1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
|
{-
(c) The AQUA Project, Glasgow University, 1994-1998
Wired-in knowledge about primitive types
-}
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | This module defines TyCons that can't be expressed in Haskell.
-- They are all, therefore, wired-in TyCons. C.f module "GHC.Builtin.Types"
module GHC.Builtin.Types.Prim(
mkTemplateKindVar, mkTemplateKindVars,
mkTemplateTyVars, mkTemplateTyVarsFrom,
mkTemplateKiTyVars, mkTemplateKiTyVar,
mkTemplateTyConBinders, mkTemplateKindTyConBinders,
mkTemplateAnonTyConBinders,
alphaTyVars, alphaTyVar, betaTyVar, gammaTyVar, deltaTyVar,
alphaTyVarSpec, betaTyVarSpec, gammaTyVarSpec, deltaTyVarSpec,
alphaTys, alphaTy, betaTy, gammaTy, deltaTy,
alphaTyVarsUnliftedRep, alphaTyVarUnliftedRep,
alphaTysUnliftedRep, alphaTyUnliftedRep,
runtimeRep1TyVar, runtimeRep2TyVar, runtimeRep3TyVar,
runtimeRep1TyVarInf, runtimeRep2TyVarInf,
runtimeRep1Ty, runtimeRep2Ty, runtimeRep3Ty,
levity1TyVar, levity2TyVar,
levity1TyVarInf, levity2TyVarInf,
levity1Ty, levity2Ty,
alphaConstraintTyVar, alphaConstraintTy,
openAlphaTyVar, openBetaTyVar, openGammaTyVar,
openAlphaTyVarSpec, openBetaTyVarSpec, openGammaTyVarSpec,
openAlphaTy, openBetaTy, openGammaTy,
levPolyAlphaTyVar, levPolyBetaTyVar,
levPolyAlphaTyVarSpec, levPolyBetaTyVarSpec,
levPolyAlphaTy, levPolyBetaTy,
multiplicityTyVar1, multiplicityTyVar2,
-- Kind constructors...
tYPETyCon, tYPETyConName, tYPEKind,
cONSTRAINTTyCon, cONSTRAINTTyConName, cONSTRAINTKind,
-- Arrows
funTyFlagTyCon, isArrowTyCon,
fUNTyCon, fUNTyConName,
ctArrowTyCon, ctArrowTyConName,
ccArrowTyCon, ccArrowTyConName,
tcArrowTyCon, tcArrowTyConName,
unexposedPrimTyCons, exposedPrimTyCons, primTyCons,
charPrimTyCon, charPrimTy, charPrimTyConName,
intPrimTyCon, intPrimTy, intPrimTyConName,
wordPrimTyCon, wordPrimTy, wordPrimTyConName,
addrPrimTyCon, addrPrimTy, addrPrimTyConName,
floatPrimTyCon, floatPrimTy, floatPrimTyConName,
doublePrimTyCon, doublePrimTy, doublePrimTyConName,
statePrimTyCon, mkStatePrimTy,
realWorldTyCon, realWorldTy, realWorldStatePrimTy,
proxyPrimTyCon, mkProxyPrimTy,
arrayPrimTyCon, mkArrayPrimTy,
byteArrayPrimTyCon, byteArrayPrimTy,
smallArrayPrimTyCon, mkSmallArrayPrimTy,
mutableArrayPrimTyCon, mkMutableArrayPrimTy,
mutableByteArrayPrimTyCon, mkMutableByteArrayPrimTy,
smallMutableArrayPrimTyCon, mkSmallMutableArrayPrimTy,
mutVarPrimTyCon, mkMutVarPrimTy,
mVarPrimTyCon, mkMVarPrimTy,
ioPortPrimTyCon, mkIOPortPrimTy,
tVarPrimTyCon, mkTVarPrimTy,
stablePtrPrimTyCon, mkStablePtrPrimTy,
stableNamePrimTyCon, mkStableNamePrimTy,
compactPrimTyCon, compactPrimTy,
bcoPrimTyCon, bcoPrimTy,
weakPrimTyCon, mkWeakPrimTy,
threadIdPrimTyCon, threadIdPrimTy,
stackSnapshotPrimTyCon, stackSnapshotPrimTy,
promptTagPrimTyCon, mkPromptTagPrimTy,
int8PrimTyCon, int8PrimTy, int8PrimTyConName,
word8PrimTyCon, word8PrimTy, word8PrimTyConName,
int16PrimTyCon, int16PrimTy, int16PrimTyConName,
word16PrimTyCon, word16PrimTy, word16PrimTyConName,
int32PrimTyCon, int32PrimTy, int32PrimTyConName,
word32PrimTyCon, word32PrimTy, word32PrimTyConName,
int64PrimTyCon, int64PrimTy, int64PrimTyConName,
word64PrimTyCon, word64PrimTy, word64PrimTyConName,
eqPrimTyCon, -- ty1 ~# ty2
eqReprPrimTyCon, -- ty1 ~R# ty2 (at role Representational)
eqPhantPrimTyCon, -- ty1 ~P# ty2 (at role Phantom)
equalityTyCon,
-- * SIMD
#include "primop-vector-tys-exports.hs-incl"
) where
import GHC.Prelude
import {-# SOURCE #-} GHC.Builtin.Types
( runtimeRepTy, levityTy, unboxedTupleKind, liftedTypeKind, unliftedTypeKind
, boxedRepDataConTyCon, vecRepDataConTyCon
, liftedRepTy, unliftedRepTy, zeroBitRepTy
, intRepDataConTy
, int8RepDataConTy, int16RepDataConTy, int32RepDataConTy, int64RepDataConTy
, wordRepDataConTy
, word16RepDataConTy, word8RepDataConTy, word32RepDataConTy, word64RepDataConTy
, addrRepDataConTy
, floatRepDataConTy, doubleRepDataConTy
, vec2DataConTy, vec4DataConTy, vec8DataConTy, vec16DataConTy, vec32DataConTy
, vec64DataConTy
, int8ElemRepDataConTy, int16ElemRepDataConTy, int32ElemRepDataConTy
, int64ElemRepDataConTy, word8ElemRepDataConTy, word16ElemRepDataConTy
, word32ElemRepDataConTy, word64ElemRepDataConTy, floatElemRepDataConTy
, doubleElemRepDataConTy
, multiplicityTy
, constraintKind )
import {-# SOURCE #-} GHC.Types.TyThing( mkATyCon )
import {-# SOURCE #-} GHC.Core.Type ( mkTyConApp, getLevity )
import GHC.Core.TyCon
import GHC.Core.TyCo.Rep -- Doesn't need special access, but this is easier to avoid
-- import loops which show up if you import Type instead
import GHC.Types.Var ( TyVarBinder, TyVar,binderVar, binderVars
, mkTyVar, mkTyVarBinder, mkTyVarBinders )
import GHC.Types.Name
import GHC.Types.SrcLoc
import GHC.Types.Unique
import GHC.Builtin.Uniques
import GHC.Builtin.Names
import GHC.Utils.Misc ( changeLast )
import GHC.Utils.Panic ( assertPpr )
import GHC.Utils.Outputable
import GHC.Data.FastString
import Data.Char
{- *********************************************************************
* *
Building blocks
* *
********************************************************************* -}
mk_TYPE_app :: Type -> Type
mk_TYPE_app rep = mkTyConApp tYPETyCon [rep]
mk_CONSTRAINT_app :: Type -> Type
mk_CONSTRAINT_app rep = mkTyConApp cONSTRAINTTyCon [rep]
mkPrimTc :: FastString -> Unique -> TyCon -> Name
mkPrimTc = mkGenPrimTc UserSyntax
mkBuiltInPrimTc :: FastString -> Unique -> TyCon -> Name
mkBuiltInPrimTc = mkGenPrimTc BuiltInSyntax
mkGenPrimTc :: BuiltInSyntax -> FastString -> Unique -> TyCon -> Name
mkGenPrimTc built_in_syntax occ key tycon
= mkWiredInName gHC_PRIM (mkTcOccFS occ)
key
(mkATyCon tycon)
built_in_syntax
-- | Create a primitive 'TyCon' with the given 'Name',
-- arguments of kind 'Type` with the given 'Role's,
-- and the given result kind representation.
--
-- Only use this in "GHC.Builtin.Types.Prim".
pcPrimTyCon :: Name
-> [Role] -> RuntimeRepType -> TyCon
pcPrimTyCon name roles res_rep
= mkPrimTyCon name binders result_kind roles
where
bndr_kis = liftedTypeKind <$ roles
binders = mkTemplateAnonTyConBinders bndr_kis
result_kind = mk_TYPE_app res_rep
-- | Create a primitive nullary 'TyCon' with the given 'Name'
-- and result kind representation.
--
-- Only use this in "GHC.Builtin.Types.Prim".
pcPrimTyCon0 :: Name -> RuntimeRepType -> TyCon
pcPrimTyCon0 name res_rep
= pcPrimTyCon name [] res_rep
-- | Create a primitive 'TyCon' like 'pcPrimTyCon', except the last
-- argument is levity-polymorphic, where the levity argument is
-- implicit and comes before other arguments
--
-- Only use this in "GHC.Builtin.Types.Prim".
pcPrimTyCon_LevPolyLastArg :: Name
-> [Role] -- ^ roles of the arguments (must be non-empty),
-- not including the implicit argument of kind 'Levity',
-- which always has 'Nominal' role
-> RuntimeRepType -- ^ representation of the fully-applied type
-> TyCon
pcPrimTyCon_LevPolyLastArg name roles res_rep
= mkPrimTyCon name binders result_kind (Nominal : roles)
where
result_kind = mk_TYPE_app res_rep
lev_bndr = mkNamedTyConBinder Inferred levity1TyVar
binders = lev_bndr : mkTemplateAnonTyConBinders anon_bndr_kis
lev_tv = mkTyVarTy (binderVar lev_bndr)
-- [ Type, ..., Type, TYPE (BoxedRep l) ]
anon_bndr_kis = changeLast (liftedTypeKind <$ roles) $
mk_TYPE_app $
mkTyConApp boxedRepDataConTyCon [lev_tv]
{- *********************************************************************
* *
Primitive type constructors
* *
********************************************************************* -}
{- Note Note [Unexposed TyCons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A few primitive TyCons are "unexposed", meaning:
* We don't want users to be able to write them (see #15209);
i.e. they aren't in scope, ever. In particular they do not
appear in the exports of GHC.Prim: see GHC.Builtin.Utils.ghcPrimExports
* We don't want users to see them in GHCi's @:browse@ output (see #12023).
-}
primTyCons :: [TyCon]
primTyCons = unexposedPrimTyCons ++ exposedPrimTyCons
-- | Primitive 'TyCon's that are defined in GHC.Prim but not "exposed".
-- See Note [Unexposed TyCons]
unexposedPrimTyCons :: [TyCon]
unexposedPrimTyCons
= [ eqPrimTyCon -- (~#)
, eqReprPrimTyCon -- (~R#)
, eqPhantPrimTyCon -- (~P#)
-- These arrows are un-exposed for now
, ctArrowTyCon -- (=>)
, ccArrowTyCon -- (==>)
, tcArrowTyCon -- (-=>)
]
-- | Primitive 'TyCon's that are defined in, and exported from, GHC.Prim.
exposedPrimTyCons :: [TyCon]
exposedPrimTyCons
= [ addrPrimTyCon
, arrayPrimTyCon
, byteArrayPrimTyCon
, smallArrayPrimTyCon
, charPrimTyCon
, doublePrimTyCon
, floatPrimTyCon
, intPrimTyCon
, int8PrimTyCon
, int16PrimTyCon
, int32PrimTyCon
, int64PrimTyCon
, bcoPrimTyCon
, weakPrimTyCon
, mutableArrayPrimTyCon
, mutableByteArrayPrimTyCon
, smallMutableArrayPrimTyCon
, mVarPrimTyCon
, ioPortPrimTyCon
, tVarPrimTyCon
, mutVarPrimTyCon
, realWorldTyCon
, stablePtrPrimTyCon
, stableNamePrimTyCon
, compactPrimTyCon
, statePrimTyCon
, proxyPrimTyCon
, threadIdPrimTyCon
, wordPrimTyCon
, word8PrimTyCon
, word16PrimTyCon
, word32PrimTyCon
, word64PrimTyCon
, stackSnapshotPrimTyCon
, promptTagPrimTyCon
, fUNTyCon
, tYPETyCon
, cONSTRAINTTyCon
#include "primop-vector-tycons.hs-incl"
]
charPrimTyConName, intPrimTyConName, int8PrimTyConName, int16PrimTyConName, int32PrimTyConName, int64PrimTyConName,
wordPrimTyConName, word32PrimTyConName, word8PrimTyConName, word16PrimTyConName, word64PrimTyConName,
addrPrimTyConName, floatPrimTyConName, doublePrimTyConName,
statePrimTyConName, proxyPrimTyConName, realWorldTyConName,
arrayPrimTyConName, smallArrayPrimTyConName, byteArrayPrimTyConName,
mutableArrayPrimTyConName, mutableByteArrayPrimTyConName,
smallMutableArrayPrimTyConName, mutVarPrimTyConName, mVarPrimTyConName,
ioPortPrimTyConName, tVarPrimTyConName, stablePtrPrimTyConName,
stableNamePrimTyConName, compactPrimTyConName, bcoPrimTyConName,
weakPrimTyConName, threadIdPrimTyConName,
eqPrimTyConName, eqReprPrimTyConName, eqPhantPrimTyConName,
stackSnapshotPrimTyConName, promptTagPrimTyConName :: Name
charPrimTyConName = mkPrimTc (fsLit "Char#") charPrimTyConKey charPrimTyCon
intPrimTyConName = mkPrimTc (fsLit "Int#") intPrimTyConKey intPrimTyCon
int8PrimTyConName = mkPrimTc (fsLit "Int8#") int8PrimTyConKey int8PrimTyCon
int16PrimTyConName = mkPrimTc (fsLit "Int16#") int16PrimTyConKey int16PrimTyCon
int32PrimTyConName = mkPrimTc (fsLit "Int32#") int32PrimTyConKey int32PrimTyCon
int64PrimTyConName = mkPrimTc (fsLit "Int64#") int64PrimTyConKey int64PrimTyCon
wordPrimTyConName = mkPrimTc (fsLit "Word#") wordPrimTyConKey wordPrimTyCon
word8PrimTyConName = mkPrimTc (fsLit "Word8#") word8PrimTyConKey word8PrimTyCon
word16PrimTyConName = mkPrimTc (fsLit "Word16#") word16PrimTyConKey word16PrimTyCon
word32PrimTyConName = mkPrimTc (fsLit "Word32#") word32PrimTyConKey word32PrimTyCon
word64PrimTyConName = mkPrimTc (fsLit "Word64#") word64PrimTyConKey word64PrimTyCon
addrPrimTyConName = mkPrimTc (fsLit "Addr#") addrPrimTyConKey addrPrimTyCon
floatPrimTyConName = mkPrimTc (fsLit "Float#") floatPrimTyConKey floatPrimTyCon
doublePrimTyConName = mkPrimTc (fsLit "Double#") doublePrimTyConKey doublePrimTyCon
statePrimTyConName = mkPrimTc (fsLit "State#") statePrimTyConKey statePrimTyCon
proxyPrimTyConName = mkPrimTc (fsLit "Proxy#") proxyPrimTyConKey proxyPrimTyCon
eqPrimTyConName = mkPrimTc (fsLit "~#") eqPrimTyConKey eqPrimTyCon
eqReprPrimTyConName = mkBuiltInPrimTc (fsLit "~R#") eqReprPrimTyConKey eqReprPrimTyCon
eqPhantPrimTyConName = mkBuiltInPrimTc (fsLit "~P#") eqPhantPrimTyConKey eqPhantPrimTyCon
realWorldTyConName = mkPrimTc (fsLit "RealWorld") realWorldTyConKey realWorldTyCon
arrayPrimTyConName = mkPrimTc (fsLit "Array#") arrayPrimTyConKey arrayPrimTyCon
byteArrayPrimTyConName = mkPrimTc (fsLit "ByteArray#") byteArrayPrimTyConKey byteArrayPrimTyCon
smallArrayPrimTyConName = mkPrimTc (fsLit "SmallArray#") smallArrayPrimTyConKey smallArrayPrimTyCon
mutableArrayPrimTyConName = mkPrimTc (fsLit "MutableArray#") mutableArrayPrimTyConKey mutableArrayPrimTyCon
mutableByteArrayPrimTyConName = mkPrimTc (fsLit "MutableByteArray#") mutableByteArrayPrimTyConKey mutableByteArrayPrimTyCon
smallMutableArrayPrimTyConName= mkPrimTc (fsLit "SmallMutableArray#") smallMutableArrayPrimTyConKey smallMutableArrayPrimTyCon
mutVarPrimTyConName = mkPrimTc (fsLit "MutVar#") mutVarPrimTyConKey mutVarPrimTyCon
ioPortPrimTyConName = mkPrimTc (fsLit "IOPort#") ioPortPrimTyConKey ioPortPrimTyCon
mVarPrimTyConName = mkPrimTc (fsLit "MVar#") mVarPrimTyConKey mVarPrimTyCon
tVarPrimTyConName = mkPrimTc (fsLit "TVar#") tVarPrimTyConKey tVarPrimTyCon
stablePtrPrimTyConName = mkPrimTc (fsLit "StablePtr#") stablePtrPrimTyConKey stablePtrPrimTyCon
stableNamePrimTyConName = mkPrimTc (fsLit "StableName#") stableNamePrimTyConKey stableNamePrimTyCon
compactPrimTyConName = mkPrimTc (fsLit "Compact#") compactPrimTyConKey compactPrimTyCon
stackSnapshotPrimTyConName = mkPrimTc (fsLit "StackSnapshot#") stackSnapshotPrimTyConKey stackSnapshotPrimTyCon
bcoPrimTyConName = mkPrimTc (fsLit "BCO") bcoPrimTyConKey bcoPrimTyCon
weakPrimTyConName = mkPrimTc (fsLit "Weak#") weakPrimTyConKey weakPrimTyCon
threadIdPrimTyConName = mkPrimTc (fsLit "ThreadId#") threadIdPrimTyConKey threadIdPrimTyCon
promptTagPrimTyConName = mkPrimTc (fsLit "PromptTag#") promptTagPrimTyConKey promptTagPrimTyCon
{- *********************************************************************
* *
Type variables
* *
********************************************************************* -}
{-
alphaTyVars is a list of type variables for use in templates:
["a", "b", ..., "z", "t1", "t2", ... ]
-}
mkTemplateKindVar :: Kind -> TyVar
mkTemplateKindVar = mkTyVar (mk_tv_name 0 "k")
mkTemplateKindVars :: [Kind] -> [TyVar]
-- k0 with unique (mkAlphaTyVarUnique 0)
-- k1 with unique (mkAlphaTyVarUnique 1)
-- ... etc
mkTemplateKindVars [kind] = [mkTemplateKindVar kind]
-- Special case for one kind: just "k"
mkTemplateKindVars kinds
= [ mkTyVar (mk_tv_name u ('k' : show u)) kind
| (kind, u) <- kinds `zip` [0..] ]
mk_tv_name :: Int -> String -> Name
mk_tv_name u s = mkInternalName (mkAlphaTyVarUnique u)
(mkTyVarOccFS (mkFastString s))
noSrcSpan
mkTemplateTyVarsFrom :: Int -> [Kind] -> [TyVar]
-- a with unique (mkAlphaTyVarUnique n)
-- b with unique (mkAlphaTyVarUnique n+1)
-- ... etc
-- Typically called as
-- mkTemplateTyVarsFrom (length kv_bndrs) kinds
-- where kv_bndrs are the kind-level binders of a TyCon
mkTemplateTyVarsFrom n kinds
= [ mkTyVar name kind
| (kind, index) <- zip kinds [0..],
let ch_ord = index + ord 'a'
name_str | ch_ord <= ord 'z' = [chr ch_ord]
| otherwise = 't':show index
name = mk_tv_name (index + n) name_str
]
mkTemplateTyVars :: [Kind] -> [TyVar]
mkTemplateTyVars = mkTemplateTyVarsFrom 1
mkTemplateTyConBinders
:: [Kind] -- [k1, .., kn] Kinds of kind-forall'd vars
-> ([Kind] -> [Kind]) -- Arg is [kv1:k1, ..., kvn:kn]
-- same length as first arg
-- Result is anon arg kinds
-> [TyConBinder]
mkTemplateTyConBinders kind_var_kinds mk_anon_arg_kinds
= kv_bndrs ++ tv_bndrs
where
kv_bndrs = mkTemplateKindTyConBinders kind_var_kinds
anon_kinds = mk_anon_arg_kinds (mkTyVarTys (binderVars kv_bndrs))
tv_bndrs = mkTemplateAnonTyConBindersFrom (length kv_bndrs) anon_kinds
mkTemplateKiTyVars
:: [Kind] -- [k1, .., kn] Kinds of kind-forall'd vars
-> ([Kind] -> [Kind]) -- Arg is [kv1:k1, ..., kvn:kn]
-- same length as first arg
-- Result is anon arg kinds [ak1, .., akm]
-> [TyVar] -- [kv1:k1, ..., kvn:kn, av1:ak1, ..., avm:akm]
-- Example: if you want the tyvars for
-- forall (r:RuntimeRep) (a:TYPE r) (b:*). blah
-- call mkTemplateKiTyVars [RuntimeRep] (\[r] -> [TYPE r, *])
mkTemplateKiTyVars kind_var_kinds mk_arg_kinds
= kv_bndrs ++ tv_bndrs
where
kv_bndrs = mkTemplateKindVars kind_var_kinds
anon_kinds = mk_arg_kinds (mkTyVarTys kv_bndrs)
tv_bndrs = mkTemplateTyVarsFrom (length kv_bndrs) anon_kinds
mkTemplateKiTyVar
:: Kind -- [k1, .., kn] Kind of kind-forall'd var
-> (Kind -> [Kind]) -- Arg is kv1:k1
-- Result is anon arg kinds [ak1, .., akm]
-> [TyVar] -- [kv1:k1, ..., kvn:kn, av1:ak1, ..., avm:akm]
-- Example: if you want the tyvars for
-- forall (r:RuntimeRep) (a:TYPE r) (b:*). blah
-- call mkTemplateKiTyVar RuntimeRep (\r -> [TYPE r, *])
mkTemplateKiTyVar kind mk_arg_kinds
= kv_bndr : tv_bndrs
where
kv_bndr = mkTemplateKindVar kind
anon_kinds = mk_arg_kinds (mkTyVarTy kv_bndr)
tv_bndrs = mkTemplateTyVarsFrom 1 anon_kinds
mkTemplateKindTyConBinders :: [Kind] -> [TyConBinder]
-- Makes named, Specified binders
mkTemplateKindTyConBinders kinds
= [mkNamedTyConBinder Specified tv | tv <- mkTemplateKindVars kinds]
mkTemplateAnonTyConBinders :: [Kind] -> [TyConBinder]
mkTemplateAnonTyConBinders kinds
= mkAnonTyConBinders (mkTemplateTyVars kinds)
mkTemplateAnonTyConBindersFrom :: Int -> [Kind] -> [TyConBinder]
mkTemplateAnonTyConBindersFrom n kinds
= mkAnonTyConBinders (mkTemplateTyVarsFrom n kinds)
alphaTyVars :: [TyVar]
alphaTyVars = mkTemplateTyVars $ repeat liftedTypeKind
alphaTyVar, betaTyVar, gammaTyVar, deltaTyVar :: TyVar
(alphaTyVar:betaTyVar:gammaTyVar:deltaTyVar:_) = alphaTyVars
alphaTyVarSpec, betaTyVarSpec, gammaTyVarSpec, deltaTyVarSpec :: TyVarBinder
(alphaTyVarSpec:betaTyVarSpec:gammaTyVarSpec:deltaTyVarSpec:_) = mkTyVarBinders Specified alphaTyVars
alphaConstraintTyVars :: [TyVar]
alphaConstraintTyVars = mkTemplateTyVars $ repeat constraintKind
alphaConstraintTyVar :: TyVar
(alphaConstraintTyVar:_) = alphaConstraintTyVars
alphaConstraintTy :: Type
alphaConstraintTy = mkTyVarTy alphaConstraintTyVar
alphaTys :: [Type]
alphaTys = mkTyVarTys alphaTyVars
alphaTy, betaTy, gammaTy, deltaTy :: Type
(alphaTy:betaTy:gammaTy:deltaTy:_) = alphaTys
alphaTyVarsUnliftedRep :: [TyVar]
alphaTyVarsUnliftedRep = mkTemplateTyVars $ repeat unliftedTypeKind
alphaTyVarUnliftedRep :: TyVar
(alphaTyVarUnliftedRep:_) = alphaTyVarsUnliftedRep
alphaTysUnliftedRep :: [Type]
alphaTysUnliftedRep = mkTyVarTys alphaTyVarsUnliftedRep
alphaTyUnliftedRep :: Type
(alphaTyUnliftedRep:_) = alphaTysUnliftedRep
runtimeRep1TyVar, runtimeRep2TyVar, runtimeRep3TyVar :: TyVar
(runtimeRep1TyVar : runtimeRep2TyVar : runtimeRep3TyVar : _)
= drop 16 (mkTemplateTyVars (repeat runtimeRepTy)) -- selects 'q','r'
runtimeRep1TyVarInf, runtimeRep2TyVarInf :: TyVarBinder
runtimeRep1TyVarInf = mkTyVarBinder Inferred runtimeRep1TyVar
runtimeRep2TyVarInf = mkTyVarBinder Inferred runtimeRep2TyVar
runtimeRep1Ty, runtimeRep2Ty, runtimeRep3Ty :: RuntimeRepType
runtimeRep1Ty = mkTyVarTy runtimeRep1TyVar
runtimeRep2Ty = mkTyVarTy runtimeRep2TyVar
runtimeRep3Ty = mkTyVarTy runtimeRep3TyVar
openAlphaTyVar, openBetaTyVar, openGammaTyVar :: TyVar
-- alpha :: TYPE r1
-- beta :: TYPE r2
-- gamma :: TYPE r3
[openAlphaTyVar,openBetaTyVar,openGammaTyVar]
= mkTemplateTyVars [ mk_TYPE_app runtimeRep1Ty
, mk_TYPE_app runtimeRep2Ty
, mk_TYPE_app runtimeRep3Ty]
openAlphaTyVarSpec, openBetaTyVarSpec, openGammaTyVarSpec :: TyVarBinder
openAlphaTyVarSpec = mkTyVarBinder Specified openAlphaTyVar
openBetaTyVarSpec = mkTyVarBinder Specified openBetaTyVar
openGammaTyVarSpec = mkTyVarBinder Specified openGammaTyVar
openAlphaTy, openBetaTy, openGammaTy :: Type
openAlphaTy = mkTyVarTy openAlphaTyVar
openBetaTy = mkTyVarTy openBetaTyVar
openGammaTy = mkTyVarTy openGammaTyVar
levity1TyVar, levity2TyVar :: TyVar
(levity2TyVar : levity1TyVar : _) -- NB: levity2TyVar before levity1TyVar
= drop 10 (mkTemplateTyVars (repeat levityTy)) -- selects 'k', 'l'
-- The ordering of levity2TyVar before levity1TyVar is chosen so that
-- the more common levity1TyVar uses the levity variable 'l'.
levity1TyVarInf, levity2TyVarInf :: TyVarBinder
levity1TyVarInf = mkTyVarBinder Inferred levity1TyVar
levity2TyVarInf = mkTyVarBinder Inferred levity2TyVar
levity1Ty, levity2Ty :: Type
levity1Ty = mkTyVarTy levity1TyVar
levity2Ty = mkTyVarTy levity2TyVar
levPolyAlphaTyVar, levPolyBetaTyVar :: TyVar
[levPolyAlphaTyVar, levPolyBetaTyVar] =
mkTemplateTyVars
[ mk_TYPE_app (mkTyConApp boxedRepDataConTyCon [levity1Ty])
, mk_TYPE_app (mkTyConApp boxedRepDataConTyCon [levity2Ty])]
-- alpha :: TYPE ('BoxedRep l)
-- beta :: TYPE ('BoxedRep k)
levPolyAlphaTyVarSpec, levPolyBetaTyVarSpec :: TyVarBinder
levPolyAlphaTyVarSpec = mkTyVarBinder Specified levPolyAlphaTyVar
levPolyBetaTyVarSpec = mkTyVarBinder Specified levPolyBetaTyVar
levPolyAlphaTy, levPolyBetaTy :: Type
levPolyAlphaTy = mkTyVarTy levPolyAlphaTyVar
levPolyBetaTy = mkTyVarTy levPolyBetaTyVar
multiplicityTyVar1, multiplicityTyVar2 :: TyVar
(multiplicityTyVar1 : multiplicityTyVar2 : _)
= drop 13 (mkTemplateTyVars (repeat multiplicityTy)) -- selects 'n', 'm'
{-
************************************************************************
* *
FunTyCon
* *
************************************************************************
-}
{- Note [Function type constructors and FunTy]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have four distinct function type constructors, and a type synonym
FUN :: forall (m :: Multiplicity) ->
forall {rep1 :: RuntimeRep} {rep2 :: RuntimeRep}.
TYPE rep1 -> TYPE rep2 -> Type
(=>) :: forall {rep1 :: RuntimeRep} {rep2 :: RuntimeRep}.
CONSTRAINT rep1 -> TYPE rep2 -> Type
(==>) :: forall {rep1 :: RuntimeRep} {rep2 :: RuntimeRep}.
CONSTRAINT rep1 -> CONSTRAINT rep2 -> Constraint
(-=>) :: forall {rep1 :: RuntimeRep} {rep2 :: RuntimeRep}.
TYPE rep1 -> CONSTRAINT rep2 -> Constraint
type (->) = FUN Many
For efficiency, all four are always represented by
FunTy { ft_af :: FunTyFlag, ft_mult :: Mult
, ft_arg :: Type, ft_res :: Type }
rather than by using a TyConApp.
* The four TyCons FUN, (=>), (==>), (-=>) are all wired in.
But (->) is just a regular synonym, with no special treatment;
in particular it is not wired-in.
* The ft_af :: FunTyFlag distinguishes the four cases.
See Note [FunTyFlag] in GHC.Types.Var.
* The ft_af field is redundant: it can always be gleaned from
the kinds of ft_arg and ft_res. See Note [FunTyFlag] in GHC.Types.Var.
* The ft_mult :: Mult field gives the first argument for FUN
For the other three cases ft_mult is redundant; it is always Many.
Note that of the four type constructors, only `FUN` takes a Multiplicity.
* Functions in GHC.Core.Type help to build and decompose `FunTy`.
* funTyConAppTy_maybe
* funTyFlagTyCon
* tyConAppFun_maybe
* splitFunTy_maybe
Use them!
-}
funTyFlagTyCon :: FunTyFlag -> TyCon
-- `anonArgTyCon af` gets the TyCon that corresponds to the `FunTyFlag`
-- But be careful: fUNTyCon has a different kind to the others!
-- See Note [Function type constructors and FunTy]
funTyFlagTyCon FTF_T_T = fUNTyCon
funTyFlagTyCon FTF_T_C = tcArrowTyCon
funTyFlagTyCon FTF_C_T = ctArrowTyCon
funTyFlagTyCon FTF_C_C = ccArrowTyCon
isArrowTyCon :: TyCon -> Bool
-- We don't bother to look for plain (->), because this function
-- should only be used after unwrapping synonyms
isArrowTyCon tc
= assertPpr (not (isTypeSynonymTyCon tc)) (ppr tc)
getUnique tc `elem`
[fUNTyConKey, ctArrowTyConKey, ccArrowTyConKey, tcArrowTyConKey]
fUNTyConName, ctArrowTyConName, ccArrowTyConName, tcArrowTyConName :: Name
fUNTyConName = mkPrimTc (fsLit "FUN") fUNTyConKey fUNTyCon
ctArrowTyConName = mkBuiltInPrimTc (fsLit "=>") ctArrowTyConKey ctArrowTyCon
ccArrowTyConName = mkBuiltInPrimTc (fsLit "==>") ccArrowTyConKey ccArrowTyCon
tcArrowTyConName = mkBuiltInPrimTc (fsLit "-=>") tcArrowTyConKey tcArrowTyCon
-- | The @FUN@ type constructor.
--
-- @
-- FUN :: forall (m :: Multiplicity) ->
-- forall {rep1 :: RuntimeRep} {rep2 :: RuntimeRep}.
-- TYPE rep1 -> TYPE rep2 -> Type
-- @
--
-- The runtime representations quantification is left inferred. This
-- means they cannot be specified with @-XTypeApplications@.
--
-- This is a deliberate choice to allow future extensions to the
-- function arrow.
fUNTyCon :: TyCon
fUNTyCon = mkPrimTyCon fUNTyConName tc_bndrs liftedTypeKind tc_roles
where
-- See also unrestrictedFunTyCon
tc_bndrs = [ mkNamedTyConBinder Required multiplicityTyVar1
, mkNamedTyConBinder Inferred runtimeRep1TyVar
, mkNamedTyConBinder Inferred runtimeRep2TyVar ]
++ mkTemplateAnonTyConBinders [ mk_TYPE_app runtimeRep1Ty
, mk_TYPE_app runtimeRep2Ty ]
tc_roles = [Nominal, Nominal, Nominal, Representational, Representational]
-- (=>) :: forall {rep1 :: RuntimeRep} {rep2 :: RuntimeRep}.
-- CONSTRAINT rep1 -> TYPE rep2 -> Type
ctArrowTyCon :: TyCon
ctArrowTyCon = mkPrimTyCon ctArrowTyConName tc_bndrs liftedTypeKind tc_roles
where
-- See also unrestrictedFunTyCon
tc_bndrs = [ mkNamedTyConBinder Inferred runtimeRep1TyVar
, mkNamedTyConBinder Inferred runtimeRep2TyVar ]
++ mkTemplateAnonTyConBinders [ mk_CONSTRAINT_app runtimeRep1Ty
, mk_TYPE_app runtimeRep2Ty ]
tc_roles = [Nominal, Nominal, Representational, Representational]
-- (==>) :: forall {rep1 :: RuntimeRep} {rep2 :: RuntimeRep}.
-- CONSTRAINT rep1 -> CONSTRAINT rep2 -> Constraint
ccArrowTyCon :: TyCon
ccArrowTyCon = mkPrimTyCon ccArrowTyConName tc_bndrs constraintKind tc_roles
where
-- See also unrestrictedFunTyCon
tc_bndrs = [ mkNamedTyConBinder Inferred runtimeRep1TyVar
, mkNamedTyConBinder Inferred runtimeRep2TyVar ]
++ mkTemplateAnonTyConBinders [ mk_CONSTRAINT_app runtimeRep1Ty
, mk_CONSTRAINT_app runtimeRep2Ty ]
tc_roles = [Nominal, Nominal, Representational, Representational]
-- (-=>) :: forall {rep1 :: RuntimeRep} {rep2 :: RuntimeRep}.
-- TYPE rep1 -> CONSTRAINT rep2 -> Constraint
tcArrowTyCon :: TyCon
tcArrowTyCon = mkPrimTyCon tcArrowTyConName tc_bndrs constraintKind tc_roles
where
-- See also unrestrictedFunTyCon
tc_bndrs = [ mkNamedTyConBinder Inferred runtimeRep1TyVar
, mkNamedTyConBinder Inferred runtimeRep2TyVar ]
++ mkTemplateAnonTyConBinders [ mk_TYPE_app runtimeRep1Ty
, mk_CONSTRAINT_app runtimeRep2Ty ]
tc_roles = [Nominal, Nominal, Representational, Representational]
{-
************************************************************************
* *
Type and Constraint
* *
************************************************************************
Note [TYPE and CONSTRAINT] aka Note [Type vs Constraint]
~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC distinguishes Type from Constraint throughout the compiler.
See GHC Proposal #518, and tickets #21623 and #11715.
All types that classify values have a kind of the form
(TYPE rr) or (CONSTRAINT rr)
where the `RuntimeRep` parameter, rr, tells us how the value is represented
at runtime. TYPE and CONSTRAINT are primitive type constructors.
See Note [RuntimeRep polymorphism] about the `rr` parameter.
There are a bunch of type synonyms and data types defined in the
library ghc-prim:GHC.Types. All of them are also wired in to GHC, in
GHC.Builtin.Types
type Constraint = CONSTRAINT LiftedRep :: Type
type Type = TYPE LiftedRep :: Type
type UnliftedType = TYPE UnliftedRep :: Type
type LiftedRep = BoxedRep Lifted :: RuntimeRep
type UnliftedRep = BoxedRep Unlifted :: RuntimeRep
data RuntimeRep -- Defined in ghc-prim:GHC.Types
= BoxedRep Levity
| IntRep
| FloatRep
.. etc ..
data Levity = Lifted | Unlifted
We abbreviate '*' specially (with -XStarIsType), as if we had this:
type * = Type
So for example:
Int :: TYPE (BoxedRep Lifted)
Array# Int :: TYPE (BoxedRep Unlifted)
Int# :: TYPE IntRep
Float# :: TYPE FloatRep
Maybe :: TYPE (BoxedRep Lifted) -> TYPE (BoxedRep Lifted)
(# , #) :: TYPE r1 -> TYPE r2 -> TYPE (TupleRep [r1, r2])
Eq Int :: CONSTRAINT (BoxedRep Lifted)
IP "foo" Int :: CONSTRAINT (BoxedRep Lifted)
a ~ b :: CONSTRAINT (BoxedRep Lifted)
a ~# b :: CONSTRAINT (TupleRep [])
Constraints are mostly lifted, but unlifted ones are useful too.
Specifically (a ~# b) :: CONSTRAINT (TupleRep [])
Wrinkles
(W1) Type and Constraint are considered distinct throughout GHC. But they
are not /apart/: see Note [Type and Constraint are not apart]
(W2) We need two absent-error Ids, aBSENT_ERROR_ID for types of kind Type, and
aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint. Ditto noInlineId
vs noInlieConstraintId in GHC.Types.Id.Make; see Note [inlineId magic].
(W3) We need a TypeOrConstraint flag in LitRubbish.
Note [Type and Constraint are not apart]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type and Constraint are not equal (eqType) but they are not /apart/
either. Reason (c.f. #7451):
* We want to allow newtype classes, where
class C a where { op :: a -> a }
* The axiom for such a class will look like
axiom axC a :: (C a :: Constraint) ~# (a->a :: Type)
* This axiom connects a type of kind Type with one of kind Constraint
That is dangerous: kindCo (axC Int) :: Type ~N Constraint
And /that/ is bad because we could have
type family F a where
F Type = Int
F Constraint = Bool
So now we can prove Int ~N Bool, and all is lost. We prevent this
by saying that Type and Constraint are not Apart, which makes the
above type family instances illegal.
So we ensure that Type and Constraint are not apart; or, more
precisely, that TYPE and CONSTRAINT are not apart. This
non-apart-ness check is implemented in GHC.Core.Unify.unify_ty: look
for `maybeApart MARTypeVsConstraint`.
Note that, as before, nothing prevents writing instances like:
instance C (Proxy @Type a) where ...
In particular, TYPE and CONSTRAINT (and the synonyms Type, Constraint
etc) are all allowed in instance heads. It's just that TYPE is not
apart from CONSTRAINT, which means that the above instance would
irretrievably overlap with:
instance C (Proxy @Constraint a) where ...
Wrinkles
(W1) In GHC.Core.RoughMap.roughMtchTyConName we are careful to map
TYPE and CONSTRAINT to the same rough-map key. Reason:
If we insert (F @Constraint tys) into a FamInstEnv, and look
up (F @Type tys'), we /must/ ensure that the (C @Constraint tys)
appears among the unifiables when we do the lookupRM' in
GHC.Core.FamInstEnv.lookup_fam_inst_env'. So for the RoughMap we
simply pretend that they are the same type constructor. If we
don't, we'll treat them as fully apart, which is unsound.
(W2) We must extend this treatment to the different arrow types (see
Note [Function type constructors and FunTy]): if we have
FunCo (axC Int) <Int> :: (C Int => Int) ~ ((Int -> Int) -> Int),
then we could extract an equality between (=>) and (->). We thus
must ensure that (=>) and (->) (among the other arrow combinations)
are not Apart. See the FunTy/FunTy case in GHC.Core.Unify.unify_ty.
(W3) Are (TYPE IntRep) and (CONSTRAINT WordRep) apart? In truth yes,
they are. But it's easier to say that htey are not apart, by
reporting "maybeApart" (which is always safe), rather than
recurse into the arguments (whose kinds may be utterly different)
to look for apartness inside them. Again this is in
GHC.Core.Unify.unify_ty.
(W4) We give a different Typeable instance for Type than for Constraint.
For type classes instances (unlike type family instances) it is not
/unsound/ for Type and Constraint to treated as fully distinct; and
for Typeable is desirable to give them different TypeReps.
Certainly,
- both Type and Constraint must /have/ a TypeRep, and
- they had better not be the same (else eqTypeRep would give us
a proof Type ~N Constraint, which we do not want
So in GHC.Tc.Instance.Class.matchTypeable, Type and Constraint are
treated as separate TyCons; i.e. given no special treatment.
Note [RuntimeRep polymorphism]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Generally speaking, you can't be polymorphic in `RuntimeRep`. E.g
f :: forall (rr:RuntimeRep) (a:TYPE rr). a -> [a]
f = /\(rr:RuntimeRep) (a:rr) \(a:rr). ...
This is no good: we could not generate code for 'f', because the
calling convention for 'f' varies depending on whether the argument is
a a Int, Int#, or Float#. (You could imagine generating specialised
code, one for each instantiation of 'rr', but we don't do that.)
Certain functions CAN be runtime-rep-polymorphic, because the code
generator never has to manipulate a value of type 'a :: TYPE rr'.
* error :: forall (rr:RuntimeRep) (a:TYPE rr). String -> a
Code generator never has to manipulate the return value.
* unsafeCoerce#, defined in Desugar.mkUnsafeCoercePair:
Always inlined to be a no-op
unsafeCoerce# :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
(a :: TYPE r1) (b :: TYPE r2).
a -> b
* Unboxed tuples, and unboxed sums, defined in GHC.Builtin.Types
Always inlined, and hence specialised to the call site
(#,#) :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
(a :: TYPE r1) (b :: TYPE r2).
a -> b -> TYPE ('TupleRep '[r1, r2])
-}
----------------------
tYPETyCon :: TyCon
tYPETyCon = mkPrimTyCon tYPETyConName
(mkTemplateAnonTyConBinders [runtimeRepTy])
liftedTypeKind
[Nominal]
tYPETyConName :: Name
tYPETyConName = mkPrimTc (fsLit "TYPE") tYPETyConKey tYPETyCon
tYPEKind :: Type
tYPEKind = mkTyConTy tYPETyCon
----------------------
cONSTRAINTTyCon :: TyCon
cONSTRAINTTyCon = mkPrimTyCon cONSTRAINTTyConName
(mkTemplateAnonTyConBinders [runtimeRepTy])
liftedTypeKind
[Nominal]
cONSTRAINTTyConName :: Name
cONSTRAINTTyConName = mkPrimTc (fsLit "CONSTRAINT") cONSTRAINTTyConKey cONSTRAINTTyCon
cONSTRAINTKind :: Type
cONSTRAINTKind = mkTyConTy cONSTRAINTTyCon
{- *********************************************************************
* *
Basic primitive types (Char#, Int#, etc.)
* *
********************************************************************* -}
charPrimTy :: Type
charPrimTy = mkTyConTy charPrimTyCon
charPrimTyCon :: TyCon
charPrimTyCon = pcPrimTyCon0 charPrimTyConName wordRepDataConTy
intPrimTy :: Type
intPrimTy = mkTyConTy intPrimTyCon
intPrimTyCon :: TyCon
intPrimTyCon = pcPrimTyCon0 intPrimTyConName intRepDataConTy
int8PrimTy :: Type
int8PrimTy = mkTyConTy int8PrimTyCon
int8PrimTyCon :: TyCon
int8PrimTyCon = pcPrimTyCon0 int8PrimTyConName int8RepDataConTy
int16PrimTy :: Type
int16PrimTy = mkTyConTy int16PrimTyCon
int16PrimTyCon :: TyCon
int16PrimTyCon = pcPrimTyCon0 int16PrimTyConName int16RepDataConTy
int32PrimTy :: Type
int32PrimTy = mkTyConTy int32PrimTyCon
int32PrimTyCon :: TyCon
int32PrimTyCon = pcPrimTyCon0 int32PrimTyConName int32RepDataConTy
int64PrimTy :: Type
int64PrimTy = mkTyConTy int64PrimTyCon
int64PrimTyCon :: TyCon
int64PrimTyCon = pcPrimTyCon0 int64PrimTyConName int64RepDataConTy
wordPrimTy :: Type
wordPrimTy = mkTyConTy wordPrimTyCon
wordPrimTyCon :: TyCon
wordPrimTyCon = pcPrimTyCon0 wordPrimTyConName wordRepDataConTy
word8PrimTy :: Type
word8PrimTy = mkTyConTy word8PrimTyCon
word8PrimTyCon :: TyCon
word8PrimTyCon = pcPrimTyCon0 word8PrimTyConName word8RepDataConTy
word16PrimTy :: Type
word16PrimTy = mkTyConTy word16PrimTyCon
word16PrimTyCon :: TyCon
word16PrimTyCon = pcPrimTyCon0 word16PrimTyConName word16RepDataConTy
word32PrimTy :: Type
word32PrimTy = mkTyConTy word32PrimTyCon
word32PrimTyCon :: TyCon
word32PrimTyCon = pcPrimTyCon0 word32PrimTyConName word32RepDataConTy
word64PrimTy :: Type
word64PrimTy = mkTyConTy word64PrimTyCon
word64PrimTyCon :: TyCon
word64PrimTyCon = pcPrimTyCon0 word64PrimTyConName word64RepDataConTy
addrPrimTy :: Type
addrPrimTy = mkTyConTy addrPrimTyCon
addrPrimTyCon :: TyCon
addrPrimTyCon = pcPrimTyCon0 addrPrimTyConName addrRepDataConTy
floatPrimTy :: Type
floatPrimTy = mkTyConTy floatPrimTyCon
floatPrimTyCon :: TyCon
floatPrimTyCon = pcPrimTyCon0 floatPrimTyConName floatRepDataConTy
doublePrimTy :: Type
doublePrimTy = mkTyConTy doublePrimTyCon
doublePrimTyCon :: TyCon
doublePrimTyCon = pcPrimTyCon0 doublePrimTyConName doubleRepDataConTy
{-
************************************************************************
* *
The @State#@ type (and @_RealWorld@ types)
* *
************************************************************************
Note [The equality types story]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC sports a veritable menagerie of equality types:
Type or Lifted? Hetero? Role Built in Defining module
class? L/U TyCon
-----------------------------------------------------------------------------------------
~# T U hetero nominal eqPrimTyCon GHC.Prim
~~ C L hetero nominal heqTyCon GHC.Types
~ C L homo nominal eqTyCon GHC.Types
:~: T L homo nominal (not built-in) Data.Type.Equality
:~~: T L hetero nominal (not built-in) Data.Type.Equality
~R# T U hetero repr eqReprPrimTy GHC.Prim
Coercible C L homo repr coercibleTyCon GHC.Types
Coercion T L homo repr (not built-in) Data.Type.Coercion
~P# T U hetero phantom eqPhantPrimTyCon GHC.Prim
Recall that "hetero" means the equality can related types of different
kinds. Knowing that (t1 ~# t2) or (t1 ~R# t2) or even that (t1 ~P# t2)
also means that (k1 ~# k2), where (t1 :: k1) and (t2 :: k2).
To produce less confusion for end users, when not dumping and without
-fprint-equality-relations, each of these groups is printed as the bottommost
listed equality. That is, (~#) and (~~) are both rendered as (~) in
error messages, and (~R#) is rendered as Coercible.
Let's take these one at a time:
--------------------------
(~#) :: forall k1 k2. k1 -> k2 -> TYPE (TupleRep '[])
--------------------------
This is The Type Of Equality in GHC. It classifies nominal coercions.
This type is used in the solver for recording equality constraints.
It responds "yes" to Type.isEqPrimPred and classifies as an EqPred in
Type.classifyPredType.
All wanted constraints of this type are built with coercion holes.
(See Note [Coercion holes] in GHC.Core.TyCo.Rep.) But see also
Note [Deferred errors for coercion holes] in GHC.Tc.Errors to see how
equality constraints are deferred.
Within GHC, ~# is called eqPrimTyCon, and it is defined in GHC.Builtin.Types.Prim.
--------------------------
(~~) :: forall k1 k2. k1 -> k2 -> Constraint
--------------------------
This is (almost) an ordinary class, defined as if by
class a ~# b => a ~~ b
instance a ~# b => a ~~ b
Here's what's unusual about it:
* We can't actually declare it that way because we don't have syntax for ~#.
And ~# isn't a constraint, so even if we could write it, it wouldn't kind
check.
* Users cannot write instances of it.
* It is "naturally coherent". This means that the solver won't hesitate to
solve a goal of type (a ~~ b) even if there is, say (Int ~~ c) in the
context. (Normally, it waits to learn more, just in case the given
influences what happens next.) See Note [Naturally coherent classes]
in GHC.Tc.Solver.Interact.
* It always terminates. That is, in the UndecidableInstances checks, we
don't worry if a (~~) constraint is too big, as we know that solving
equality terminates.
On the other hand, this behaves just like any class w.r.t. eager superclass
unpacking in the solver. So a lifted equality given quickly becomes an unlifted
equality given. This is good, because the solver knows all about unlifted
equalities. There is some special-casing in GHC.Tc.Solver.Interact.matchClassInst to
pretend that there is an instance of this class, as we can't write the instance
in Haskell.
Within GHC, ~~ is called heqTyCon, and it is defined in GHC.Builtin.Types.
--------------------------
(~) :: forall k. k -> k -> Constraint
--------------------------
This is /exactly/ like (~~), except with a homogeneous kind.
It is an almost-ordinary class defined as if by
class a ~# b => (a :: k) ~ (b :: k)
instance a ~# b => a ~ b
* All the bullets for (~~) apply
* In addition (~) is magical syntax, as ~ is a reserved symbol.
It cannot be exported or imported.
* The data constructor of the class is "Eq#", not ":C~"
Within GHC, ~ is called eqTyCon, and it is defined in GHC.Builtin.Types.
Historical note: prior to July 18 (~) was defined as a
more-ordinary class with (~~) as a superclass. But that made it
special in different ways; and the extra superclass selections to
get from (~) to (~#) via (~~) were tiresome. Now it's defined
uniformly with (~~) and Coercible; much nicer.)
--------------------------
(:~:) :: forall k. k -> k -> *
(:~~:) :: forall k1 k2. k1 -> k2 -> *
--------------------------
These are perfectly ordinary GADTs, wrapping (~) and (~~) resp.
They are not defined within GHC at all.
--------------------------
(~R#) :: forall k1 k2. k1 -> k2 -> TYPE (TupleRep '[])
--------------------------
The is the representational analogue of ~#. This is the type of representational
equalities that the solver works on. All wanted constraints of this type are
built with coercion holes.
Within GHC, ~R# is called eqReprPrimTyCon, and it is defined in GHC.Builtin.Types.Prim.
--------------------------
Coercible :: forall k. k -> k -> Constraint
--------------------------
This is quite like (~~) in the way it's defined and treated within GHC, but
it's homogeneous. Homogeneity helps with type inference (as GHC can solve one
kind from the other) and, in my (Richard's) estimation, will be more intuitive
for users.
An alternative design included HCoercible (like (~~)) and Coercible (like (~)).
One annoyance was that we want `coerce :: Coercible a b => a -> b`, and
we need the type of coerce to be fully wired-in. So the HCoercible/Coercible
split required that both types be fully wired-in. Instead of doing this,
I just got rid of HCoercible, as I'm not sure who would use it, anyway.
Within GHC, Coercible is called coercibleTyCon, and it is defined in
GHC.Builtin.Types.
--------------------------
Coercion :: forall k. k -> k -> *
--------------------------
This is a perfectly ordinary GADT, wrapping Coercible. It is not defined
within GHC at all.
--------------------------
(~P#) :: forall k1 k2. k1 -> k2 -> TYPE (TupleRep '[])
--------------------------
This is the phantom analogue of ~# and it is barely used at all.
(The solver has no idea about this one.) Here is the motivation:
data Phant a = MkPhant
type role Phant phantom
Phant <Int, Bool>_P :: Phant Int ~P# Phant Bool
We just need to have something to put on that last line. You probably
don't need to worry about it.
Note [The State# TyCon]
~~~~~~~~~~~~~~~~~~~~~~~
State# is the primitive, unlifted type of states. It has one type parameter,
thus
State# RealWorld
or
State# s
where s is a type variable. The only purpose of the type parameter is to
keep different state threads separate. It is represented by nothing at all.
The type parameter to State# is intended to keep separate threads separate.
Even though this parameter is not used in the definition of State#, it is
given role Nominal to enforce its intended use.
-}
mkStatePrimTy :: Type -> Type
mkStatePrimTy ty = TyConApp statePrimTyCon [ty]
statePrimTyCon :: TyCon -- See Note [The State# TyCon]
statePrimTyCon = pcPrimTyCon statePrimTyConName [Nominal] zeroBitRepTy
{-
RealWorld is deeply magical. It is *primitive*, but it is not
*unlifted* (hence ptrArg). We never manipulate values of type
RealWorld; it's only used in the type system, to parameterise State#.
-}
realWorldTyCon :: TyCon
realWorldTyCon = mkPrimTyCon realWorldTyConName [] liftedTypeKind []
realWorldTy :: Type
realWorldTy = mkTyConTy realWorldTyCon
realWorldStatePrimTy :: Type
realWorldStatePrimTy = mkStatePrimTy realWorldTy -- State# RealWorld
mkProxyPrimTy :: Type -> Type -> Type
mkProxyPrimTy k ty = TyConApp proxyPrimTyCon [k, ty]
proxyPrimTyCon :: TyCon
proxyPrimTyCon = mkPrimTyCon proxyPrimTyConName binders res_kind [Nominal,Phantom]
where
-- Kind: forall k. k -> TYPE (TupleRep '[])
binders = mkTemplateTyConBinders [liftedTypeKind] id
res_kind = unboxedTupleKind []
{- *********************************************************************
* *
Primitive equality constraints
See Note [The equality types story]
* *
********************************************************************* -}
eqPrimTyCon :: TyCon -- The representation type for equality predicates
-- See Note [The equality types story]
eqPrimTyCon = mkPrimTyCon eqPrimTyConName binders res_kind roles
where
-- Kind :: forall k1 k2. k1 -> k2 -> CONSTRAINT ZeroBitRep
binders = mkTemplateTyConBinders [liftedTypeKind, liftedTypeKind] id
res_kind = TyConApp cONSTRAINTTyCon [zeroBitRepTy]
roles = [Nominal, Nominal, Nominal, Nominal]
-- like eqPrimTyCon, but the type for *Representational* coercions
-- this should only ever appear as the type of a covar. Its role is
-- interpreted in coercionRole
eqReprPrimTyCon :: TyCon -- See Note [The equality types story]
eqReprPrimTyCon = mkPrimTyCon eqReprPrimTyConName binders res_kind roles
where
-- Kind :: forall k1 k2. k1 -> k2 -> CONSTRAINT ZeroBitRep
binders = mkTemplateTyConBinders [liftedTypeKind, liftedTypeKind] id
res_kind = TyConApp cONSTRAINTTyCon [zeroBitRepTy]
roles = [Nominal, Nominal, Representational, Representational]
-- like eqPrimTyCon, but the type for *Phantom* coercions.
-- This is only used to make higher-order equalities. Nothing
-- should ever actually have this type!
eqPhantPrimTyCon :: TyCon
eqPhantPrimTyCon = mkPrimTyCon eqPhantPrimTyConName binders res_kind roles
where
-- Kind :: forall k1 k2. k1 -> k2 -> CONSTRAINT ZeroBitRep
binders = mkTemplateTyConBinders [liftedTypeKind, liftedTypeKind] id
res_kind = TyConApp cONSTRAINTTyCon [zeroBitRepTy]
roles = [Nominal, Nominal, Phantom, Phantom]
-- | Given a Role, what TyCon is the type of equality predicates at that role?
equalityTyCon :: Role -> TyCon
equalityTyCon Nominal = eqPrimTyCon
equalityTyCon Representational = eqReprPrimTyCon
equalityTyCon Phantom = eqPhantPrimTyCon
{- *********************************************************************
* *
The primitive array types
* *
********************************************************************* -}
arrayPrimTyCon, mutableArrayPrimTyCon, mutableByteArrayPrimTyCon,
byteArrayPrimTyCon,
smallArrayPrimTyCon, smallMutableArrayPrimTyCon :: TyCon
arrayPrimTyCon = pcPrimTyCon_LevPolyLastArg arrayPrimTyConName [Representational] unliftedRepTy
mutableArrayPrimTyCon = pcPrimTyCon_LevPolyLastArg mutableArrayPrimTyConName [Nominal, Representational] unliftedRepTy
mutableByteArrayPrimTyCon = pcPrimTyCon mutableByteArrayPrimTyConName [Nominal] unliftedRepTy
byteArrayPrimTyCon = pcPrimTyCon0 byteArrayPrimTyConName unliftedRepTy
smallArrayPrimTyCon = pcPrimTyCon_LevPolyLastArg smallArrayPrimTyConName [Representational] unliftedRepTy
smallMutableArrayPrimTyCon = pcPrimTyCon_LevPolyLastArg smallMutableArrayPrimTyConName [Nominal, Representational] unliftedRepTy
mkArrayPrimTy :: Type -> Type
mkArrayPrimTy elt = TyConApp arrayPrimTyCon [getLevity elt, elt]
byteArrayPrimTy :: Type
byteArrayPrimTy = mkTyConTy byteArrayPrimTyCon
mkSmallArrayPrimTy :: Type -> Type
mkSmallArrayPrimTy elt = TyConApp smallArrayPrimTyCon [getLevity elt, elt]
mkMutableArrayPrimTy :: Type -> Type -> Type
mkMutableArrayPrimTy s elt = TyConApp mutableArrayPrimTyCon [getLevity elt, s, elt]
mkMutableByteArrayPrimTy :: Type -> Type
mkMutableByteArrayPrimTy s = TyConApp mutableByteArrayPrimTyCon [s]
mkSmallMutableArrayPrimTy :: Type -> Type -> Type
mkSmallMutableArrayPrimTy s elt = TyConApp smallMutableArrayPrimTyCon [getLevity elt, s, elt]
{- *********************************************************************
* *
The mutable variable type
* *
********************************************************************* -}
mutVarPrimTyCon :: TyCon
mutVarPrimTyCon = pcPrimTyCon_LevPolyLastArg mutVarPrimTyConName [Nominal, Representational] unliftedRepTy
mkMutVarPrimTy :: Type -> Type -> Type
mkMutVarPrimTy s elt = TyConApp mutVarPrimTyCon [getLevity elt, s, elt]
{-
************************************************************************
* *
\subsection[TysPrim-io-port-var]{The synchronizing I/O Port type}
* *
************************************************************************
-}
ioPortPrimTyCon :: TyCon
ioPortPrimTyCon = pcPrimTyCon_LevPolyLastArg ioPortPrimTyConName [Nominal, Representational] unliftedRepTy
mkIOPortPrimTy :: Type -> Type -> Type
mkIOPortPrimTy s elt = TyConApp ioPortPrimTyCon [getLevity elt, s, elt]
{-
************************************************************************
* *
The synchronizing variable type
\subsection[TysPrim-synch-var]{The synchronizing variable type}
* *
************************************************************************
-}
mVarPrimTyCon :: TyCon
mVarPrimTyCon = pcPrimTyCon_LevPolyLastArg mVarPrimTyConName [Nominal, Representational] unliftedRepTy
mkMVarPrimTy :: Type -> Type -> Type
mkMVarPrimTy s elt = TyConApp mVarPrimTyCon [getLevity elt, s, elt]
{-
************************************************************************
* *
The transactional variable type
* *
************************************************************************
-}
tVarPrimTyCon :: TyCon
tVarPrimTyCon = pcPrimTyCon_LevPolyLastArg tVarPrimTyConName [Nominal, Representational] unliftedRepTy
mkTVarPrimTy :: Type -> Type -> Type
mkTVarPrimTy s elt = TyConApp tVarPrimTyCon [getLevity elt, s, elt]
{-
************************************************************************
* *
The stable-pointer type
* *
************************************************************************
-}
stablePtrPrimTyCon :: TyCon
stablePtrPrimTyCon = pcPrimTyCon_LevPolyLastArg stablePtrPrimTyConName [Representational] addrRepDataConTy
mkStablePtrPrimTy :: Type -> Type
mkStablePtrPrimTy ty = TyConApp stablePtrPrimTyCon [getLevity ty, ty]
{-
************************************************************************
* *
The stable-name type
* *
************************************************************************
-}
stableNamePrimTyCon :: TyCon
stableNamePrimTyCon = pcPrimTyCon_LevPolyLastArg stableNamePrimTyConName [Phantom] unliftedRepTy
mkStableNamePrimTy :: Type -> Type
mkStableNamePrimTy ty = TyConApp stableNamePrimTyCon [getLevity ty, ty]
{-
************************************************************************
* *
The Compact NFData (CNF) type
* *
************************************************************************
-}
compactPrimTyCon :: TyCon
compactPrimTyCon = pcPrimTyCon0 compactPrimTyConName unliftedRepTy
compactPrimTy :: Type
compactPrimTy = mkTyConTy compactPrimTyCon
{-
************************************************************************
* *
The @StackSnapshot#@ type
* *
************************************************************************
-}
stackSnapshotPrimTyCon :: TyCon
stackSnapshotPrimTyCon = pcPrimTyCon0 stackSnapshotPrimTyConName unliftedRepTy
stackSnapshotPrimTy :: Type
stackSnapshotPrimTy = mkTyConTy stackSnapshotPrimTyCon
{-
************************************************************************
* *
The ``bytecode object'' type
* *
************************************************************************
-}
-- Unlike most other primitive types, BCO is lifted. This is because in
-- general a BCO may be a thunk for the reasons given in Note [Updatable CAF
-- BCOs] in GHCi.CreateBCO.
bcoPrimTy :: Type
bcoPrimTy = mkTyConTy bcoPrimTyCon
bcoPrimTyCon :: TyCon
bcoPrimTyCon = pcPrimTyCon0 bcoPrimTyConName liftedRepTy
{-
************************************************************************
* *
The ``weak pointer'' type
* *
************************************************************************
-}
weakPrimTyCon :: TyCon
weakPrimTyCon = pcPrimTyCon_LevPolyLastArg weakPrimTyConName [Representational] unliftedRepTy
mkWeakPrimTy :: Type -> Type
mkWeakPrimTy v = TyConApp weakPrimTyCon [getLevity v, v]
{-
************************************************************************
* *
The ``thread id'' type
* *
************************************************************************
A thread id is represented by a pointer to the TSO itself, to ensure
that they are always unique and we can always find the TSO for a given
thread id. However, this has the unfortunate consequence that a
ThreadId# for a given thread is treated as a root by the garbage
collector and can keep TSOs around for too long.
Hence the programmer API for thread manipulation uses a weak pointer
to the thread id internally.
-}
threadIdPrimTy :: Type
threadIdPrimTy = mkTyConTy threadIdPrimTyCon
threadIdPrimTyCon :: TyCon
threadIdPrimTyCon = pcPrimTyCon0 threadIdPrimTyConName unliftedRepTy
{-
************************************************************************
* *
The ``prompt tag'' type
* *
************************************************************************
-}
promptTagPrimTyCon :: TyCon
promptTagPrimTyCon = pcPrimTyCon promptTagPrimTyConName [Representational] unliftedRepTy
mkPromptTagPrimTy :: Type -> Type
mkPromptTagPrimTy v = TyConApp promptTagPrimTyCon [v]
{-
************************************************************************
* *
\subsection{SIMD vector types}
* *
************************************************************************
-}
#include "primop-vector-tys.hs-incl"
|