1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
{-# LANGUAGE BangPatterns, MagicHash, UnboxedTuples #-}
{-# OPTIONS_GHC -O2 #-}
-- We always optimise this, otherwise performance of a non-optimised
-- compiler is severely affected
-- -----------------------------------------------------------------------------
--
-- (c) The University of Glasgow, 1997-2006
--
-- Character encodings
--
-- -----------------------------------------------------------------------------
module GHC.Utils.Encoding (
-- * UTF-8
utf8DecodeCharAddr#,
utf8PrevChar,
utf8CharStart,
utf8DecodeChar,
utf8DecodeByteString,
utf8UnconsByteString,
utf8DecodeShortByteString,
utf8DecodeStringLazy,
utf8EncodeChar,
utf8EncodeString,
utf8EncodeShortByteString,
utf8EncodedLength,
countUTF8Chars,
-- * Z-encoding
zEncodeString,
zDecodeString,
-- * Base62-encoding
toBase62,
toBase62Padded
) where
import GHC.Prelude
import Foreign
import Foreign.ForeignPtr.Unsafe (unsafeForeignPtrToPtr)
import Data.Char
import qualified Data.Char as Char
import Numeric
import GHC.IO
import GHC.ST
import Data.ByteString (ByteString)
import qualified Data.ByteString.Internal as BS
import Data.ByteString.Short.Internal (ShortByteString(..))
import GHC.Exts
-- -----------------------------------------------------------------------------
-- UTF-8
-- We can't write the decoder as efficiently as we'd like without
-- resorting to unboxed extensions, unfortunately. I tried to write
-- an IO version of this function, but GHC can't eliminate boxed
-- results from an IO-returning function.
--
-- We assume we can ignore overflow when parsing a multibyte character here.
-- To make this safe, we add extra sentinel bytes to unparsed UTF-8 sequences
-- before decoding them (see "GHC.Data.StringBuffer").
{-# INLINE utf8DecodeChar# #-}
utf8DecodeChar# :: (Int# -> Word#) -> (# Char#, Int# #)
utf8DecodeChar# indexWord8# =
let !ch0 = word2Int# (indexWord8# 0#) in
case () of
_ | isTrue# (ch0 <=# 0x7F#) -> (# chr# ch0, 1# #)
| isTrue# ((ch0 >=# 0xC0#) `andI#` (ch0 <=# 0xDF#)) ->
let !ch1 = word2Int# (indexWord8# 1#) in
if isTrue# ((ch1 <# 0x80#) `orI#` (ch1 >=# 0xC0#)) then fail 1# else
(# chr# (((ch0 -# 0xC0#) `uncheckedIShiftL#` 6#) +#
(ch1 -# 0x80#)),
2# #)
| isTrue# ((ch0 >=# 0xE0#) `andI#` (ch0 <=# 0xEF#)) ->
let !ch1 = word2Int# (indexWord8# 1#) in
if isTrue# ((ch1 <# 0x80#) `orI#` (ch1 >=# 0xC0#)) then fail 1# else
let !ch2 = word2Int# (indexWord8# 2#) in
if isTrue# ((ch2 <# 0x80#) `orI#` (ch2 >=# 0xC0#)) then fail 2# else
(# chr# (((ch0 -# 0xE0#) `uncheckedIShiftL#` 12#) +#
((ch1 -# 0x80#) `uncheckedIShiftL#` 6#) +#
(ch2 -# 0x80#)),
3# #)
| isTrue# ((ch0 >=# 0xF0#) `andI#` (ch0 <=# 0xF8#)) ->
let !ch1 = word2Int# (indexWord8# 1#) in
if isTrue# ((ch1 <# 0x80#) `orI#` (ch1 >=# 0xC0#)) then fail 1# else
let !ch2 = word2Int# (indexWord8# 2#) in
if isTrue# ((ch2 <# 0x80#) `orI#` (ch2 >=# 0xC0#)) then fail 2# else
let !ch3 = word2Int# (indexWord8# 3#) in
if isTrue# ((ch3 <# 0x80#) `orI#` (ch3 >=# 0xC0#)) then fail 3# else
(# chr# (((ch0 -# 0xF0#) `uncheckedIShiftL#` 18#) +#
((ch1 -# 0x80#) `uncheckedIShiftL#` 12#) +#
((ch2 -# 0x80#) `uncheckedIShiftL#` 6#) +#
(ch3 -# 0x80#)),
4# #)
| otherwise -> fail 1#
where
-- all invalid sequences end up here:
fail :: Int# -> (# Char#, Int# #)
fail nBytes# = (# '\0'#, nBytes# #)
-- '\xFFFD' would be the usual replacement character, but
-- that's a valid symbol in Haskell, so will result in a
-- confusing parse error later on. Instead we use '\0' which
-- will signal a lexer error immediately.
utf8DecodeCharAddr# :: Addr# -> Int# -> (# Char#, Int# #)
utf8DecodeCharAddr# a# off# =
utf8DecodeChar# (\i# -> indexWord8OffAddr# a# (i# +# off#))
utf8DecodeCharByteArray# :: ByteArray# -> Int# -> (# Char#, Int# #)
utf8DecodeCharByteArray# ba# off# =
utf8DecodeChar# (\i# -> indexWord8Array# ba# (i# +# off#))
utf8DecodeChar :: Ptr Word8 -> (Char, Int)
utf8DecodeChar !(Ptr a#) =
case utf8DecodeCharAddr# a# 0# of
(# c#, nBytes# #) -> ( C# c#, I# nBytes# )
-- UTF-8 is cleverly designed so that we can always figure out where
-- the start of the current character is, given any position in a
-- stream. This function finds the start of the previous character,
-- assuming there *is* a previous character.
utf8PrevChar :: Ptr Word8 -> IO (Ptr Word8)
utf8PrevChar p = utf8CharStart (p `plusPtr` (-1))
utf8CharStart :: Ptr Word8 -> IO (Ptr Word8)
utf8CharStart p = go p
where go p = do w <- peek p
if w >= 0x80 && w < 0xC0
then go (p `plusPtr` (-1))
else return p
{-# INLINE utf8DecodeLazy# #-}
utf8DecodeLazy# :: (IO ()) -> (Int# -> (# Char#, Int# #)) -> Int# -> IO [Char]
utf8DecodeLazy# retain decodeChar# len#
= unpack 0#
where
unpack i#
| isTrue# (i# >=# len#) = retain >> return []
| otherwise =
case decodeChar# i# of
(# c#, nBytes# #) -> do
rest <- unsafeDupableInterleaveIO $ unpack (i# +# nBytes#)
return (C# c# : rest)
utf8DecodeByteString :: ByteString -> [Char]
utf8DecodeByteString (BS.PS fptr offset len)
= utf8DecodeStringLazy fptr offset len
utf8UnconsByteString :: ByteString -> Maybe (Char, ByteString)
utf8UnconsByteString (BS.PS _ _ 0) = Nothing
utf8UnconsByteString (BS.PS fptr offset len)
= unsafeDupablePerformIO $
withForeignPtr fptr $ \ptr -> do
let (c,n) = utf8DecodeChar (ptr `plusPtr` offset)
return $ Just (c, BS.PS fptr (offset + n) (len - n))
utf8DecodeStringLazy :: ForeignPtr Word8 -> Int -> Int -> [Char]
utf8DecodeStringLazy fp offset (I# len#)
= unsafeDupablePerformIO $ do
let !(Ptr a#) = unsafeForeignPtrToPtr fp `plusPtr` offset
utf8DecodeLazy# (touchForeignPtr fp) (utf8DecodeCharAddr# a#) len#
-- Note that since utf8DecodeLazy# returns a thunk the lifetime of the
-- ForeignPtr actually needs to be longer than the lexical lifetime
-- withForeignPtr would provide here. That's why we use touchForeignPtr to
-- keep the fp alive until the last character has actually been decoded.
utf8DecodeShortByteString :: ShortByteString -> [Char]
utf8DecodeShortByteString (SBS ba#)
= unsafeDupablePerformIO $
let len# = sizeofByteArray# ba# in
utf8DecodeLazy# (return ()) (utf8DecodeCharByteArray# ba#) len#
countUTF8Chars :: ShortByteString -> IO Int
countUTF8Chars (SBS ba) = go 0# 0#
where
len# = sizeofByteArray# ba
go i# n#
| isTrue# (i# >=# len#) =
return (I# n#)
| otherwise = do
case utf8DecodeCharByteArray# ba i# of
(# _, nBytes# #) -> go (i# +# nBytes#) (n# +# 1#)
{-# INLINE utf8EncodeChar #-}
utf8EncodeChar :: (Int# -> Word# -> State# s -> State# s)
-> Char -> ST s Int
utf8EncodeChar write# c =
let x = ord c in
case () of
_ | x > 0 && x <= 0x007f -> do
write 0 x
return 1
-- NB. '\0' is encoded as '\xC0\x80', not '\0'. This is so that we
-- can have 0-terminated UTF-8 strings (see GHC.Base.unpackCStringUtf8).
| x <= 0x07ff -> do
write 0 (0xC0 .|. ((x `shiftR` 6) .&. 0x1F))
write 1 (0x80 .|. (x .&. 0x3F))
return 2
| x <= 0xffff -> do
write 0 (0xE0 .|. (x `shiftR` 12) .&. 0x0F)
write 1 (0x80 .|. (x `shiftR` 6) .&. 0x3F)
write 2 (0x80 .|. (x .&. 0x3F))
return 3
| otherwise -> do
write 0 (0xF0 .|. (x `shiftR` 18))
write 1 (0x80 .|. ((x `shiftR` 12) .&. 0x3F))
write 2 (0x80 .|. ((x `shiftR` 6) .&. 0x3F))
write 3 (0x80 .|. (x .&. 0x3F))
return 4
where
{-# INLINE write #-}
write (I# off#) (I# c#) = ST $ \s ->
case write# off# (int2Word# c#) s of
s -> (# s, () #)
utf8EncodeString :: Ptr Word8 -> String -> IO ()
utf8EncodeString (Ptr a#) str = go a# str
where go !_ [] = return ()
go a# (c:cs) = do
I# off# <- stToIO $ utf8EncodeChar (writeWord8OffAddr# a#) c
go (a# `plusAddr#` off#) cs
utf8EncodeShortByteString :: String -> IO ShortByteString
utf8EncodeShortByteString str = IO $ \s ->
case utf8EncodedLength str of { I# len# ->
case newByteArray# len# s of { (# s, mba# #) ->
case go mba# 0# str of { ST f_go ->
case f_go s of { (# s, () #) ->
case unsafeFreezeByteArray# mba# s of { (# s, ba# #) ->
(# s, SBS ba# #) }}}}}
where
go _ _ [] = return ()
go mba# i# (c:cs) = do
I# off# <- utf8EncodeChar (\j# -> writeWord8Array# mba# (i# +# j#)) c
go mba# (i# +# off#) cs
utf8EncodedLength :: String -> Int
utf8EncodedLength str = go 0 str
where go !n [] = n
go n (c:cs)
| ord c > 0 && ord c <= 0x007f = go (n+1) cs
| ord c <= 0x07ff = go (n+2) cs
| ord c <= 0xffff = go (n+3) cs
| otherwise = go (n+4) cs
-- -----------------------------------------------------------------------------
-- The Z-encoding
{-
This is the main name-encoding and decoding function. It encodes any
string into a string that is acceptable as a C name. This is done
right before we emit a symbol name into the compiled C or asm code.
Z-encoding of strings is cached in the FastString interface, so we
never encode the same string more than once.
The basic encoding scheme is this.
* Tuples (,,,) are coded as Z3T
* Alphabetic characters (upper and lower) and digits
all translate to themselves;
except 'Z', which translates to 'ZZ'
and 'z', which translates to 'zz'
We need both so that we can preserve the variable/tycon distinction
* Most other printable characters translate to 'zx' or 'Zx' for some
alphabetic character x
* The others translate as 'znnnU' where 'nnn' is the decimal number
of the character
Before After
--------------------------
Trak Trak
foo_wib foozuwib
> zg
>1 zg1
foo# foozh
foo## foozhzh
foo##1 foozhzh1
fooZ fooZZ
:+ ZCzp
() Z0T 0-tuple
(,,,,) Z5T 5-tuple
(# #) Z1H unboxed 1-tuple (note the space)
(#,,,,#) Z5H unboxed 5-tuple
(NB: There is no Z1T nor Z0H.)
-}
type UserString = String -- As the user typed it
type EncodedString = String -- Encoded form
zEncodeString :: UserString -> EncodedString
zEncodeString cs = case maybe_tuple cs of
Just n -> n -- Tuples go to Z2T etc
Nothing -> go cs
where
go [] = []
go (c:cs) = encode_digit_ch c ++ go' cs
go' [] = []
go' (c:cs) = encode_ch c ++ go' cs
unencodedChar :: Char -> Bool -- True for chars that don't need encoding
unencodedChar 'Z' = False
unencodedChar 'z' = False
unencodedChar c = c >= 'a' && c <= 'z'
|| c >= 'A' && c <= 'Z'
|| c >= '0' && c <= '9'
-- If a digit is at the start of a symbol then we need to encode it.
-- Otherwise package names like 9pH-0.1 give linker errors.
encode_digit_ch :: Char -> EncodedString
encode_digit_ch c | c >= '0' && c <= '9' = encode_as_unicode_char c
encode_digit_ch c | otherwise = encode_ch c
encode_ch :: Char -> EncodedString
encode_ch c | unencodedChar c = [c] -- Common case first
-- Constructors
encode_ch '(' = "ZL" -- Needed for things like (,), and (->)
encode_ch ')' = "ZR" -- For symmetry with (
encode_ch '[' = "ZM"
encode_ch ']' = "ZN"
encode_ch ':' = "ZC"
encode_ch 'Z' = "ZZ"
-- Variables
encode_ch 'z' = "zz"
encode_ch '&' = "za"
encode_ch '|' = "zb"
encode_ch '^' = "zc"
encode_ch '$' = "zd"
encode_ch '=' = "ze"
encode_ch '>' = "zg"
encode_ch '#' = "zh"
encode_ch '.' = "zi"
encode_ch '<' = "zl"
encode_ch '-' = "zm"
encode_ch '!' = "zn"
encode_ch '+' = "zp"
encode_ch '\'' = "zq"
encode_ch '\\' = "zr"
encode_ch '/' = "zs"
encode_ch '*' = "zt"
encode_ch '_' = "zu"
encode_ch '%' = "zv"
encode_ch c = encode_as_unicode_char c
encode_as_unicode_char :: Char -> EncodedString
encode_as_unicode_char c = 'z' : if isDigit (head hex_str) then hex_str
else '0':hex_str
where hex_str = showHex (ord c) "U"
-- ToDo: we could improve the encoding here in various ways.
-- eg. strings of unicode characters come out as 'z1234Uz5678U', we
-- could remove the 'U' in the middle (the 'z' works as a separator).
zDecodeString :: EncodedString -> UserString
zDecodeString [] = []
zDecodeString ('Z' : d : rest)
| isDigit d = decode_tuple d rest
| otherwise = decode_upper d : zDecodeString rest
zDecodeString ('z' : d : rest)
| isDigit d = decode_num_esc d rest
| otherwise = decode_lower d : zDecodeString rest
zDecodeString (c : rest) = c : zDecodeString rest
decode_upper, decode_lower :: Char -> Char
decode_upper 'L' = '('
decode_upper 'R' = ')'
decode_upper 'M' = '['
decode_upper 'N' = ']'
decode_upper 'C' = ':'
decode_upper 'Z' = 'Z'
decode_upper ch = {-pprTrace "decode_upper" (char ch)-} ch
decode_lower 'z' = 'z'
decode_lower 'a' = '&'
decode_lower 'b' = '|'
decode_lower 'c' = '^'
decode_lower 'd' = '$'
decode_lower 'e' = '='
decode_lower 'g' = '>'
decode_lower 'h' = '#'
decode_lower 'i' = '.'
decode_lower 'l' = '<'
decode_lower 'm' = '-'
decode_lower 'n' = '!'
decode_lower 'p' = '+'
decode_lower 'q' = '\''
decode_lower 'r' = '\\'
decode_lower 's' = '/'
decode_lower 't' = '*'
decode_lower 'u' = '_'
decode_lower 'v' = '%'
decode_lower ch = {-pprTrace "decode_lower" (char ch)-} ch
-- Characters not having a specific code are coded as z224U (in hex)
decode_num_esc :: Char -> EncodedString -> UserString
decode_num_esc d rest
= go (digitToInt d) rest
where
go n (c : rest) | isHexDigit c = go (16*n + digitToInt c) rest
go n ('U' : rest) = chr n : zDecodeString rest
go n other = error ("decode_num_esc: " ++ show n ++ ' ':other)
decode_tuple :: Char -> EncodedString -> UserString
decode_tuple d rest
= go (digitToInt d) rest
where
-- NB. recurse back to zDecodeString after decoding the tuple, because
-- the tuple might be embedded in a longer name.
go n (c : rest) | isDigit c = go (10*n + digitToInt c) rest
go 0 ('T':rest) = "()" ++ zDecodeString rest
go n ('T':rest) = '(' : replicate (n-1) ',' ++ ")" ++ zDecodeString rest
go 1 ('H':rest) = "(# #)" ++ zDecodeString rest
go n ('H':rest) = '(' : '#' : replicate (n-1) ',' ++ "#)" ++ zDecodeString rest
go n other = error ("decode_tuple: " ++ show n ++ ' ':other)
{-
Tuples are encoded as
Z3T or Z3H
for 3-tuples or unboxed 3-tuples respectively. No other encoding starts
Z<digit>
* "(# #)" is the tycon for an unboxed 1-tuple (not 0-tuple)
There are no unboxed 0-tuples.
* "()" is the tycon for a boxed 0-tuple.
There are no boxed 1-tuples.
-}
maybe_tuple :: UserString -> Maybe EncodedString
maybe_tuple "(# #)" = Just("Z1H")
maybe_tuple ('(' : '#' : cs) = case count_commas (0::Int) cs of
(n, '#' : ')' : _) -> Just ('Z' : shows (n+1) "H")
_ -> Nothing
maybe_tuple "()" = Just("Z0T")
maybe_tuple ('(' : cs) = case count_commas (0::Int) cs of
(n, ')' : _) -> Just ('Z' : shows (n+1) "T")
_ -> Nothing
maybe_tuple _ = Nothing
count_commas :: Int -> String -> (Int, String)
count_commas n (',' : cs) = count_commas (n+1) cs
count_commas n cs = (n,cs)
{-
************************************************************************
* *
Base 62
* *
************************************************************************
Note [Base 62 encoding 128-bit integers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instead of base-62 encoding a single 128-bit integer
(ceil(21.49) characters), we'll base-62 a pair of 64-bit integers
(2 * ceil(10.75) characters). Luckily for us, it's the same number of
characters!
-}
--------------------------------------------------------------------------
-- Base 62
-- The base-62 code is based off of 'locators'
-- ((c) Operational Dynamics Consulting, BSD3 licensed)
-- | Size of a 64-bit word when written as a base-62 string
word64Base62Len :: Int
word64Base62Len = 11
-- | Converts a 64-bit word into a base-62 string
toBase62Padded :: Word64 -> String
toBase62Padded w = pad ++ str
where
pad = replicate len '0'
len = word64Base62Len - length str -- 11 == ceil(64 / lg 62)
str = toBase62 w
toBase62 :: Word64 -> String
toBase62 w = showIntAtBase 62 represent w ""
where
represent :: Int -> Char
represent x
| x < 10 = Char.chr (48 + x)
| x < 36 = Char.chr (65 + x - 10)
| x < 62 = Char.chr (97 + x - 36)
| otherwise = error "represent (base 62): impossible!"
|