrimRep contains a constructor VoidRep, while RuntimeRep does
not. Yet representations are often characterised by a list of PrimReps,
where a void would be denoted as []. (See also Note [RuntimeRep and PrimRep].)
However, after the unariser, all identifiers have exactly one PrimRep, but
void arguments still exist. Thus, PrimRep includes VoidRep to describe these
binders. Perhaps post-unariser representations (which need VoidRep) should be
a different type than pre-unariser representations (which use a list and do
not need VoidRep), but we have what we have.
RuntimeRep instead uses TupleRep '[] to denote a void argument. When
converting a TupleRep '[] into a list of PrimReps, we get an empty list.
Note [Getting from RuntimeRep to PrimRep]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
General info on RuntimeRep and PrimRep is in Note [RuntimeRep and PrimRep].
How do we get from an Id to the list or PrimReps used to store it? We get
the Id's type ty (using idType), then ty's kind ki (using typeKind), then
pattern-match on ki to extract rep (in kindPrimRep), then extract the PrimRep
from the RuntimeRep (in runtimeRepPrimRep).
We now must convert the RuntimeRep to a list of PrimReps. Let's look at two
examples:
1. x :: Int#
2. y :: (# Int, Word# #)
With these types, we can extract these kinds:
1. Int# :: TYPE IntRep
2. (# Int, Word# #) :: TYPE (TupleRep [LiftedRep, WordRep])
In the end, we will get these PrimReps:
1. [IntRep]
2. [LiftedRep, WordRep]
It would thus seem that we should have a function somewhere of
type `RuntimeRep -> [PrimRep]`. This doesn't work though: when we
look at the argument of TYPE, we get something of type Type (of course).
RuntimeRep exists in the user's program, but not in GHC as such.
Instead, we must decompose the Type of kind RuntimeRep into tycons and
extract the PrimReps from the TyCons. This is what runtimeRepPrimRep does:
it takes a Type and returns a [PrimRep]
runtimeRepPrimRep works by using tyConRuntimeRepInfo. That function
should be passed the TyCon produced by promoting one of the constructors
of RuntimeRep into type-level data. The RuntimeRep promoted datacons are
associated with a RuntimeRepInfo (stored directly in the PromotedDataCon
constructor of TyCon). This pairing happens in GHC.Builtin.Types. A RuntimeRepInfo
usually(*) contains a function from [Type] to [PrimRep]: the [Type] are
the arguments to the promoted datacon. These arguments are necessary
for the TupleRep and SumRep constructors, so that this process can recur,
producing a flattened list of PrimReps. Calling this extracted function
happens in runtimeRepPrimRep; the functions themselves are defined in
tupleRepDataCon and sumRepDataCon, both in GHC.Builtin.Types.
The (*) above is to support vector representations. RuntimeRep refers
to VecCount and VecElem, whose promoted datacons have nuggets of information
related to vectors; these form the other alternatives for RuntimeRepInfo.
Returning to our examples, the Types we get (after stripping off TYPE) are
1. TyConApp (PromotedDataCon "IntRep") []
2. TyConApp (PromotedDataCon "TupleRep")
[TyConApp (PromotedDataCon ":")
[ TyConApp (AlgTyCon "RuntimeRep") []
, TyConApp (PromotedDataCon "LiftedRep") []
, TyConApp (PromotedDataCon ":")
[ TyConApp (AlgTyCon "RuntimeRep") []
, TyConApp (PromotedDataCon "WordRep") []
, TyConApp (PromotedDataCon "'[]")
[TyConApp (AlgTyCon "RuntimeRep") []]]]]
runtimeRepPrimRep calls tyConRuntimeRepInfo on (PromotedDataCon "IntRep"), resp.
(PromotedDataCon "TupleRep"), extracting a function that will produce the PrimReps.
In example 1, this function is passed an empty list (the empty list of args to IntRep)
and returns the PrimRep IntRep. (See the definition of runtimeRepSimpleDataCons in
GHC.Builtin.Types and its helper function mk_runtime_rep_dc.) Example 2 passes the promoted
list as the one argument to the extracted function. The extracted function is defined
as prim_rep_fun within tupleRepDataCon in GHC.Builtin.Types. It takes one argument, decomposes
the promoted list (with extractPromotedList), and then recurs back to runtimeRepPrimRep
to process the LiftedRep and WordRep, concatentating the results.
-}
-- | Discovers the primitive representation of a 'Type'. Returns
-- a list of 'PrimRep': it's a list because of the possibility of
-- no runtime representation (void) or multiple (unboxed tuple/sum)
-- See also Note [Getting from RuntimeRep to PrimRep]
typePrimRep :: HasDebugCallStack => Type -> [PrimRep]
typePrimRep ty = kindPrimRep (text "typePrimRep" <+>
parens (ppr ty <+> dcolon <+> ppr (typeKind ty)))
(typeKind ty)
-- | Like 'typePrimRep', but assumes that there is precisely one 'PrimRep' output;
-- an empty list of PrimReps becomes a VoidRep.
-- This assumption holds after unarise, see Note [Post-unarisation invariants].
-- Before unarise it may or may not hold.
-- See also Note [RuntimeRep and PrimRep] and Note [VoidRep]
typePrimRep1 :: HasDebugCallStack => UnaryType -> PrimRep
typePrimRep1 ty = case typePrimRep ty of
[] -> VoidRep
[rep] -> rep
_ -> pprPanic "typePrimRep1" (ppr ty $$ ppr (typePrimRep ty))
-- | Find the runtime representation of a 'TyCon'. Defined here to
-- avoid module loops. Returns a list of the register shapes necessary.
-- See also Note [Getting from RuntimeRep to PrimRep]
tyConPrimRep :: HasDebugCallStack => TyCon -> [PrimRep]
tyConPrimRep tc
= kindPrimRep (text "kindRep tc" <+> ppr tc $$ ppr res_kind)
res_kind
where
res_kind = tyConResKind tc
-- | Like 'tyConPrimRep', but assumed that there is precisely zero or
-- one 'PrimRep' output
-- See also Note [Getting from RuntimeRep to PrimRep] and Note [VoidRep]
tyConPrimRep1 :: HasDebugCallStack => TyCon -> PrimRep
tyConPrimRep1 tc = case tyConPrimRep tc of
[] -> VoidRep
[rep] -> rep
_ -> pprPanic "tyConPrimRep1" (ppr tc $$ ppr (tyConPrimRep tc))
-- | Take a kind (of shape @TYPE rr@) and produce the 'PrimRep's
-- of values of types of this kind.
-- See also Note [Getting from RuntimeRep to PrimRep]
kindPrimRep :: HasDebugCallStack => SDoc -> Kind -> [PrimRep]
kindPrimRep doc ki
| Just ki' <- coreView ki
= kindPrimRep doc ki'
kindPrimRep doc (TyConApp typ [runtime_rep])
= ASSERT( typ `hasKey` tYPETyConKey )
runtimeRepPrimRep doc runtime_rep
kindPrimRep doc ki
= pprPanic "kindPrimRep" (ppr ki $$ doc)
-- | Take a type of kind RuntimeRep and extract the list of 'PrimRep' that
-- it encodes. See also Note [Getting from RuntimeRep to PrimRep]
runtimeRepPrimRep :: HasDebugCallStack => SDoc -> Type -> [PrimRep]
runtimeRepPrimRep doc rr_ty
| Just rr_ty' <- coreView rr_ty
= runtimeRepPrimRep doc rr_ty'
| TyConApp rr_dc args <- rr_ty
, RuntimeRep fun <- tyConRuntimeRepInfo rr_dc
= fun args
| otherwise
= pprPanic "runtimeRepPrimRep" (doc $$ ppr rr_ty)
-- | Convert a PrimRep back to a Type. Used only in the unariser to give types
-- to fresh Ids. Really, only the type's representation matters.
-- See also Note [RuntimeRep and PrimRep]
primRepToType :: PrimRep -> Type
primRepToType = anyTypeOfKind . tYPE . primRepToRuntimeRep
|