1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[PrimOp]{Primitive operations (machine-level)}
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE LambdaCase #-}
module GHC.Builtin.PrimOps (
PrimOp(..), PrimOpVecCat(..), allThePrimOps,
primOpType, primOpSig, primOpResultType,
primOpTag, maxPrimOpTag, primOpOcc,
primOpWrapperId,
pprPrimOp,
tagToEnumKey,
primOpOutOfLine, primOpCodeSize,
primOpOkForSpeculation, primOpOkForSideEffects,
primOpIsCheap, primOpFixity, primOpDocs,
primOpIsDiv, primOpIsReallyInline,
getPrimOpResultInfo, isComparisonPrimOp, PrimOpResultInfo(..),
PrimCall(..)
) where
import GHC.Prelude
import GHC.Builtin.Types.Prim
import GHC.Builtin.Types
import GHC.Builtin.Uniques (mkPrimOpIdUnique, mkPrimOpWrapperUnique )
import GHC.Builtin.Names ( gHC_PRIMOPWRAPPERS )
import GHC.Core.TyCon ( TyCon, isPrimTyCon, PrimRep(..) )
import GHC.Core.Type
import GHC.Cmm.Type
import GHC.Types.Demand
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.Name
import GHC.Types.RepType ( tyConPrimRep1 )
import GHC.Types.Basic
import GHC.Types.Fixity ( Fixity(..), FixityDirection(..) )
import GHC.Types.SrcLoc ( wiredInSrcSpan )
import GHC.Types.ForeignCall ( CLabelString )
import GHC.Types.SourceText ( SourceText(..) )
import GHC.Types.Unique ( Unique)
import GHC.Unit.Types ( Unit )
import GHC.Utils.Outputable
import GHC.Data.FastString
{-
************************************************************************
* *
\subsection[PrimOp-datatype]{Datatype for @PrimOp@ (an enumeration)}
* *
************************************************************************
These are in \tr{state-interface.verb} order.
-}
-- supplies:
-- data PrimOp = ...
#include "primop-data-decl.hs-incl"
-- supplies
-- primOpTag :: PrimOp -> Int
#include "primop-tag.hs-incl"
primOpTag _ = error "primOpTag: unknown primop"
instance Eq PrimOp where
op1 == op2 = primOpTag op1 == primOpTag op2
instance Ord PrimOp where
op1 < op2 = primOpTag op1 < primOpTag op2
op1 <= op2 = primOpTag op1 <= primOpTag op2
op1 >= op2 = primOpTag op1 >= primOpTag op2
op1 > op2 = primOpTag op1 > primOpTag op2
op1 `compare` op2 | op1 < op2 = LT
| op1 == op2 = EQ
| otherwise = GT
instance Outputable PrimOp where
ppr op = pprPrimOp op
data PrimOpVecCat = IntVec
| WordVec
| FloatVec
-- An @Enum@-derived list would be better; meanwhile... (ToDo)
allThePrimOps :: [PrimOp]
allThePrimOps =
#include "primop-list.hs-incl"
tagToEnumKey :: Unique
tagToEnumKey = mkPrimOpIdUnique (primOpTag TagToEnumOp)
{-
************************************************************************
* *
\subsection[PrimOp-info]{The essential info about each @PrimOp@}
* *
************************************************************************
-}
data PrimOpInfo
= Compare OccName -- string :: T -> T -> Int#
Type
| GenPrimOp OccName -- string :: \/a1..an . T1 -> .. -> Tk -> T
[TyVarBinder]
[Type]
Type
mkCompare :: FastString -> Type -> PrimOpInfo
mkCompare str ty = Compare (mkVarOccFS str) ty
mkGenPrimOp :: FastString -> [TyVarBinder] -> [Type] -> Type -> PrimOpInfo
mkGenPrimOp str tvs tys ty = GenPrimOp (mkVarOccFS str) tvs tys ty
{-
************************************************************************
* *
\subsubsection{Strictness}
* *
************************************************************************
Not all primops are strict!
-}
primOpStrictness :: PrimOp -> Arity -> DmdSig
-- See Demand.DmdSig for discussion of what the results
-- The arity should be the arity of the primop; that's why
-- this function isn't exported.
#include "primop-strictness.hs-incl"
{-
************************************************************************
* *
\subsubsection{Fixity}
* *
************************************************************************
-}
primOpFixity :: PrimOp -> Maybe Fixity
#include "primop-fixity.hs-incl"
{-
************************************************************************
* *
\subsubsection{Docs}
* *
************************************************************************
See Note [GHC.Prim Docs]
-}
primOpDocs :: [(String, String)]
#include "primop-docs.hs-incl"
{-
************************************************************************
* *
\subsubsection[PrimOp-comparison]{PrimOpInfo basic comparison ops}
* *
************************************************************************
@primOpInfo@ gives all essential information (from which everything
else, notably a type, can be constructed) for each @PrimOp@.
-}
primOpInfo :: PrimOp -> PrimOpInfo
#include "primop-primop-info.hs-incl"
primOpInfo _ = error "primOpInfo: unknown primop"
{-
Here are a load of comments from the old primOp info:
A @Word#@ is an unsigned @Int#@.
@decodeFloat#@ is given w/ Integer-stuff (it's similar).
@decodeDouble#@ is given w/ Integer-stuff (it's similar).
Decoding of floating-point numbers is sorta Integer-related. Encoding
is done with plain ccalls now (see PrelNumExtra.hs).
A @Weak@ Pointer is created by the @mkWeak#@ primitive:
mkWeak# :: k -> v -> f -> State# RealWorld
-> (# State# RealWorld, Weak# v #)
In practice, you'll use the higher-level
data Weak v = Weak# v
mkWeak :: k -> v -> IO () -> IO (Weak v)
The following operation dereferences a weak pointer. The weak pointer
may have been finalized, so the operation returns a result code which
must be inspected before looking at the dereferenced value.
deRefWeak# :: Weak# v -> State# RealWorld ->
(# State# RealWorld, v, Int# #)
Only look at v if the Int# returned is /= 0 !!
The higher-level op is
deRefWeak :: Weak v -> IO (Maybe v)
Weak pointers can be finalized early by using the finalize# operation:
finalizeWeak# :: Weak# v -> State# RealWorld ->
(# State# RealWorld, Int#, IO () #)
The Int# returned is either
0 if the weak pointer has already been finalized, or it has no
finalizer (the third component is then invalid).
1 if the weak pointer is still alive, with the finalizer returned
as the third component.
A {\em stable name/pointer} is an index into a table of stable name
entries. Since the garbage collector is told about stable pointers,
it is safe to pass a stable pointer to external systems such as C
routines.
\begin{verbatim}
makeStablePtr# :: a -> State# RealWorld -> (# State# RealWorld, StablePtr# a #)
freeStablePtr :: StablePtr# a -> State# RealWorld -> State# RealWorld
deRefStablePtr# :: StablePtr# a -> State# RealWorld -> (# State# RealWorld, a #)
eqStablePtr# :: StablePtr# a -> StablePtr# a -> Int#
\end{verbatim}
It may seem a bit surprising that @makeStablePtr#@ is a @IO@
operation since it doesn't (directly) involve IO operations. The
reason is that if some optimisation pass decided to duplicate calls to
@makeStablePtr#@ and we only pass one of the stable pointers over, a
massive space leak can result. Putting it into the IO monad
prevents this. (Another reason for putting them in a monad is to
ensure correct sequencing wrt the side-effecting @freeStablePtr@
operation.)
An important property of stable pointers is that if you call
makeStablePtr# twice on the same object you get the same stable
pointer back.
Note that we can implement @freeStablePtr#@ using @_ccall_@ (and,
besides, it's not likely to be used from Haskell) so it's not a
primop.
Question: Why @RealWorld@ - won't any instance of @_ST@ do the job? [ADR]
Stable Names
~~~~~~~~~~~~
A stable name is like a stable pointer, but with three important differences:
(a) You can't deRef one to get back to the original object.
(b) You can convert one to an Int.
(c) You don't need to 'freeStableName'
The existence of a stable name doesn't guarantee to keep the object it
points to alive (unlike a stable pointer), hence (a).
Invariants:
(a) makeStableName always returns the same value for a given
object (same as stable pointers).
(b) if two stable names are equal, it implies that the objects
from which they were created were the same.
(c) stableNameToInt always returns the same Int for a given
stable name.
These primops are pretty weird.
tagToEnum# :: Int -> a (result type must be an enumerated type)
The constraints aren't currently checked by the front end, but the
code generator will fall over if they aren't satisfied.
************************************************************************
* *
Which PrimOps are out-of-line
* *
************************************************************************
Some PrimOps need to be called out-of-line because they either need to
perform a heap check or they block.
-}
primOpOutOfLine :: PrimOp -> Bool
#include "primop-out-of-line.hs-incl"
{-
************************************************************************
* *
Failure and side effects
* *
************************************************************************
Note [Checking versus non-checking primops]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In GHC primops break down into two classes:
a. Checking primops behave, for instance, like division. In this
case the primop may throw an exception (e.g. division-by-zero)
and is consequently is marked with the can_fail flag described below.
The ability to fail comes at the expense of precluding some optimizations.
b. Non-checking primops behavior, for instance, like addition. While
addition can overflow it does not produce an exception. So can_fail is
set to False, and we get more optimisation opportunities. But we must
never throw an exception, so we cannot rewrite to a call to error.
It is important that a non-checking primop never be transformed in a way that
would cause it to bottom. Doing so would violate Core's let-can-float invariant
(see Note [Core let-can-float invariant] in GHC.Core) which is critical to
the simplifier's ability to float without fear of changing program meaning.
Note [PrimOp can_fail and has_side_effects]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Both can_fail and has_side_effects mean that the primop has
some effect that is not captured entirely by its result value.
---------- has_side_effects ---------------------
A primop "has_side_effects" if it has some side effect, visible
elsewhere, apart from the result it returns
- reading or writing to the world (I/O)
- reading or writing to a mutable data structure (writeIORef)
- throwing a synchronous Haskell exception
Often such primops have a type like
State -> input -> (State, output)
so the state token guarantees ordering. In general we rely on
data dependencies of the state token to enforce write-effect ordering,
but as the notes below make clear, the matter is a bit more complicated
than that.
* NB1: if you inline unsafePerformIO, you may end up with
side-effecting ops whose 'state' output is discarded.
And programmers may do that by hand; see #9390.
That is why we (conservatively) do not discard write-effecting
primops even if both their state and result is discarded.
* NB2: We consider primops, such as raiseIO#, that can raise a
(Haskell) synchronous exception to "have_side_effects" but not
"can_fail". We must be careful about not discarding such things;
see the paper "A semantics for imprecise exceptions".
* NB3: *Read* effects on *mutable* cells (like reading an IORef or a
MutableArray#) /are/ included. You may find this surprising because it
doesn't matter if we don't do them, or do them more than once. *Sequencing*
is maintained by the data dependency of the state token. But see
"Duplication" below under
Note [Transformations affected by can_fail and has_side_effects]
Note that read operations on *immutable* values (like indexArray#) do not
have has_side_effects. (They might be marked can_fail, however, because
you might index out of bounds.)
Using has_side_effects in this way is a bit of a blunt instrument. We could
be more refined by splitting read and write effects (see comments with #3207
and #20195)
---------- can_fail ----------------------------
A primop "can_fail" if it can fail with an *unchecked* exception on
some elements of its input domain. Main examples:
division (fails on zero denominator)
array indexing (fails if the index is out of bounds)
An "unchecked exception" is one that is an outright error, (not
turned into a Haskell exception,) such as seg-fault or
divide-by-zero error. Such can_fail primops are ALWAYS surrounded
with a test that checks for the bad cases, but we need to be
very careful about code motion that might move it out of
the scope of the test.
Note [Transformations affected by can_fail and has_side_effects]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The can_fail and has_side_effects properties have the following effect
on program transformations. Summary table is followed by details.
can_fail has_side_effects
Discard YES NO
Float in YES YES
Float out NO NO
Duplicate YES NO
* Discarding. case (a `op` b) of _ -> rhs ===> rhs
You should not discard a has_side_effects primop; e.g.
case (writeIntArray# a i v s of (# _, _ #) -> True
Arguably you should be able to discard this, since the
returned stat token is not used, but that relies on NEVER
inlining unsafePerformIO, and programmers sometimes write
this kind of stuff by hand (#9390). So we (conservatively)
never discard a has_side_effects primop.
However, it's fine to discard a can_fail primop. For example
case (indexIntArray# a i) of _ -> True
We can discard indexIntArray#; it has can_fail, but not
has_side_effects; see #5658 which was all about this.
Notice that indexIntArray# is (in a more general handling of
effects) read effect, but we don't care about that here, and
treat read effects as *not* has_side_effects.
Similarly (a `/#` b) can be discarded. It can seg-fault or
cause a hardware exception, but not a synchronous Haskell
exception.
Synchronous Haskell exceptions, e.g. from raiseIO#, are treated
as has_side_effects and hence are not discarded.
* Float in. You can float a can_fail or has_side_effects primop
*inwards*, but not inside a lambda (see Duplication below).
* Float out. You must not float a can_fail primop *outwards* lest
you escape the dynamic scope of the test. Example:
case d ># 0# of
True -> case x /# d of r -> r +# 1
False -> 0
Here we must not float the case outwards to give
case x/# d of r ->
case d ># 0# of
True -> r +# 1
False -> 0
Nor can you float out a has_side_effects primop. For example:
if blah then case writeMutVar# v True s0 of (# s1 #) -> s1
else s0
Notice that s0 is mentioned in both branches of the 'if', but
only one of these two will actually be consumed. But if we
float out to
case writeMutVar# v True s0 of (# s1 #) ->
if blah then s1 else s0
the writeMutVar will be performed in both branches, which is
utterly wrong.
* Duplication. You cannot duplicate a has_side_effect primop. You
might wonder how this can occur given the state token threading, but
just look at Control.Monad.ST.Lazy.Imp.strictToLazy! We get
something like this
p = case readMutVar# s v of
(# s', r #) -> (State# s', r)
s' = case p of (s', r) -> s'
r = case p of (s', r) -> r
(All these bindings are boxed.) If we inline p at its two call
sites, we get a catastrophe: because the read is performed once when
s' is demanded, and once when 'r' is demanded, which may be much
later. Utterly wrong. #3207 is real example of this happening.
However, it's fine to duplicate a can_fail primop. That is really
the only difference between can_fail and has_side_effects.
Note [Implementation: how can_fail/has_side_effects affect transformations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
How do we ensure that floating/duplication/discarding are done right
in the simplifier?
Two main predicates on primops test these flags:
primOpOkForSideEffects <=> not has_side_effects
primOpOkForSpeculation <=> not (has_side_effects || can_fail)
* The "no-float-out" thing is achieved by ensuring that we never
let-bind a can_fail or has_side_effects primop. The RHS of a
let-binding (which can float in and out freely) satisfies
exprOkForSpeculation; this is the let-can-float invariant. And
exprOkForSpeculation is false of can_fail and has_side_effects.
* So can_fail and has_side_effects primops will appear only as the
scrutinees of cases, and that's why the FloatIn pass is capable
of floating case bindings inwards.
* The no-duplicate thing is done via primOpIsCheap, by making
has_side_effects things (very very very) not-cheap!
-}
primOpHasSideEffects :: PrimOp -> Bool
#include "primop-has-side-effects.hs-incl"
primOpCanFail :: PrimOp -> Bool
#include "primop-can-fail.hs-incl"
primOpOkForSpeculation :: PrimOp -> Bool
-- See Note [PrimOp can_fail and has_side_effects]
-- See comments with GHC.Core.Utils.exprOkForSpeculation
-- primOpOkForSpeculation => primOpOkForSideEffects
primOpOkForSpeculation op
= primOpOkForSideEffects op
&& not (primOpOutOfLine op || primOpCanFail op)
-- I think the "out of line" test is because out of line things can
-- be expensive (eg sine, cosine), and so we may not want to speculate them
primOpOkForSideEffects :: PrimOp -> Bool
primOpOkForSideEffects op
= not (primOpHasSideEffects op)
{-
Note [primOpIsCheap]
~~~~~~~~~~~~~~~~~~~~
@primOpIsCheap@, as used in GHC.Core.Opt.Simplify.Utils. For now (HACK
WARNING), we just borrow some other predicates for a
what-should-be-good-enough test. "Cheap" means willing to call it more
than once, and/or push it inside a lambda. The latter could change the
behaviour of 'seq' for primops that can fail, so we don't treat them as cheap.
-}
primOpIsCheap :: PrimOp -> Bool
-- See Note [PrimOp can_fail and has_side_effects]
primOpIsCheap op = primOpOkForSpeculation op
-- In March 2001, we changed this to
-- primOpIsCheap op = False
-- thereby making *no* primops seem cheap. But this killed eta
-- expansion on case (x ==# y) of True -> \s -> ...
-- which is bad. In particular a loop like
-- doLoop n = loop 0
-- where
-- loop i | i == n = return ()
-- | otherwise = bar i >> loop (i+1)
-- allocated a closure every time round because it doesn't eta expand.
--
-- The problem that originally gave rise to the change was
-- let x = a +# b *# c in x +# x
-- were we don't want to inline x. But primopIsCheap doesn't control
-- that (it's exprIsDupable that does) so the problem doesn't occur
-- even if primOpIsCheap sometimes says 'True'.
-- | True of dyadic operators that can fail only if the second arg is zero!
--
-- This function probably belongs in an automagically generated file.. but it's
-- such a special case I thought I'd leave it here for now.
primOpIsDiv :: PrimOp -> Bool
primOpIsDiv op = case op of
-- TODO: quotRemWord2, Int64, Word64
IntQuotOp -> True
Int8QuotOp -> True
Int16QuotOp -> True
Int32QuotOp -> True
IntRemOp -> True
Int8RemOp -> True
Int16RemOp -> True
Int32RemOp -> True
IntQuotRemOp -> True
Int8QuotRemOp -> True
Int16QuotRemOp -> True
Int32QuotRemOp -> True
WordQuotOp -> True
Word8QuotOp -> True
Word16QuotOp -> True
Word32QuotOp -> True
WordRemOp -> True
Word8RemOp -> True
Word16RemOp -> True
Word32RemOp -> True
WordQuotRemOp -> True
Word8QuotRemOp -> True
Word16QuotRemOp -> True
Word32QuotRemOp -> True
FloatDivOp -> True
DoubleDivOp -> True
_ -> False
{-
************************************************************************
* *
PrimOp code size
* *
************************************************************************
primOpCodeSize
~~~~~~~~~~~~~~
Gives an indication of the code size of a primop, for the purposes of
calculating unfolding sizes; see GHC.Core.Unfold.sizeExpr.
-}
primOpCodeSize :: PrimOp -> Int
#include "primop-code-size.hs-incl"
primOpCodeSizeDefault :: Int
primOpCodeSizeDefault = 1
-- GHC.Core.Unfold.primOpSize already takes into account primOpOutOfLine
-- and adds some further costs for the args in that case.
primOpCodeSizeForeignCall :: Int
primOpCodeSizeForeignCall = 4
{-
************************************************************************
* *
PrimOp types
* *
************************************************************************
-}
primOpType :: PrimOp -> Type -- you may want to use primOpSig instead
primOpType op
= case primOpInfo op of
Compare _occ ty -> compare_fun_ty ty
GenPrimOp _occ tyvars arg_tys res_ty ->
mkForAllTys tyvars (mkVisFunTysMany arg_tys res_ty)
primOpResultType :: PrimOp -> Type
primOpResultType op
= case primOpInfo op of
Compare _occ _ty -> intPrimTy
GenPrimOp _occ _tyvars _arg_tys res_ty -> res_ty
primOpOcc :: PrimOp -> OccName
primOpOcc op = case primOpInfo op of
Compare occ _ -> occ
GenPrimOp occ _ _ _ -> occ
{- Note [Primop wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~
To support (limited) use of primops in GHCi genprimopcode generates the
GHC.PrimopWrappers module. This module contains a "primop wrapper"
binding for each primop. These are standard Haskell functions mirroring the
types of the primops they wrap. For instance, in the case of plusInt# we would
have:
module GHC.PrimopWrappers where
import GHC.Prim as P
plusInt# :: Int# -> Int# -> Int#
plusInt# a b = P.plusInt# a b
The Id for the wrapper of a primop can be found using
'GHC.Builtin.PrimOps.primOpWrapperId'. However, GHCi does not use this mechanism
to link primops; it rather does a rather hacky symbol lookup (see
GHC.ByteCode.Linker.primopToCLabel). TODO: Perhaps this should be changed?
Note that these wrappers aren't *quite* as expressive as their unwrapped
brethren, in that they may exhibit less representation polymorphism.
For instance, consider the case of mkWeakNoFinalizer#, which has type:
mkWeakNoFinalizer# :: forall (r :: RuntimeRep) (k :: TYPE r) (v :: Type).
k -> v
-> State# RealWorld
-> (# State# RealWorld, Weak# v #)
Naively we could generate a wrapper of the form,
mkWeakNoFinalizer# k v s = GHC.Prim.mkWeakNoFinalizer# k v s
However, this would require that 'k' bind the representation-polymorphic key,
which is disallowed by our representation polymorphism validity checks
(see Note [Representation polymorphism invariants] in GHC.Core).
Consequently, we give the wrapper the simpler, less polymorphic type
mkWeakNoFinalizer# :: forall (k :: Type) (v :: Type).
k -> v
-> State# RealWorld
-> (# State# RealWorld, Weak# v #)
This simplification tends to be good enough for GHCi uses given that there are
few representation-polymorphic primops, and we do little simplification
on interpreted code anyways.
TODO: This behavior is actually wrong; a program becomes ill-typed upon
replacing a real primop occurrence with one of its wrapper due to the fact that
the former has an additional type binder. Hmmm....
Note [Eta expanding primops]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
STG requires that primop applications be saturated. This makes code generation
significantly simpler since otherwise we would need to define a calling
convention for curried applications that can accommodate representation
polymorphism.
To ensure saturation, CorePrep eta expands all primop applications as
described in Note [Eta expansion of hasNoBinding things in CorePrep] in
GHC.Core.Prep.
Historical Note:
For a short period around GHC 8.8 we rewrote unsaturated primop applications to
rather use the primop's wrapper (see Note [Primop wrappers] in
GHC.Builtin.PrimOps) instead of eta expansion. This was because at the time
CoreTidy would try to predict the CAFfyness of bindings that would be produced
by CorePrep for inclusion in interface files. Eta expanding during CorePrep
proved to be very difficult to predict, leading to nasty inconsistencies in
CAFfyness determinations (see #16846).
Thankfully, we now no longer try to predict CAFfyness but rather compute it on
GHC STG (see Note [SRTs] in GHC.Cmm.Info.Build) and inject it into the interface
file after code generation (see TODO: Refer to whatever falls out of #18096).
This is much simpler and avoids the potential for inconsistency, allowing us to
return to the somewhat simpler eta expansion approach for unsaturated primops.
See #18079.
-}
-- | Returns the 'Id' of the wrapper associated with the given 'PrimOp'.
-- See Note [Primop wrappers].
primOpWrapperId :: PrimOp -> Id
primOpWrapperId op = mkVanillaGlobalWithInfo name ty info
where
info = setCafInfo vanillaIdInfo NoCafRefs
name = mkExternalName uniq gHC_PRIMOPWRAPPERS (primOpOcc op) wiredInSrcSpan
uniq = mkPrimOpWrapperUnique (primOpTag op)
ty = primOpType op
isComparisonPrimOp :: PrimOp -> Bool
isComparisonPrimOp op = case primOpInfo op of
Compare {} -> True
GenPrimOp {} -> False
-- primOpSig is like primOpType but gives the result split apart:
-- (type variables, argument types, result type)
-- It also gives arity, strictness info
primOpSig :: PrimOp -> ([TyVarBinder], [Type], Type, Arity, DmdSig)
primOpSig op
= (tyvars, arg_tys, res_ty, arity, primOpStrictness op arity)
where
arity = length arg_tys
(tyvars, arg_tys, res_ty)
= case (primOpInfo op) of
Compare _occ ty -> ([], [ty,ty], intPrimTy)
GenPrimOp _occ tyvars arg_tys res_ty -> (tyvars, arg_tys, res_ty )
data PrimOpResultInfo
= ReturnsPrim PrimRep
| ReturnsAlg TyCon
-- Some PrimOps need not return a manifest primitive or algebraic value
-- (i.e. they might return a polymorphic value). These PrimOps *must*
-- be out of line, or the code generator won't work.
getPrimOpResultInfo :: PrimOp -> PrimOpResultInfo
getPrimOpResultInfo op
= case (primOpInfo op) of
Compare _ _ -> ReturnsPrim (tyConPrimRep1 intPrimTyCon)
GenPrimOp _ _ _ ty | isPrimTyCon tc -> ReturnsPrim (tyConPrimRep1 tc)
| otherwise -> ReturnsAlg tc
where
tc = tyConAppTyCon ty
-- All primops return a tycon-app result
-- The tycon can be an unboxed tuple or sum, though,
-- which gives rise to a ReturnAlg
{-
We do not currently make use of whether primops are commutable.
We used to try to move constants to the right hand side for strength
reduction.
-}
{-
commutableOp :: PrimOp -> Bool
#include "primop-commutable.hs-incl"
-}
-- Utils:
compare_fun_ty :: Type -> Type
compare_fun_ty ty = mkVisFunTysMany [ty, ty] intPrimTy
-- Output stuff:
pprPrimOp :: IsLine doc => PrimOp -> doc
pprPrimOp other_op = pprOccName (primOpOcc other_op)
{-# SPECIALIZE pprPrimOp :: PrimOp -> SDoc #-}
{-# SPECIALIZE pprPrimOp :: PrimOp -> HLine #-} -- see Note [SPECIALIZE to HDoc] in GHC.Utils.Outputable
{-
************************************************************************
* *
\subsubsection[PrimCall]{User-imported primitive calls}
* *
************************************************************************
-}
data PrimCall = PrimCall CLabelString Unit
instance Outputable PrimCall where
ppr (PrimCall lbl pkgId)
= text "__primcall" <+> ppr pkgId <+> ppr lbl
-- | Indicate if a primop is really inline: that is, it isn't out-of-line and it
-- isn't SeqOp/DataToTagOp which are two primops that evaluate their argument
-- hence induce thread/stack/heap changes.
primOpIsReallyInline :: PrimOp -> Bool
primOpIsReallyInline = \case
SeqOp -> False
DataToTagOp -> False
p -> not (primOpOutOfLine p)
|