1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# OPTIONS_GHC -fno-state-hack #-}
-- This -fno-state-hack is important
-- See Note [Optimising the unique supply]
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE BangPatterns #-}
#if !defined(GHC_LOADED_INTO_GHCI)
{-# LANGUAGE UnboxedTuples #-}
#endif
module GHC.Types.Unique.Supply (
-- * Main data type
UniqSupply, -- Abstractly
-- ** Operations on supplies
uniqFromSupply, uniqsFromSupply, -- basic ops
takeUniqFromSupply, uniqFromMask,
mkSplitUniqSupply,
splitUniqSupply, listSplitUniqSupply,
-- * Unique supply monad and its abstraction
UniqSM, MonadUnique(..),
-- ** Operations on the monad
initUs, initUs_,
-- * Set supply strategy
initUniqSupply
) where
import GHC.Prelude
import GHC.Types.Unique
import GHC.Utils.Panic.Plain (panic)
import GHC.IO
import GHC.Utils.Monad
import Control.Monad
import Data.Bits
import Data.Char
import GHC.Exts( inline )
#include "Unique.h"
{-
************************************************************************
* *
\subsection{Splittable Unique supply: @UniqSupply@}
* *
************************************************************************
-}
{- Note [How the unique supply works]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The basic idea (due to Lennart Augustsson) is that a UniqSupply is
lazily-evaluated infinite tree.
* At each MkSplitUniqSupply node is a unique Int, and two
sub-trees (see data UniqSupply)
* takeUniqFromSupply :: UniqSupply -> (Unique, UniqSupply)
returns the unique Int and one of the sub-trees
* splitUniqSupply :: UniqSupply -> (UniqSupply, UniqSupply)
returns the two sub-trees
* When you poke on one of the thunks, it does a foreign call
to get a fresh Int from a thread-safe counter, and returns
a fresh MkSplitUniqSupply node. This has to be as efficient
as possible: it should allocate only
* The fresh node
* A thunk for each sub-tree
Note [Optimising the unique supply]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The inner loop of mkSplitUniqSupply is a function closure
mk_supply :: IO UniqSupply
mk_supply = unsafeInterleaveIO $
genSym >>= \ u ->
mk_supply >>= \ s1 ->
mk_supply >>= \ s2 ->
return (MkSplitUniqSupply (mask .|. u) s1 s2)
It's a classic example of an IO action that is captured
and the called repeatedly (see #18238 for some discussion).
It turns out that we can get something like
$wmkSplitUniqSupply c# s
= letrec
mk_supply
= \s -> unsafeDupableInterleaveIO1
(\s2 -> case noDuplicate# s2 of s3 ->
...
case mk_supply s4 of (# s5, t1 #) ->
...
(# s6, MkSplitUniqSupply ... #)
in mk_supply s
This is bad becuase we allocate that inner (\s2...) every time.
Why doesn't full laziness float out the (\s2...)? Because of
the state hack (#18238).
So for this module we switch the state hack off -- it's an example
of when it makes things worse rather than better. And we use
multiShotIO (see Note [multiShotIO]) thus:
mk_supply = multiShotIO $
unsafeInterleaveIO $
genSym >>= \ u ->
...
Now full laziness can float that lambda out, and we get
$wmkSplitUniqSupply c# s
= letrec
lvl = \s2 -> case noDuplicate# s2 of s3 ->
...
case unsafeDupableInterleaveIO
lvl s4 of (# s5, t1 #) ->
...
(# s6, MkSplitUniqSupply ... #)
in unsafeDupableInterleaveIO1 lvl s
This is all terribly delicate. It just so happened that before I
fixed #18078, and even with the state-hack still enabled, we were
getting this:
$wmkSplitUniqSupply c# s
= letrec
mk_supply = \s2 -> case noDuplicate# s2 of s3 ->
...
case mks_help s3 of (# s5,t1 #) ->
...
(# s6, MkSplitUniqSupply ... #)
mks_help = unsafeDupableInterleaveIO mk_supply
-- mks_help marked as loop breaker
in mks_help s
The fact that we didn't need full laziness was somewhat fortuitious.
We got the right number of allocations. But the partial application of
the arity-2 unsafeDupableInterleaveIO in mks_help makes it quite a
bit slower. (Test perf/should_run/UniqLoop had a 20% perf change.)
Sigh. The test perf/should_run/UniqLoop keeps track of this loop.
Watch it carefully.
Note [multiShotIO]
~~~~~~~~~~~~~~~~~~
The function multiShotIO :: IO a -> IO a
says that the argument IO action may be invoked repeatedly (is
multi-shot), and so there should be a multi-shot lambda around it.
It's quite easy to define, in any module with `-fno-state-hack`:
multiShotIO :: IO a -> IO a
{-# INLINE multiShotIO #-}
multiShotIO (IO m) = IO (\s -> inline m s)
Because of -fno-state-hack, that '\s' will be multi-shot. Now,
ignoring the casts from IO:
multiShotIO (\ss{one-shot}. blah)
==> let m = \ss{one-shot}. blah
in \s. inline m s
==> \s. (\ss{one-shot}.blah) s
==> \s. blah[s/ss]
The magic `inline` function does two things
* It prevents eta reduction. If we wrote just
multiShotIO (IO m) = IO (\s -> m s)
the lamda would eta-reduce to 'm' and all would be lost.
* It helps ensure that 'm' really does inline.
Note that 'inline' evaporates in phase 0. See Note [inlineIdMagic]
in GHC.Core.Opt.ConstantFold.match_inline.
The INLINE pragma on multiShotIO is very important, else the
'inline' call will evaporate when compiling the module that
defines 'multiShotIO', before it is ever exported.
-}
-- | Unique Supply
--
-- A value of type 'UniqSupply' is unique, and it can
-- supply /one/ distinct 'Unique'. Also, from the supply, one can
-- also manufacture an arbitrary number of further 'UniqueSupply' values,
-- which will be distinct from the first and from all others.
data UniqSupply
= MkSplitUniqSupply {-# UNPACK #-} !Int -- make the Unique with this
UniqSupply UniqSupply
-- when split => these two supplies
mkSplitUniqSupply :: Char -> IO UniqSupply
-- ^ Create a unique supply out of thin air. The character given must
-- be distinct from those of all calls to this function in the compiler
-- for the values generated to be truly unique.
-- See Note [How the unique supply works]
-- See Note [Optimising the unique supply]
mkSplitUniqSupply c
= mk_supply
where
!mask = ord c `shiftL` uNIQUE_BITS
-- Here comes THE MAGIC: see Note [How the unique supply works]
-- This is one of the most hammered bits in the whole compiler
-- See Note [Optimising the unique supply]
-- NB: Use unsafeInterleaveIO for thread-safety.
mk_supply = multiShotIO $
unsafeInterleaveIO $
genSym >>= \ u ->
mk_supply >>= \ s1 ->
mk_supply >>= \ s2 ->
return (MkSplitUniqSupply (mask .|. u) s1 s2)
multiShotIO :: IO a -> IO a
{-# INLINE multiShotIO #-}
-- See Note [multiShotIO]
multiShotIO (IO m) = IO (\s -> inline m s)
foreign import ccall unsafe "ghc_lib_parser_genSym" genSym :: IO Int
foreign import ccall unsafe "ghc_lib_parser_initGenSym" initUniqSupply :: Int -> Int -> IO ()
splitUniqSupply :: UniqSupply -> (UniqSupply, UniqSupply)
-- ^ Build two 'UniqSupply' from a single one, each of which
-- can supply its own 'Unique'.
listSplitUniqSupply :: UniqSupply -> [UniqSupply]
-- ^ Create an infinite list of 'UniqSupply' from a single one
uniqFromSupply :: UniqSupply -> Unique
-- ^ Obtain the 'Unique' from this particular 'UniqSupply'
uniqsFromSupply :: UniqSupply -> [Unique] -- Infinite
-- ^ Obtain an infinite list of 'Unique' that can be generated by constant splitting of the supply
takeUniqFromSupply :: UniqSupply -> (Unique, UniqSupply)
-- ^ Obtain the 'Unique' from this particular 'UniqSupply', and a new supply
splitUniqSupply (MkSplitUniqSupply _ s1 s2) = (s1, s2)
listSplitUniqSupply (MkSplitUniqSupply _ s1 s2) = s1 : listSplitUniqSupply s2
uniqFromSupply (MkSplitUniqSupply n _ _) = mkUniqueGrimily n
uniqsFromSupply (MkSplitUniqSupply n _ s2) = mkUniqueGrimily n : uniqsFromSupply s2
takeUniqFromSupply (MkSplitUniqSupply n s1 _) = (mkUniqueGrimily n, s1)
uniqFromMask :: Char -> IO Unique
uniqFromMask mask
= do { uqNum <- genSym
; return $! mkUnique mask uqNum }
{-
************************************************************************
* *
\subsubsection[UniqSupply-monad]{@UniqSupply@ monad: @UniqSM@}
* *
************************************************************************
-}
-- Avoids using unboxed tuples when loading into GHCi
#if !defined(GHC_LOADED_INTO_GHCI)
type UniqResult result = (# result, UniqSupply #)
pattern UniqResult :: a -> b -> (# a, b #)
pattern UniqResult x y = (# x, y #)
{-# COMPLETE UniqResult #-}
#else
data UniqResult result = UniqResult !result {-# UNPACK #-} !UniqSupply
deriving (Functor)
#endif
-- | A monad which just gives the ability to obtain 'Unique's
newtype UniqSM result = USM { unUSM :: UniqSupply -> UniqResult result }
deriving (Functor)
instance Monad UniqSM where
(>>=) = thenUs
(>>) = (*>)
instance Applicative UniqSM where
pure = returnUs
(USM f) <*> (USM x) = USM $ \us0 -> case f us0 of
UniqResult ff us1 -> case x us1 of
UniqResult xx us2 -> UniqResult (ff xx) us2
(*>) = thenUs_
-- TODO: try to get rid of this instance
instance MonadFail UniqSM where
fail = panic
-- | Run the 'UniqSM' action, returning the final 'UniqSupply'
initUs :: UniqSupply -> UniqSM a -> (a, UniqSupply)
initUs init_us m = case unUSM m init_us of { UniqResult r us -> (r, us) }
-- | Run the 'UniqSM' action, discarding the final 'UniqSupply'
initUs_ :: UniqSupply -> UniqSM a -> a
initUs_ init_us m = case unUSM m init_us of { UniqResult r _ -> r }
{-# INLINE thenUs #-}
{-# INLINE returnUs #-}
{-# INLINE splitUniqSupply #-}
-- @thenUs@ is where we split the @UniqSupply@.
liftUSM :: UniqSM a -> UniqSupply -> (a, UniqSupply)
liftUSM (USM m) us0 = case m us0 of UniqResult a us1 -> (a, us1)
instance MonadFix UniqSM where
mfix m = USM (\us0 -> let (r,us1) = liftUSM (m r) us0 in UniqResult r us1)
thenUs :: UniqSM a -> (a -> UniqSM b) -> UniqSM b
thenUs (USM expr) cont
= USM (\us0 -> case (expr us0) of
UniqResult result us1 -> unUSM (cont result) us1)
thenUs_ :: UniqSM a -> UniqSM b -> UniqSM b
thenUs_ (USM expr) (USM cont)
= USM (\us0 -> case (expr us0) of { UniqResult _ us1 -> cont us1 })
returnUs :: a -> UniqSM a
returnUs result = USM (\us -> UniqResult result us)
getUs :: UniqSM UniqSupply
getUs = USM (\us0 -> case splitUniqSupply us0 of (us1,us2) -> UniqResult us1 us2)
-- | A monad for generating unique identifiers
class Monad m => MonadUnique m where
-- | Get a new UniqueSupply
getUniqueSupplyM :: m UniqSupply
-- | Get a new unique identifier
getUniqueM :: m Unique
-- | Get an infinite list of new unique identifiers
getUniquesM :: m [Unique]
-- This default definition of getUniqueM, while correct, is not as
-- efficient as it could be since it needlessly generates and throws away
-- an extra Unique. For your instances consider providing an explicit
-- definition for 'getUniqueM' which uses 'takeUniqFromSupply' directly.
getUniqueM = liftM uniqFromSupply getUniqueSupplyM
getUniquesM = liftM uniqsFromSupply getUniqueSupplyM
instance MonadUnique UniqSM where
getUniqueSupplyM = getUs
getUniqueM = getUniqueUs
getUniquesM = getUniquesUs
getUniqueUs :: UniqSM Unique
getUniqueUs = USM (\us0 -> case takeUniqFromSupply us0 of
(u,us1) -> UniqResult u us1)
getUniquesUs :: UniqSM [Unique]
getUniquesUs = USM (\us0 -> case splitUniqSupply us0 of
(us1,us2) -> UniqResult (uniqsFromSupply us1) us2)
|