1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section{@Vars@: Variables}
-}
{-# LANGUAGE CPP, FlexibleContexts, MultiWayIf, FlexibleInstances, DeriveDataTypeable,
PatternSynonyms, BangPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
-- |
-- #name_types#
-- GHC uses several kinds of name internally:
--
-- * 'GHC.Types.Name.Occurrence.OccName': see "GHC.Types.Name.Occurrence#name_types"
--
-- * 'GHC.Types.Name.Reader.RdrName': see "GHC.Types.Name.Reader#name_types"
--
-- * 'GHC.Types.Name.Name': see "GHC.Types.Name#name_types"
--
-- * 'GHC.Types.Id.Id': see "GHC.Types.Id#name_types"
--
-- * 'GHC.Types.Var.Var' is a synonym for the 'GHC.Types.Id.Id' type but it may additionally
-- potentially contain type variables, which have a 'GHC.Core.TyCo.Rep.Kind'
-- rather than a 'GHC.Core.TyCo.Rep.Type' and only contain some extra
-- details during typechecking.
--
-- These 'Var' names may either be global or local, see "GHC.Types.Var#globalvslocal"
--
-- #globalvslocal#
-- Global 'Id's and 'Var's are those that are imported or correspond
-- to a data constructor, primitive operation, or record selectors.
-- Local 'Id's and 'Var's are those bound within an expression
-- (e.g. by a lambda) or at the top level of the module being compiled.
module GHC.Types.Var (
-- * The main data type and synonyms
Var, CoVar, Id, NcId, DictId, DFunId, EvVar, EqVar, EvId, IpId, JoinId,
TyVar, TcTyVar, TypeVar, KindVar, TKVar, TyCoVar,
-- * In and Out variants
InVar, InCoVar, InId, InTyVar,
OutVar, OutCoVar, OutId, OutTyVar,
-- ** Taking 'Var's apart
varName, varUnique, varType,
varMult, varMultMaybe,
-- ** Modifying 'Var's
setVarName, setVarUnique, setVarType,
updateVarType, updateVarTypeM,
-- ** Constructing, taking apart, modifying 'Id's
mkGlobalVar, mkLocalVar, mkExportedLocalVar, mkCoVar,
idInfo, idDetails,
lazySetIdInfo, setIdDetails, globaliseId,
setIdExported, setIdNotExported, setIdMult,
updateIdTypeButNotMult,
updateIdTypeAndMult, updateIdTypeAndMultM,
-- ** Predicates
isId, isTyVar, isTcTyVar,
isLocalVar, isLocalId, isCoVar, isNonCoVarId, isTyCoVar,
isGlobalId, isExportedId,
mustHaveLocalBinding,
-- * ArgFlags
ArgFlag(Invisible,Required,Specified,Inferred),
isVisibleArgFlag, isInvisibleArgFlag, sameVis,
AnonArgFlag(..), Specificity(..),
-- * TyVar's
VarBndr(..), TyCoVarBinder, TyVarBinder, InvisTVBinder, ReqTVBinder,
binderVar, binderVars, binderArgFlag, binderType,
mkTyCoVarBinder, mkTyCoVarBinders,
mkTyVarBinder, mkTyVarBinders,
isTyVarBinder, tyVarSpecToBinder, tyVarSpecToBinders,
mapVarBndr, mapVarBndrs, lookupVarBndr,
-- ** Constructing TyVar's
mkTyVar, mkTcTyVar,
-- ** Taking 'TyVar's apart
tyVarName, tyVarKind, tcTyVarDetails, setTcTyVarDetails,
-- ** Modifying 'TyVar's
setTyVarName, setTyVarUnique, setTyVarKind, updateTyVarKind,
updateTyVarKindM,
nonDetCmpVar
) where
#include "GhclibHsVersions.h"
import GHC.Prelude
import {-# SOURCE #-} GHC.Core.TyCo.Rep( Type, Kind, Mult )
import {-# SOURCE #-} GHC.Core.TyCo.Ppr( pprKind )
import {-# SOURCE #-} GHC.Tc.Utils.TcType( TcTyVarDetails, pprTcTyVarDetails, vanillaSkolemTv )
import {-# SOURCE #-} GHC.Types.Id.Info( IdDetails, IdInfo, coVarDetails, isCoVarDetails,
vanillaIdInfo, pprIdDetails )
import {-# SOURCE #-} GHC.Builtin.Types ( manyDataConTy )
import GHC.Types.Name hiding (varName)
import GHC.Types.Unique ( Uniquable, Unique, getKey, getUnique
, mkUniqueGrimily, nonDetCmpUnique )
import GHC.Utils.Misc
import GHC.Utils.Binary
import GHC.Utils.Outputable
import Data.Data
{-
************************************************************************
* *
Synonyms
* *
************************************************************************
-- These synonyms are here and not in Id because otherwise we need a very
-- large number of SOURCE imports of "GHC.Types.Id" :-(
-}
-- | Identifier
type Id = Var -- A term-level identifier
-- predicate: isId
-- | Coercion Variable
type CoVar = Id -- See Note [Evidence: EvIds and CoVars]
-- predicate: isCoVar
-- |
type NcId = Id -- A term-level (value) variable that is
-- /not/ an (unlifted) coercion
-- predicate: isNonCoVarId
-- | Type or kind Variable
type TyVar = Var -- Type *or* kind variable (historical)
-- | Type or Kind Variable
type TKVar = Var -- Type *or* kind variable (historical)
-- | Type variable that might be a metavariable
type TcTyVar = Var
-- | Type Variable
type TypeVar = Var -- Definitely a type variable
-- | Kind Variable
type KindVar = Var -- Definitely a kind variable
-- See Note [Kind and type variables]
-- See Note [Evidence: EvIds and CoVars]
-- | Evidence Identifier
type EvId = Id -- Term-level evidence: DictId, IpId, or EqVar
-- | Evidence Variable
type EvVar = EvId -- ...historical name for EvId
-- | Dictionary Function Identifier
type DFunId = Id -- A dictionary function
-- | Dictionary Identifier
type DictId = EvId -- A dictionary variable
-- | Implicit parameter Identifier
type IpId = EvId -- A term-level implicit parameter
-- | Equality Variable
type EqVar = EvId -- Boxed equality evidence
type JoinId = Id -- A join variable
-- | Type or Coercion Variable
type TyCoVar = Id -- Type, *or* coercion variable
-- predicate: isTyCoVar
{- Many passes apply a substitution, and it's very handy to have type
synonyms to remind us whether or not the substitution has been applied -}
type InVar = Var
type InTyVar = TyVar
type InCoVar = CoVar
type InId = Id
type OutVar = Var
type OutTyVar = TyVar
type OutCoVar = CoVar
type OutId = Id
{- Note [Evidence: EvIds and CoVars]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* An EvId (evidence Id) is a term-level evidence variable
(dictionary, implicit parameter, or equality). Could be boxed or unboxed.
* DictId, IpId, and EqVar are synonyms when we know what kind of
evidence we are talking about. For example, an EqVar has type (t1 ~ t2).
* A CoVar is always an un-lifted coercion, of type (t1 ~# t2) or (t1 ~R# t2)
Note [Kind and type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before kind polymorphism, TyVar were used to mean type variables. Now
they are used to mean kind *or* type variables. KindVar is used when we
know for sure that it is a kind variable. In future, we might want to
go over the whole compiler code to use:
- TKVar to mean kind or type variables
- TypeVar to mean type variables only
- KindVar to mean kind variables
************************************************************************
* *
\subsection{The main data type declarations}
* *
************************************************************************
Every @Var@ has a @Unique@, to uniquify it and for fast comparison, a
@Type@, and an @IdInfo@ (non-essential info about it, e.g.,
strictness). The essential info about different kinds of @Vars@ is
in its @VarDetails@.
-}
-- | Variable
--
-- Essentially a typed 'Name', that may also contain some additional information
-- about the 'Var' and its use sites.
data Var
= TyVar { -- Type and kind variables
-- see Note [Kind and type variables]
varName :: !Name,
realUnique :: {-# UNPACK #-} !Int,
-- ^ Key for fast comparison
-- Identical to the Unique in the name,
-- cached here for speed
varType :: Kind -- ^ The type or kind of the 'Var' in question
}
| TcTyVar { -- Used only during type inference
-- Used for kind variables during
-- inference, as well
varName :: !Name,
realUnique :: {-# UNPACK #-} !Int,
varType :: Kind,
tc_tv_details :: TcTyVarDetails
}
| Id {
varName :: !Name,
realUnique :: {-# UNPACK #-} !Int,
varType :: Type,
varMult :: Mult, -- See Note [Multiplicity of let binders]
idScope :: IdScope,
id_details :: IdDetails, -- Stable, doesn't change
id_info :: IdInfo } -- Unstable, updated by simplifier
-- | Identifier Scope
data IdScope -- See Note [GlobalId/LocalId]
= GlobalId
| LocalId ExportFlag
data ExportFlag -- See Note [ExportFlag on binders]
= NotExported -- ^ Not exported: may be discarded as dead code.
| Exported -- ^ Exported: kept alive
{- Note [ExportFlag on binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An ExportFlag of "Exported" on a top-level binder says "keep this
binding alive; do not drop it as dead code". This transitively
keeps alive all the other top-level bindings that this binding refers
to. This property is persisted all the way down the pipeline, so that
the binding will be compiled all the way to object code, and its
symbols will appear in the linker symbol table.
However, note that this use of "exported" is quite different to the
export list on a Haskell module. Setting the ExportFlag on an Id does
/not/ mean that if you import the module (in Haskell source code) you
will see this Id. Of course, things that appear in the export list
of the source Haskell module do indeed have their ExportFlag set.
But many other things, such as dictionary functions, are kept alive
by having their ExportFlag set, even though they are not exported
in the source-code sense.
We should probably use a different term for ExportFlag, like
KeepAlive.
Note [GlobalId/LocalId]
~~~~~~~~~~~~~~~~~~~~~~~
A GlobalId is
* always a constant (top-level)
* imported, or data constructor, or primop, or record selector
* has a Unique that is globally unique across the whole
GHC invocation (a single invocation may compile multiple modules)
* never treated as a candidate by the free-variable finder;
it's a constant!
A LocalId is
* bound within an expression (lambda, case, local let(rec))
* or defined at top level in the module being compiled
* always treated as a candidate by the free-variable finder
After CoreTidy, top-level LocalIds are turned into GlobalIds
Note [Multiplicity of let binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In Core, let-binders' multiplicity is always completely determined by syntax:
a recursive let will always have multiplicity Many (it's a prerequisite for
being recursive), and non-recursive let doesn't have a conventional multiplicity,
instead they act, for the purpose of multiplicity, as an alias for their
right-hand side.
Therefore, the `varMult` field of identifier is only used by binders in lambda
and case expressions. In a let expression the `varMult` field holds an
arbitrary value which will (and must!) be ignored.
-}
instance Outputable Var where
ppr var = sdocOption sdocSuppressVarKinds $ \supp_var_kinds ->
getPprDebug $ \debug ->
getPprStyle $ \sty ->
let
ppr_var = case var of
(TyVar {})
| debug
-> brackets (text "tv")
(TcTyVar {tc_tv_details = d})
| dumpStyle sty || debug
-> brackets (pprTcTyVarDetails d)
(Id { idScope = s, id_details = d })
| debug
-> brackets (ppr_id_scope s <> pprIdDetails d)
_ -> empty
in if
| debug && (not supp_var_kinds)
-> parens (ppr (varName var) <+> ppr (varMultMaybe var)
<+> ppr_var <+>
dcolon <+> pprKind (tyVarKind var))
| otherwise
-> ppr (varName var) <> ppr_var
ppr_id_scope :: IdScope -> SDoc
ppr_id_scope GlobalId = text "gid"
ppr_id_scope (LocalId Exported) = text "lidx"
ppr_id_scope (LocalId NotExported) = text "lid"
instance NamedThing Var where
getName = varName
instance Uniquable Var where
getUnique = varUnique
instance Eq Var where
a == b = realUnique a == realUnique b
instance Ord Var where
a <= b = realUnique a <= realUnique b
a < b = realUnique a < realUnique b
a >= b = realUnique a >= realUnique b
a > b = realUnique a > realUnique b
a `compare` b = a `nonDetCmpVar` b
-- | Compare Vars by their Uniques.
-- This is what Ord Var does, provided here to make it explicit at the
-- call-site that it can introduce non-determinism.
-- See Note [Unique Determinism]
nonDetCmpVar :: Var -> Var -> Ordering
nonDetCmpVar a b = varUnique a `nonDetCmpUnique` varUnique b
instance Data Var where
-- don't traverse?
toConstr _ = abstractConstr "Var"
gunfold _ _ = error "gunfold"
dataTypeOf _ = mkNoRepType "Var"
instance HasOccName Var where
occName = nameOccName . varName
varUnique :: Var -> Unique
varUnique var = mkUniqueGrimily (realUnique var)
varMultMaybe :: Id -> Maybe Mult
varMultMaybe (Id { varMult = mult }) = Just mult
varMultMaybe _ = Nothing
setVarUnique :: Var -> Unique -> Var
setVarUnique var uniq
= var { realUnique = getKey uniq,
varName = setNameUnique (varName var) uniq }
setVarName :: Var -> Name -> Var
setVarName var new_name
= var { realUnique = getKey (getUnique new_name),
varName = new_name }
setVarType :: Var -> Type -> Var
setVarType id ty = id { varType = ty }
-- | Update a 'Var's type. Does not update the /multiplicity/
-- stored in an 'Id', if any. Because of the possibility for
-- abuse, ASSERTs that there is no multiplicity to update.
updateVarType :: (Type -> Type) -> Var -> Var
updateVarType upd var
| debugIsOn
= case var of
Id { id_details = details } -> ASSERT( isCoVarDetails details )
result
_ -> result
| otherwise
= result
where
result = var { varType = upd (varType var) }
-- | Update a 'Var's type monadically. Does not update the /multiplicity/
-- stored in an 'Id', if any. Because of the possibility for
-- abuse, ASSERTs that there is no multiplicity to update.
updateVarTypeM :: Monad m => (Type -> m Type) -> Var -> m Var
updateVarTypeM upd var
| debugIsOn
= case var of
Id { id_details = details } -> ASSERT( isCoVarDetails details )
result
_ -> result
| otherwise
= result
where
result = do { ty' <- upd (varType var)
; return (var { varType = ty' }) }
{- *********************************************************************
* *
* ArgFlag
* *
********************************************************************* -}
-- | Argument Flag
--
-- Is something required to appear in source Haskell ('Required'),
-- permitted by request ('Specified') (visible type application), or
-- prohibited entirely from appearing in source Haskell ('Inferred')?
-- See Note [VarBndrs, TyCoVarBinders, TyConBinders, and visibility] in "GHC.Core.TyCo.Rep"
data ArgFlag = Invisible Specificity
| Required
deriving (Eq, Ord, Data)
-- (<) on ArgFlag means "is less visible than"
-- | Whether an 'Invisible' argument may appear in source Haskell.
data Specificity = InferredSpec
-- ^ the argument may not appear in source Haskell, it is
-- only inferred.
| SpecifiedSpec
-- ^ the argument may appear in source Haskell, but isn't
-- required.
deriving (Eq, Ord, Data)
pattern Inferred, Specified :: ArgFlag
pattern Inferred = Invisible InferredSpec
pattern Specified = Invisible SpecifiedSpec
{-# COMPLETE Required, Specified, Inferred #-}
-- | Does this 'ArgFlag' classify an argument that is written in Haskell?
isVisibleArgFlag :: ArgFlag -> Bool
isVisibleArgFlag Required = True
isVisibleArgFlag _ = False
-- | Does this 'ArgFlag' classify an argument that is not written in Haskell?
isInvisibleArgFlag :: ArgFlag -> Bool
isInvisibleArgFlag = not . isVisibleArgFlag
-- | Do these denote the same level of visibility? 'Required'
-- arguments are visible, others are not. So this function
-- equates 'Specified' and 'Inferred'. Used for printing.
sameVis :: ArgFlag -> ArgFlag -> Bool
sameVis Required Required = True
sameVis (Invisible _) (Invisible _) = True
sameVis _ _ = False
instance Outputable ArgFlag where
ppr Required = text "[req]"
ppr Specified = text "[spec]"
ppr Inferred = text "[infrd]"
instance Binary Specificity where
put_ bh SpecifiedSpec = putByte bh 0
put_ bh InferredSpec = putByte bh 1
get bh = do
h <- getByte bh
case h of
0 -> return SpecifiedSpec
_ -> return InferredSpec
instance Binary ArgFlag where
put_ bh Required = putByte bh 0
put_ bh Specified = putByte bh 1
put_ bh Inferred = putByte bh 2
get bh = do
h <- getByte bh
case h of
0 -> return Required
1 -> return Specified
_ -> return Inferred
-- | The non-dependent version of 'ArgFlag'.
-- See Note [AnonArgFlag]
-- Appears here partly so that it's together with its friends ArgFlag
-- and ForallVisFlag, but also because it is used in IfaceType, rather
-- early in the compilation chain
data AnonArgFlag
= VisArg -- ^ Used for @(->)@: an ordinary non-dependent arrow.
-- The argument is visible in source code.
| InvisArg -- ^ Used for @(=>)@: a non-dependent predicate arrow.
-- The argument is invisible in source code.
deriving (Eq, Ord, Data)
instance Outputable AnonArgFlag where
ppr VisArg = text "[vis]"
ppr InvisArg = text "[invis]"
instance Binary AnonArgFlag where
put_ bh VisArg = putByte bh 0
put_ bh InvisArg = putByte bh 1
get bh = do
h <- getByte bh
case h of
0 -> return VisArg
_ -> return InvisArg
{- Note [AnonArgFlag]
~~~~~~~~~~~~~~~~~~~~~
AnonArgFlag is used principally in the FunTy constructor of Type.
FunTy VisArg t1 t2 means t1 -> t2
FunTy InvisArg t1 t2 means t1 => t2
However, the AnonArgFlag in a FunTy is just redundant, cached
information. In (FunTy { ft_af = af, ft_arg = t1, ft_res = t2 })
* if (isPredTy t1 = True) then af = InvisArg
* if (isPredTy t1 = False) then af = VisArg
where isPredTy is defined in GHC.Core.Type, and sees if t1's
kind is Constraint. See GHC.Core.TyCo.Rep
Note [Types for coercions, predicates, and evidence]
GHC.Core.Utils.mkFunctionType :: Mult -> Type -> Type -> Type
uses isPredTy to decide the AnonArgFlag for the FunTy.
The term (Lam b e), and coercion (FunCo co1 co2) don't carry
AnonArgFlags; instead they use mkFunctionType when we want to
get their types; see mkLamType and coercionLKind/RKind resp.
This is just an engineering choice; we could cache here too
if we wanted.
Why bother with all this? After all, we are in Core, where (=>) and
(->) behave the same. We maintain this distinction throughout Core so
that we can cheaply and conveniently determine
* How to print a type
* How to split up a type: tcSplitSigmaTy
* How to specialise it (over type classes; GHC.Core.Opt.Specialise)
For the specialisation point, consider
(\ (d :: Ord a). blah). We want to give it type
(Ord a => blah_ty)
with a fat arrow; that is, using mkInvisFunTy, not mkVisFunTy.
Why? Because the /specialiser/ treats dictionary arguments specially.
Suppose we do w/w on 'foo', thus (#11272, #6056)
foo :: Ord a => Int -> blah
foo a d x = case x of I# x' -> $wfoo @a d x'
$wfoo :: Ord a => Int# -> blah
Now, at a call we see (foo @Int dOrdInt). The specialiser will
specialise this to $sfoo, where
$sfoo :: Int -> blah
$sfoo x = case x of I# x' -> $wfoo @Int dOrdInt x'
Now we /must/ also specialise $wfoo! But it wasn't user-written,
and has a type built with mkLamTypes.
Conclusion: the easiest thing is to make mkLamType build
(c => ty)
when the argument is a predicate type. See GHC.Core.TyCo.Rep
Note [Types for coercions, predicates, and evidence]
-}
{- *********************************************************************
* *
* VarBndr, TyCoVarBinder
* *
********************************************************************* -}
-- Variable Binder
--
-- VarBndr is polymorphic in both var and visibility fields.
-- Currently there are nine different uses of 'VarBndr':
-- * Var.TyVarBinder = VarBndr TyVar ArgFlag
-- * Var.TyCoVarBinder = VarBndr TyCoVar ArgFlag
-- * Var.InvisTVBinder = VarBndr TyVar Specificity
-- * Var.ReqTVBinder = VarBndr TyVar ()
-- * TyCon.TyConBinder = VarBndr TyVar TyConBndrVis
-- * TyCon.TyConTyCoBinder = VarBndr TyCoVar TyConBndrVis
-- * IfaceType.IfaceForAllBndr = VarBndr IfaceBndr ArgFlag
-- * IfaceType.IfaceTyConBinder = VarBndr IfaceBndr TyConBndrVis
-- * IfaceType.IfaceForAllSpecBndr = VarBndr IfaceBndr Specificity
data VarBndr var argf = Bndr var argf
deriving( Data )
-- | Variable Binder
--
-- A 'TyCoVarBinder' is the binder of a ForAllTy
-- It's convenient to define this synonym here rather its natural
-- home in "GHC.Core.TyCo.Rep", because it's used in GHC.Core.DataCon.hs-boot
--
-- A 'TyVarBinder' is a binder with only TyVar
type TyCoVarBinder = VarBndr TyCoVar ArgFlag
type TyVarBinder = VarBndr TyVar ArgFlag
type InvisTVBinder = VarBndr TyVar Specificity
type ReqTVBinder = VarBndr TyVar ()
tyVarSpecToBinders :: [VarBndr a Specificity] -> [VarBndr a ArgFlag]
tyVarSpecToBinders = map tyVarSpecToBinder
tyVarSpecToBinder :: (VarBndr a Specificity) -> (VarBndr a ArgFlag)
tyVarSpecToBinder (Bndr tv vis) = Bndr tv (Invisible vis)
binderVar :: VarBndr tv argf -> tv
binderVar (Bndr v _) = v
binderVars :: [VarBndr tv argf] -> [tv]
binderVars tvbs = map binderVar tvbs
binderArgFlag :: VarBndr tv argf -> argf
binderArgFlag (Bndr _ argf) = argf
binderType :: VarBndr TyCoVar argf -> Type
binderType (Bndr tv _) = varType tv
-- | Make a named binder
mkTyCoVarBinder :: vis -> TyCoVar -> (VarBndr TyCoVar vis)
mkTyCoVarBinder vis var = Bndr var vis
-- | Make a named binder
-- 'var' should be a type variable
mkTyVarBinder :: vis -> TyVar -> (VarBndr TyVar vis)
mkTyVarBinder vis var
= ASSERT( isTyVar var )
Bndr var vis
-- | Make many named binders
mkTyCoVarBinders :: vis -> [TyCoVar] -> [VarBndr TyCoVar vis]
mkTyCoVarBinders vis = map (mkTyCoVarBinder vis)
-- | Make many named binders
-- Input vars should be type variables
mkTyVarBinders :: vis -> [TyVar] -> [VarBndr TyVar vis]
mkTyVarBinders vis = map (mkTyVarBinder vis)
isTyVarBinder :: TyCoVarBinder -> Bool
isTyVarBinder (Bndr v _) = isTyVar v
mapVarBndr :: (var -> var') -> (VarBndr var flag) -> (VarBndr var' flag)
mapVarBndr f (Bndr v fl) = Bndr (f v) fl
mapVarBndrs :: (var -> var') -> [VarBndr var flag] -> [VarBndr var' flag]
mapVarBndrs f = map (mapVarBndr f)
lookupVarBndr :: Eq var => var -> [VarBndr var flag] -> Maybe flag
lookupVarBndr var bndrs = lookup var zipped_bndrs
where
zipped_bndrs = map (\(Bndr v f) -> (v,f)) bndrs
instance Outputable tv => Outputable (VarBndr tv ArgFlag) where
ppr (Bndr v Required) = ppr v
ppr (Bndr v Specified) = char '@' <> ppr v
ppr (Bndr v Inferred) = braces (ppr v)
instance Outputable tv => Outputable (VarBndr tv Specificity) where
ppr = ppr . tyVarSpecToBinder
instance (Binary tv, Binary vis) => Binary (VarBndr tv vis) where
put_ bh (Bndr tv vis) = do { put_ bh tv; put_ bh vis }
get bh = do { tv <- get bh; vis <- get bh; return (Bndr tv vis) }
instance NamedThing tv => NamedThing (VarBndr tv flag) where
getName (Bndr tv _) = getName tv
{-
************************************************************************
* *
* Type and kind variables *
* *
************************************************************************
-}
tyVarName :: TyVar -> Name
tyVarName = varName
tyVarKind :: TyVar -> Kind
tyVarKind = varType
setTyVarUnique :: TyVar -> Unique -> TyVar
setTyVarUnique = setVarUnique
setTyVarName :: TyVar -> Name -> TyVar
setTyVarName = setVarName
setTyVarKind :: TyVar -> Kind -> TyVar
setTyVarKind tv k = tv {varType = k}
updateTyVarKind :: (Kind -> Kind) -> TyVar -> TyVar
updateTyVarKind update tv = tv {varType = update (tyVarKind tv)}
updateTyVarKindM :: (Monad m) => (Kind -> m Kind) -> TyVar -> m TyVar
updateTyVarKindM update tv
= do { k' <- update (tyVarKind tv)
; return $ tv {varType = k'} }
mkTyVar :: Name -> Kind -> TyVar
mkTyVar name kind = TyVar { varName = name
, realUnique = getKey (nameUnique name)
, varType = kind
}
mkTcTyVar :: Name -> Kind -> TcTyVarDetails -> TyVar
mkTcTyVar name kind details
= -- NB: 'kind' may be a coercion kind; cf, 'GHC.Tc.Utils.TcMType.newMetaCoVar'
TcTyVar { varName = name,
realUnique = getKey (nameUnique name),
varType = kind,
tc_tv_details = details
}
tcTyVarDetails :: TyVar -> TcTyVarDetails
-- See Note [TcTyVars in the typechecker] in GHC.Tc.Utils.TcType
tcTyVarDetails (TcTyVar { tc_tv_details = details }) = details
tcTyVarDetails (TyVar {}) = vanillaSkolemTv
tcTyVarDetails var = pprPanic "tcTyVarDetails" (ppr var <+> dcolon <+> pprKind (tyVarKind var))
setTcTyVarDetails :: TyVar -> TcTyVarDetails -> TyVar
setTcTyVarDetails tv details = tv { tc_tv_details = details }
{-
%************************************************************************
%* *
\subsection{Ids}
* *
************************************************************************
-}
idInfo :: HasDebugCallStack => Id -> IdInfo
idInfo (Id { id_info = info }) = info
idInfo other = pprPanic "idInfo" (ppr other)
idDetails :: Id -> IdDetails
idDetails (Id { id_details = details }) = details
idDetails other = pprPanic "idDetails" (ppr other)
-- The next three have a 'Var' suffix even though they always build
-- Ids, because "GHC.Types.Id" uses 'mkGlobalId' etc with different types
mkGlobalVar :: IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalVar details name ty info
= mk_id name manyDataConTy ty GlobalId details info
-- There is no support for linear global variables yet. They would require
-- being checked at link-time, which can be useful, but is not a priority.
mkLocalVar :: IdDetails -> Name -> Mult -> Type -> IdInfo -> Id
mkLocalVar details name w ty info
= mk_id name w ty (LocalId NotExported) details info
mkCoVar :: Name -> Type -> CoVar
-- Coercion variables have no IdInfo
mkCoVar name ty = mk_id name manyDataConTy ty (LocalId NotExported) coVarDetails vanillaIdInfo
-- | Exported 'Var's will not be removed as dead code
mkExportedLocalVar :: IdDetails -> Name -> Type -> IdInfo -> Id
mkExportedLocalVar details name ty info
= mk_id name manyDataConTy ty (LocalId Exported) details info
-- There is no support for exporting linear variables. See also [mkGlobalVar]
mk_id :: Name -> Mult -> Type -> IdScope -> IdDetails -> IdInfo -> Id
mk_id name !w ty scope details info
= Id { varName = name,
realUnique = getKey (nameUnique name),
varMult = w,
varType = ty,
idScope = scope,
id_details = details,
id_info = info }
-------------------
lazySetIdInfo :: Id -> IdInfo -> Var
lazySetIdInfo id info = id { id_info = info }
setIdDetails :: Id -> IdDetails -> Id
setIdDetails id details = id { id_details = details }
globaliseId :: Id -> Id
-- ^ If it's a local, make it global
globaliseId id = id { idScope = GlobalId }
setIdExported :: Id -> Id
-- ^ Exports the given local 'Id'. Can also be called on global 'Id's, such as data constructors
-- and class operations, which are born as global 'Id's and automatically exported
setIdExported id@(Id { idScope = LocalId {} }) = id { idScope = LocalId Exported }
setIdExported id@(Id { idScope = GlobalId }) = id
setIdExported tv = pprPanic "setIdExported" (ppr tv)
setIdNotExported :: Id -> Id
-- ^ We can only do this to LocalIds
setIdNotExported id = ASSERT( isLocalId id )
id { idScope = LocalId NotExported }
-----------------------
updateIdTypeButNotMult :: (Type -> Type) -> Id -> Id
updateIdTypeButNotMult f id = id { varType = f (varType id) }
updateIdTypeAndMult :: (Type -> Type) -> Id -> Id
updateIdTypeAndMult f id@(Id { varType = ty
, varMult = mult })
= id { varType = ty'
, varMult = mult' }
where
!ty' = f ty
!mult' = f mult
updateIdTypeAndMult _ other = pprPanic "updateIdTypeAndMult" (ppr other)
updateIdTypeAndMultM :: Monad m => (Type -> m Type) -> Id -> m Id
updateIdTypeAndMultM f id@(Id { varType = ty
, varMult = mult })
= do { !ty' <- f ty
; !mult' <- f mult
; return (id { varType = ty', varMult = mult' }) }
updateIdTypeAndMultM _ other = pprPanic "updateIdTypeAndMultM" (ppr other)
setIdMult :: Id -> Mult -> Id
setIdMult id !r | isId id = id { varMult = r }
| otherwise = pprPanic "setIdMult" (ppr id <+> ppr r)
{-
************************************************************************
* *
\subsection{Predicates over variables}
* *
************************************************************************
-}
-- | Is this a type-level (i.e., computationally irrelevant, thus erasable)
-- variable? Satisfies @isTyVar = not . isId@.
isTyVar :: Var -> Bool -- True of both TyVar and TcTyVar
isTyVar (TyVar {}) = True
isTyVar (TcTyVar {}) = True
isTyVar _ = False
isTcTyVar :: Var -> Bool -- True of TcTyVar only
isTcTyVar (TcTyVar {}) = True
isTcTyVar _ = False
isTyCoVar :: Var -> Bool
isTyCoVar v = isTyVar v || isCoVar v
-- | Is this a value-level (i.e., computationally relevant) 'Id'entifier?
-- Satisfies @isId = not . isTyVar@.
isId :: Var -> Bool
isId (Id {}) = True
isId _ = False
-- | Is this a coercion variable?
-- Satisfies @'isId' v ==> 'isCoVar' v == not ('isNonCoVarId' v)@.
isCoVar :: Var -> Bool
isCoVar (Id { id_details = details }) = isCoVarDetails details
isCoVar _ = False
-- | Is this a term variable ('Id') that is /not/ a coercion variable?
-- Satisfies @'isId' v ==> 'isCoVar' v == not ('isNonCoVarId' v)@.
isNonCoVarId :: Var -> Bool
isNonCoVarId (Id { id_details = details }) = not (isCoVarDetails details)
isNonCoVarId _ = False
isLocalId :: Var -> Bool
isLocalId (Id { idScope = LocalId _ }) = True
isLocalId _ = False
-- | 'isLocalVar' returns @True@ for type variables as well as local 'Id's
-- These are the variables that we need to pay attention to when finding free
-- variables, or doing dependency analysis.
isLocalVar :: Var -> Bool
isLocalVar v = not (isGlobalId v)
isGlobalId :: Var -> Bool
isGlobalId (Id { idScope = GlobalId }) = True
isGlobalId _ = False
-- | 'mustHaveLocalBinding' returns @True@ of 'Id's and 'TyVar's
-- that must have a binding in this module. The converse
-- is not quite right: there are some global 'Id's that must have
-- bindings, such as record selectors. But that doesn't matter,
-- because it's only used for assertions
mustHaveLocalBinding :: Var -> Bool
mustHaveLocalBinding var = isLocalVar var
-- | 'isExportedIdVar' means \"don't throw this away\"
isExportedId :: Var -> Bool
isExportedId (Id { idScope = GlobalId }) = True
isExportedId (Id { idScope = LocalId Exported}) = True
isExportedId _ = False
|