1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
Taken quite directly from the Peyton Jones/Lester paper.
-}
{-# LANGUAGE TypeFamilies #-}
-- | A module concerned with finding the free variables of an expression.
module GHC.Core.FVs (
-- * Free variables of expressions and binding groups
exprFreeVars, exprsFreeVars,
exprFreeVarsDSet,
exprFreeVarsList, exprsFreeVarsList,
exprFreeIds, exprsFreeIds,
exprFreeIdsDSet, exprsFreeIdsDSet,
exprFreeIdsList, exprsFreeIdsList,
bindFreeVars,
-- * Selective free variables of expressions
InterestingVarFun,
exprSomeFreeVars, exprsSomeFreeVars,
exprSomeFreeVarsList, exprsSomeFreeVarsList,
-- * Free variables of Rules, Vars and Ids
varTypeTyCoVars,
varTypeTyCoFVs,
idUnfoldingVars, idFreeVars, dIdFreeVars,
bndrRuleAndUnfoldingVarsDSet,
bndrRuleAndUnfoldingIds,
idFVs,
idRuleVars, stableUnfoldingVars,
ruleFreeVars, rulesFreeVars,
rulesFreeVarsDSet, mkRuleInfo,
ruleLhsFreeIds, ruleLhsFreeIdsList,
ruleRhsFreeVars, rulesRhsFreeIds,
exprFVs,
-- * Orphan names
orphNamesOfType, orphNamesOfTypes,
orphNamesOfCo, orphNamesOfCoCon, orphNamesOfAxiomLHS,
exprsOrphNames,
-- * Core syntax tree annotation with free variables
FVAnn, -- annotation, abstract
CoreExprWithFVs, -- = AnnExpr Id FVAnn
CoreExprWithFVs', -- = AnnExpr' Id FVAnn
CoreBindWithFVs, -- = AnnBind Id FVAnn
CoreAltWithFVs, -- = AnnAlt Id FVAnn
freeVars, -- CoreExpr -> CoreExprWithFVs
freeVarsBind, -- CoreBind -> DVarSet -> (DVarSet, CoreBindWithFVs)
freeVarsOf, -- CoreExprWithFVs -> DIdSet
freeVarsOfAnn
) where
import GHC.Prelude
import GHC.Core
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.Name.Set
import GHC.Types.Name
import GHC.Types.Tickish
import GHC.Types.Var.Set
import GHC.Types.Var
import GHC.Core.Type
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.FVs
import GHC.Core.TyCon
import GHC.Core.Coercion.Axiom
import GHC.Builtin.Types( unrestrictedFunTyConName )
import GHC.Builtin.Types.Prim( fUNTyCon )
import GHC.Data.Maybe( orElse )
import GHC.Utils.FV as FV
import GHC.Utils.Misc
import GHC.Utils.Panic.Plain
{-
************************************************************************
* *
\section{Finding the free variables of an expression}
* *
************************************************************************
This function simply finds the free variables of an expression.
So far as type variables are concerned, it only finds tyvars that are
* free in type arguments,
* free in the type of a binder,
but not those that are free in the type of variable occurrence.
-}
-- | Find all locally-defined free Ids or type variables in an expression
-- returning a non-deterministic set.
exprFreeVars :: CoreExpr -> VarSet
exprFreeVars = fvVarSet . exprFVs
-- | Find all locally-defined free Ids or type variables in an expression
-- returning a composable FV computation. See Note [FV naming conventions] in "GHC.Utils.FV"
-- for why export it.
exprFVs :: CoreExpr -> FV
exprFVs = filterFV isLocalVar . expr_fvs
-- | Find all locally-defined free Ids or type variables in an expression
-- returning a deterministic set.
exprFreeVarsDSet :: CoreExpr -> DVarSet
exprFreeVarsDSet = fvDVarSet . exprFVs
-- | Find all locally-defined free Ids or type variables in an expression
-- returning a deterministically ordered list.
exprFreeVarsList :: CoreExpr -> [Var]
exprFreeVarsList = fvVarList . exprFVs
-- | Find all locally-defined free Ids in an expression
exprFreeIds :: CoreExpr -> IdSet -- Find all locally-defined free Ids
exprFreeIds = exprSomeFreeVars isLocalId
exprsFreeIds :: [CoreExpr] -> IdSet -- Find all locally-defined free Ids
exprsFreeIds = exprsSomeFreeVars isLocalId
-- | Find all locally-defined free Ids in an expression
-- returning a deterministic set.
exprFreeIdsDSet :: CoreExpr -> DIdSet -- Find all locally-defined free Ids
exprFreeIdsDSet = exprSomeFreeVarsDSet isLocalId
-- | Find all locally-defined free Ids in an expression
-- returning a deterministically ordered list.
exprFreeIdsList :: CoreExpr -> [Id] -- Find all locally-defined free Ids
exprFreeIdsList = exprSomeFreeVarsList isLocalId
-- | Find all locally-defined free Ids in several expressions
-- returning a deterministic set.
exprsFreeIdsDSet :: [CoreExpr] -> DIdSet -- Find all locally-defined free Ids
exprsFreeIdsDSet = exprsSomeFreeVarsDSet isLocalId
-- | Find all locally-defined free Ids in several expressions
-- returning a deterministically ordered list.
exprsFreeIdsList :: [CoreExpr] -> [Id] -- Find all locally-defined free Ids
exprsFreeIdsList = exprsSomeFreeVarsList isLocalId
-- | Find all locally-defined free Ids or type variables in several expressions
-- returning a non-deterministic set.
exprsFreeVars :: [CoreExpr] -> VarSet
exprsFreeVars = fvVarSet . exprsFVs
-- | Find all locally-defined free Ids or type variables in several expressions
-- returning a composable FV computation. See Note [FV naming conventions] in "GHC.Utils.FV"
-- for why export it.
exprsFVs :: [CoreExpr] -> FV
exprsFVs exprs = mapUnionFV exprFVs exprs
-- | Find all locally-defined free Ids or type variables in several expressions
-- returning a deterministically ordered list.
exprsFreeVarsList :: [CoreExpr] -> [Var]
exprsFreeVarsList = fvVarList . exprsFVs
-- | Find all locally defined free Ids in a binding group
bindFreeVars :: CoreBind -> VarSet
bindFreeVars (NonRec b r) = fvVarSet $ filterFV isLocalVar $ rhs_fvs (b,r)
bindFreeVars (Rec prs) = fvVarSet $ filterFV isLocalVar $
addBndrs (map fst prs)
(mapUnionFV rhs_fvs prs)
-- | Finds free variables in an expression selected by a predicate
exprSomeFreeVars :: InterestingVarFun -- ^ Says which 'Var's are interesting
-> CoreExpr
-> VarSet
exprSomeFreeVars fv_cand e = fvVarSet $ filterFV fv_cand $ expr_fvs e
-- | Finds free variables in an expression selected by a predicate
-- returning a deterministically ordered list.
exprSomeFreeVarsList :: InterestingVarFun -- ^ Says which 'Var's are interesting
-> CoreExpr
-> [Var]
exprSomeFreeVarsList fv_cand e = fvVarList $ filterFV fv_cand $ expr_fvs e
-- | Finds free variables in an expression selected by a predicate
-- returning a deterministic set.
exprSomeFreeVarsDSet :: InterestingVarFun -- ^ Says which 'Var's are interesting
-> CoreExpr
-> DVarSet
exprSomeFreeVarsDSet fv_cand e = fvDVarSet $ filterFV fv_cand $ expr_fvs e
-- | Finds free variables in several expressions selected by a predicate
exprsSomeFreeVars :: InterestingVarFun -- Says which 'Var's are interesting
-> [CoreExpr]
-> VarSet
exprsSomeFreeVars fv_cand es =
fvVarSet $ filterFV fv_cand $ mapUnionFV expr_fvs es
-- | Finds free variables in several expressions selected by a predicate
-- returning a deterministically ordered list.
exprsSomeFreeVarsList :: InterestingVarFun -- Says which 'Var's are interesting
-> [CoreExpr]
-> [Var]
exprsSomeFreeVarsList fv_cand es =
fvVarList $ filterFV fv_cand $ mapUnionFV expr_fvs es
-- | Finds free variables in several expressions selected by a predicate
-- returning a deterministic set.
exprsSomeFreeVarsDSet :: InterestingVarFun -- ^ Says which 'Var's are interesting
-> [CoreExpr]
-> DVarSet
exprsSomeFreeVarsDSet fv_cand e =
fvDVarSet $ filterFV fv_cand $ mapUnionFV expr_fvs e
-- Comment about obsolete code
-- We used to gather the free variables the RULES at a variable occurrence
-- with the following cryptic comment:
-- "At a variable occurrence, add in any free variables of its rule rhss
-- Curiously, we gather the Id's free *type* variables from its binding
-- site, but its free *rule-rhs* variables from its usage sites. This
-- is a little weird. The reason is that the former is more efficient,
-- but the latter is more fine grained, and a makes a difference when
-- a variable mentions itself one of its own rule RHSs"
-- Not only is this "weird", but it's also pretty bad because it can make
-- a function seem more recursive than it is. Suppose
-- f = ...g...
-- g = ...
-- RULE g x = ...f...
-- Then f is not mentioned in its own RHS, and needn't be a loop breaker
-- (though g may be). But if we collect the rule fvs from g's occurrence,
-- it looks as if f mentions itself. (This bites in the eftInt/eftIntFB
-- code in GHC.Enum.)
--
-- Anyway, it seems plain wrong. The RULE is like an extra RHS for the
-- function, so its free variables belong at the definition site.
--
-- Deleted code looked like
-- foldVarSet add_rule_var var_itself_set (idRuleVars var)
-- add_rule_var var set | keep_it fv_cand in_scope var = extendVarSet set var
-- | otherwise = set
-- SLPJ Feb06
addBndr :: CoreBndr -> FV -> FV
addBndr bndr fv fv_cand in_scope acc
= (varTypeTyCoFVs bndr `unionFV`
-- Include type variables in the binder's type
-- (not just Ids; coercion variables too!)
FV.delFV bndr fv) fv_cand in_scope acc
addBndrs :: [CoreBndr] -> FV -> FV
addBndrs bndrs fv = foldr addBndr fv bndrs
expr_fvs :: CoreExpr -> FV
expr_fvs (Type ty) fv_cand in_scope acc =
tyCoFVsOfType ty fv_cand in_scope acc
expr_fvs (Coercion co) fv_cand in_scope acc =
tyCoFVsOfCo co fv_cand in_scope acc
expr_fvs (Var var) fv_cand in_scope acc = FV.unitFV var fv_cand in_scope acc
expr_fvs (Lit _) fv_cand in_scope acc = emptyFV fv_cand in_scope acc
expr_fvs (Tick t expr) fv_cand in_scope acc =
(tickish_fvs t `unionFV` expr_fvs expr) fv_cand in_scope acc
expr_fvs (App fun arg) fv_cand in_scope acc =
(expr_fvs fun `unionFV` expr_fvs arg) fv_cand in_scope acc
expr_fvs (Lam bndr body) fv_cand in_scope acc =
addBndr bndr (expr_fvs body) fv_cand in_scope acc
expr_fvs (Cast expr co) fv_cand in_scope acc =
(expr_fvs expr `unionFV` tyCoFVsOfCo co) fv_cand in_scope acc
expr_fvs (Case scrut bndr ty alts) fv_cand in_scope acc
= (expr_fvs scrut `unionFV` tyCoFVsOfType ty `unionFV` addBndr bndr
(mapUnionFV alt_fvs alts)) fv_cand in_scope acc
where
alt_fvs (Alt _ bndrs rhs) = addBndrs bndrs (expr_fvs rhs)
expr_fvs (Let (NonRec bndr rhs) body) fv_cand in_scope acc
= (rhs_fvs (bndr, rhs) `unionFV` addBndr bndr (expr_fvs body))
fv_cand in_scope acc
expr_fvs (Let (Rec pairs) body) fv_cand in_scope acc
= addBndrs (map fst pairs)
(mapUnionFV rhs_fvs pairs `unionFV` expr_fvs body)
fv_cand in_scope acc
---------
rhs_fvs :: (Id, CoreExpr) -> FV
rhs_fvs (bndr, rhs) = expr_fvs rhs `unionFV`
bndrRuleAndUnfoldingFVs bndr
-- Treat any RULES as extra RHSs of the binding
---------
exprs_fvs :: [CoreExpr] -> FV
exprs_fvs exprs = mapUnionFV expr_fvs exprs
tickish_fvs :: CoreTickish -> FV
tickish_fvs (Breakpoint _ _ ids) = FV.mkFVs ids
tickish_fvs _ = emptyFV
{-
************************************************************************
* *
\section{Free names}
* *
************************************************************************
-}
-- | Finds the free /external/ names of an expression, notably
-- including the names of type constructors (which of course do not show
-- up in 'exprFreeVars').
exprOrphNames :: CoreExpr -> NameSet
-- There's no need to delete local binders, because they will all
-- be /internal/ names.
exprOrphNames e
= go e
where
go (Var v)
| isExternalName n = unitNameSet n
| otherwise = emptyNameSet
where n = idName v
go (Lit _) = emptyNameSet
go (Type ty) = orphNamesOfType ty -- Don't need free tyvars
go (Coercion co) = orphNamesOfCo co
go (App e1 e2) = go e1 `unionNameSet` go e2
go (Lam v e) = go e `delFromNameSet` idName v
go (Tick _ e) = go e
go (Cast e co) = go e `unionNameSet` orphNamesOfCo co
go (Let (NonRec _ r) e) = go e `unionNameSet` go r
go (Let (Rec prs) e) = exprsOrphNames (map snd prs) `unionNameSet` go e
go (Case e _ ty as) = go e `unionNameSet` orphNamesOfType ty
`unionNameSet` unionNameSets (map go_alt as)
go_alt (Alt _ _ r) = go r
-- | Finds the free /external/ names of several expressions: see 'exprOrphNames' for details
exprsOrphNames :: [CoreExpr] -> NameSet
exprsOrphNames es = foldr (unionNameSet . exprOrphNames) emptyNameSet es
{- **********************************************************************
%* *
orphNamesXXX
%* *
%********************************************************************* -}
orphNamesOfTyCon :: TyCon -> NameSet
orphNamesOfTyCon tycon = unitNameSet (getName tycon) `unionNameSet` case tyConClass_maybe tycon of
Nothing -> emptyNameSet
Just cls -> unitNameSet (getName cls)
orphNamesOfType :: Type -> NameSet
orphNamesOfType ty | Just ty' <- coreView ty = orphNamesOfType ty'
-- Look through type synonyms (#4912)
orphNamesOfType (TyVarTy _) = emptyNameSet
orphNamesOfType (LitTy {}) = emptyNameSet
orphNamesOfType (ForAllTy bndr res) = orphNamesOfType (binderType bndr)
`unionNameSet` orphNamesOfType res
orphNamesOfType (TyConApp tycon tys) = func
`unionNameSet` orphNamesOfTyCon tycon
`unionNameSet` orphNamesOfTypes tys
where func = case tys of
arg:_ | tycon == fUNTyCon -> orph_names_of_fun_ty_con arg
_ -> emptyNameSet
orphNamesOfType (FunTy af w arg res) = func
`unionNameSet` unitNameSet fun_tc
`unionNameSet` orphNamesOfType w
`unionNameSet` orphNamesOfType arg
`unionNameSet` orphNamesOfType res
where func | isVisibleFunArg af = orph_names_of_fun_ty_con w
| otherwise = emptyNameSet
fun_tc = tyConName (funTyFlagTyCon af)
orphNamesOfType (AppTy fun arg) = orphNamesOfType fun `unionNameSet` orphNamesOfType arg
orphNamesOfType (CastTy ty co) = orphNamesOfType ty `unionNameSet` orphNamesOfCo co
orphNamesOfType (CoercionTy co) = orphNamesOfCo co
orphNamesOfThings :: (a -> NameSet) -> [a] -> NameSet
orphNamesOfThings f = foldr (unionNameSet . f) emptyNameSet
orphNamesOfTypes :: [Type] -> NameSet
orphNamesOfTypes = orphNamesOfThings orphNamesOfType
orphNamesOfMCo :: MCoercion -> NameSet
orphNamesOfMCo MRefl = emptyNameSet
orphNamesOfMCo (MCo co) = orphNamesOfCo co
orphNamesOfCo :: Coercion -> NameSet
orphNamesOfCo (Refl ty) = orphNamesOfType ty
orphNamesOfCo (GRefl _ ty mco) = orphNamesOfType ty `unionNameSet` orphNamesOfMCo mco
orphNamesOfCo (TyConAppCo _ tc cos) = unitNameSet (getName tc) `unionNameSet` orphNamesOfCos cos
orphNamesOfCo (AppCo co1 co2) = orphNamesOfCo co1 `unionNameSet` orphNamesOfCo co2
orphNamesOfCo (ForAllCo _ kind_co co) = orphNamesOfCo kind_co
`unionNameSet` orphNamesOfCo co
orphNamesOfCo (FunCo { fco_mult = co_mult, fco_arg = co1, fco_res = co2 })
= orphNamesOfCo co_mult
`unionNameSet` orphNamesOfCo co1
`unionNameSet` orphNamesOfCo co2
orphNamesOfCo (CoVarCo _) = emptyNameSet
orphNamesOfCo (AxiomInstCo con _ cos) = orphNamesOfCoCon con `unionNameSet` orphNamesOfCos cos
orphNamesOfCo (UnivCo p _ t1 t2) = orphNamesOfProv p `unionNameSet` orphNamesOfType t1
`unionNameSet` orphNamesOfType t2
orphNamesOfCo (SymCo co) = orphNamesOfCo co
orphNamesOfCo (TransCo co1 co2) = orphNamesOfCo co1 `unionNameSet` orphNamesOfCo co2
orphNamesOfCo (SelCo _ co) = orphNamesOfCo co
orphNamesOfCo (LRCo _ co) = orphNamesOfCo co
orphNamesOfCo (InstCo co arg) = orphNamesOfCo co `unionNameSet` orphNamesOfCo arg
orphNamesOfCo (KindCo co) = orphNamesOfCo co
orphNamesOfCo (SubCo co) = orphNamesOfCo co
orphNamesOfCo (AxiomRuleCo _ cs) = orphNamesOfCos cs
orphNamesOfCo (HoleCo _) = emptyNameSet
orphNamesOfProv :: UnivCoProvenance -> NameSet
orphNamesOfProv (PhantomProv co) = orphNamesOfCo co
orphNamesOfProv (ProofIrrelProv co) = orphNamesOfCo co
orphNamesOfProv (PluginProv _) = emptyNameSet
orphNamesOfProv (CorePrepProv _) = emptyNameSet
orphNamesOfCos :: [Coercion] -> NameSet
orphNamesOfCos = orphNamesOfThings orphNamesOfCo
orphNamesOfCoCon :: CoAxiom br -> NameSet
orphNamesOfCoCon (CoAxiom { co_ax_tc = tc, co_ax_branches = branches })
= orphNamesOfTyCon tc `unionNameSet` orphNamesOfCoAxBranches branches
orphNamesOfCoAxBranches :: Branches br -> NameSet
orphNamesOfCoAxBranches
= foldr (unionNameSet . orphNamesOfCoAxBranch) emptyNameSet . fromBranches
orphNamesOfCoAxBranch :: CoAxBranch -> NameSet
orphNamesOfCoAxBranch (CoAxBranch { cab_lhs = lhs, cab_rhs = rhs })
= orphNamesOfTypes lhs `unionNameSet` orphNamesOfType rhs
-- | `orphNamesOfAxiomLHS` collects the names of the concrete types and
-- type constructors that make up the LHS of a type family instance,
-- including the family name itself.
--
-- For instance, given `type family Foo a b`:
-- `type instance Foo (F (G (H a))) b = ...` would yield [Foo,F,G,H]
--
-- Used (via orphNamesOfFamInst) in the implementation of ":info" in GHCi.
-- and when determining orphan-hood for a FamInst or module
orphNamesOfAxiomLHS :: CoAxiom br -> NameSet
orphNamesOfAxiomLHS axiom
= (orphNamesOfTypes $ concatMap coAxBranchLHS $ fromBranches $ coAxiomBranches axiom)
`extendNameSet` getName (coAxiomTyCon axiom)
-- Detect FUN 'Many as an application of (->), so that :i (->) works as expected
-- (see #8535) Issue #16475 describes a more robust solution
orph_names_of_fun_ty_con :: Mult -> NameSet
orph_names_of_fun_ty_con ManyTy = unitNameSet unrestrictedFunTyConName
orph_names_of_fun_ty_con _ = emptyNameSet
{-
************************************************************************
* *
\section[freevars-everywhere]{Attaching free variables to every sub-expression}
* *
************************************************************************
-}
data RuleFVsFrom
= LhsOnly
| RhsOnly
| BothSides
-- | Those locally-defined variables free in the left and/or right hand sides
-- of the rule, depending on the first argument. Returns an 'FV' computation.
ruleFVs :: RuleFVsFrom -> CoreRule -> FV
ruleFVs !_ (BuiltinRule {}) = emptyFV
ruleFVs from (Rule { ru_fn = _do_not_include
-- See Note [Rule free var hack]
, ru_bndrs = bndrs
, ru_rhs = rhs, ru_args = args })
= filterFV isLocalVar $ addBndrs bndrs (exprs_fvs exprs)
where
exprs = case from of
LhsOnly -> args
RhsOnly -> [rhs]
BothSides -> rhs:args
-- | Those locally-defined variables free in the left and/or right hand sides
-- from several rules, depending on the first argument.
-- Returns an 'FV' computation.
rulesFVs :: RuleFVsFrom -> [CoreRule] -> FV
rulesFVs from = mapUnionFV (ruleFVs from)
-- | Those variables free in the right hand side of a rule returned as a
-- non-deterministic set
ruleRhsFreeVars :: CoreRule -> VarSet
ruleRhsFreeVars = fvVarSet . ruleFVs RhsOnly
-- | Those locally-defined free 'Id's in the right hand side of several rules
-- returned as a non-deterministic set
rulesRhsFreeIds :: [CoreRule] -> VarSet
rulesRhsFreeIds = fvVarSet . filterFV isLocalId . rulesFVs RhsOnly
ruleLhsFreeIds :: CoreRule -> VarSet
-- ^ This finds all locally-defined free Ids on the left hand side of a rule
-- and returns them as a non-deterministic set
ruleLhsFreeIds = fvVarSet . filterFV isLocalId . ruleFVs LhsOnly
ruleLhsFreeIdsList :: CoreRule -> [Var]
-- ^ This finds all locally-defined free Ids on the left hand side of a rule
-- and returns them as a deterministically ordered list
ruleLhsFreeIdsList = fvVarList . filterFV isLocalId . ruleFVs LhsOnly
-- | Those variables free in the both the left right hand sides of a rule
-- returned as a non-deterministic set
ruleFreeVars :: CoreRule -> VarSet
ruleFreeVars = fvVarSet . ruleFVs BothSides
-- | Those variables free in the both the left right hand sides of rules
-- returned as a deterministic set
rulesFreeVarsDSet :: [CoreRule] -> DVarSet
rulesFreeVarsDSet rules = fvDVarSet $ rulesFVs BothSides rules
-- | Those variables free in both the left right hand sides of several rules
rulesFreeVars :: [CoreRule] -> VarSet
rulesFreeVars rules = fvVarSet $ rulesFVs BothSides rules
-- | Make a 'RuleInfo' containing a number of 'CoreRule's, suitable
-- for putting into an 'IdInfo'
mkRuleInfo :: [CoreRule] -> RuleInfo
mkRuleInfo rules = RuleInfo rules (rulesFreeVarsDSet rules)
{-
Note [Rule free var hack] (Not a hack any more)
~~~~~~~~~~~~~~~~~~~~~~~~~
We used not to include the Id in its own rhs free-var set.
Otherwise the occurrence analyser makes bindings recursive:
f x y = x+y
RULE: f (f x y) z ==> f x (f y z)
However, the occurrence analyser distinguishes "non-rule loop breakers"
from "rule-only loop breakers" (see BasicTypes.OccInfo). So it will
put this 'f' in a Rec block, but will mark the binding as a non-rule loop
breaker, which is perfectly inlinable.
-}
{-
************************************************************************
* *
\section[freevars-everywhere]{Attaching free variables to every sub-expression}
* *
************************************************************************
The free variable pass annotates every node in the expression with its
NON-GLOBAL free variables and type variables.
-}
type FVAnn = DVarSet -- See Note [The FVAnn invariant]
{- Note [The FVAnn invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Invariant: a FVAnn, say S, is closed:
That is: if v is in S,
then freevars( v's type/kind ) is also in S
-}
-- | Every node in a binding group annotated with its
-- (non-global) free variables, both Ids and TyVars, and type.
type CoreBindWithFVs = AnnBind Id FVAnn
-- | Every node in an expression annotated with its
-- (non-global) free variables, both Ids and TyVars, and type.
-- NB: see Note [The FVAnn invariant]
type CoreExprWithFVs = AnnExpr Id FVAnn
type CoreExprWithFVs' = AnnExpr' Id FVAnn
-- | Every node in an expression annotated with its
-- (non-global) free variables, both Ids and TyVars, and type.
type CoreAltWithFVs = AnnAlt Id FVAnn
freeVarsOf :: CoreExprWithFVs -> DIdSet
-- ^ Inverse function to 'freeVars'
freeVarsOf (fvs, _) = fvs
-- | Extract the vars reported in a FVAnn
freeVarsOfAnn :: FVAnn -> DIdSet
freeVarsOfAnn fvs = fvs
aFreeVar :: Var -> DVarSet
aFreeVar = unitDVarSet
unionFVs :: DVarSet -> DVarSet -> DVarSet
unionFVs = unionDVarSet
unionFVss :: [DVarSet] -> DVarSet
unionFVss = unionDVarSets
delBindersFV :: [Var] -> DVarSet -> DVarSet
delBindersFV bs fvs = foldr delBinderFV fvs bs
delBinderFV :: Var -> DVarSet -> DVarSet
-- This way round, so we can do it multiple times using foldr
-- (b `delBinderFV` s)
-- * removes the binder b from the free variable set s,
-- * AND *adds* to s the free variables of b's type
--
-- This is really important for some lambdas:
-- In (\x::a -> x) the only mention of "a" is in the binder.
--
-- Also in
-- let x::a = b in ...
-- we should really note that "a" is free in this expression.
-- It'll be pinned inside the /\a by the binding for b, but
-- it seems cleaner to make sure that a is in the free-var set
-- when it is mentioned.
--
-- This also shows up in recursive bindings. Consider:
-- /\a -> letrec x::a = x in E
-- Now, there are no explicit free type variables in the RHS of x,
-- but nevertheless "a" is free in its definition. So we add in
-- the free tyvars of the types of the binders, and include these in the
-- free vars of the group, attached to the top level of each RHS.
--
-- This actually happened in the defn of errorIO in IOBase.hs:
-- errorIO (ST io) = case (errorIO# io) of
-- _ -> bottom
-- where
-- bottom = bottom -- Never evaluated
delBinderFV b s = (s `delDVarSet` b) `unionFVs` dVarTypeTyCoVars b
-- Include coercion variables too!
varTypeTyCoVars :: Var -> TyCoVarSet
-- Find the type/kind variables free in the type of the id/tyvar
varTypeTyCoVars var = fvVarSet $ varTypeTyCoFVs var
dVarTypeTyCoVars :: Var -> DTyCoVarSet
-- Find the type/kind/coercion variables free in the type of the id/tyvar
dVarTypeTyCoVars var = fvDVarSet $ varTypeTyCoFVs var
varTypeTyCoFVs :: Var -> FV
-- Find the free variables of a binder.
-- In the case of ids, don't forget the multiplicity field!
varTypeTyCoFVs var
= tyCoFVsOfType (varType var) `unionFV` mult_fvs
where
mult_fvs = case varMultMaybe var of
Just mult -> tyCoFVsOfType mult
Nothing -> emptyFV
idFreeVars :: Id -> VarSet
idFreeVars id = assert (isId id) $ fvVarSet $ idFVs id
dIdFreeVars :: Id -> DVarSet
dIdFreeVars id = fvDVarSet $ idFVs id
idFVs :: Id -> FV
-- Type variables, rule variables, and inline variables
idFVs id = assert (isId id) $
varTypeTyCoFVs id `unionFV`
bndrRuleAndUnfoldingFVs id
bndrRuleAndUnfoldingVarsDSet :: Id -> DVarSet
bndrRuleAndUnfoldingVarsDSet id = fvDVarSet $ bndrRuleAndUnfoldingFVs id
bndrRuleAndUnfoldingIds :: Id -> IdSet
bndrRuleAndUnfoldingIds id = fvVarSet $ filterFV isId $ bndrRuleAndUnfoldingFVs id
bndrRuleAndUnfoldingFVs :: Id -> FV
bndrRuleAndUnfoldingFVs id
| isId id = idRuleFVs id `unionFV` idUnfoldingFVs id
| otherwise = emptyFV
idRuleVars ::Id -> VarSet -- Does *not* include CoreUnfolding vars
idRuleVars id = fvVarSet $ idRuleFVs id
idRuleFVs :: Id -> FV
idRuleFVs id = assert (isId id) $
FV.mkFVs (dVarSetElems $ ruleInfoFreeVars (idSpecialisation id))
idUnfoldingVars :: Id -> VarSet
-- Produce free vars for an unfolding, but NOT for an ordinary
-- (non-inline) unfolding, since it is a dup of the rhs
-- and we'll get exponential behaviour if we look at both unf and rhs!
-- But do look at the *real* unfolding, even for loop breakers, else
-- we might get out-of-scope variables
idUnfoldingVars id = fvVarSet $ idUnfoldingFVs id
idUnfoldingFVs :: Id -> FV
idUnfoldingFVs id = stableUnfoldingFVs (realIdUnfolding id) `orElse` emptyFV
stableUnfoldingVars :: Unfolding -> Maybe VarSet
stableUnfoldingVars unf = fvVarSet `fmap` stableUnfoldingFVs unf
stableUnfoldingFVs :: Unfolding -> Maybe FV
stableUnfoldingFVs unf
= case unf of
CoreUnfolding { uf_tmpl = rhs, uf_src = src }
| isStableSource src
-> Just (filterFV isLocalVar $ expr_fvs rhs)
DFunUnfolding { df_bndrs = bndrs, df_args = args }
-> Just (filterFV isLocalVar $ FV.delFVs (mkVarSet bndrs) $ exprs_fvs args)
-- DFuns are top level, so no fvs from types of bndrs
_other -> Nothing
{-
************************************************************************
* *
\subsection{Free variables (and types)}
* *
************************************************************************
-}
freeVarsBind :: CoreBind
-> DVarSet -- Free vars of scope of binding
-> (CoreBindWithFVs, DVarSet) -- Return free vars of binding + scope
freeVarsBind (NonRec binder rhs) body_fvs
= ( AnnNonRec binder rhs2
, freeVarsOf rhs2 `unionFVs` body_fvs2
`unionFVs` bndrRuleAndUnfoldingVarsDSet binder )
where
rhs2 = freeVars rhs
body_fvs2 = binder `delBinderFV` body_fvs
freeVarsBind (Rec binds) body_fvs
= ( AnnRec (binders `zip` rhss2)
, delBindersFV binders all_fvs )
where
(binders, rhss) = unzip binds
rhss2 = map freeVars rhss
rhs_body_fvs = foldr (unionFVs . freeVarsOf) body_fvs rhss2
binders_fvs = fvDVarSet $ mapUnionFV bndrRuleAndUnfoldingFVs binders
-- See Note [The FVAnn invariant]
all_fvs = rhs_body_fvs `unionFVs` binders_fvs
-- The "delBinderFV" happens after adding the idSpecVars,
-- since the latter may add some of the binders as fvs
freeVars :: CoreExpr -> CoreExprWithFVs
-- ^ Annotate a 'CoreExpr' with its (non-global) free type
-- and value variables at every tree node.
freeVars = go
where
go :: CoreExpr -> CoreExprWithFVs
go (Var v)
| isLocalVar v = (aFreeVar v `unionFVs` ty_fvs `unionFVs` mult_vars, AnnVar v)
| otherwise = (emptyDVarSet, AnnVar v)
where
mult_vars = tyCoVarsOfTypeDSet (varMult v)
ty_fvs = dVarTypeTyCoVars v
-- See Note [The FVAnn invariant]
go (Lit lit) = (emptyDVarSet, AnnLit lit)
go (Lam b body)
= ( b_fvs `unionFVs` (b `delBinderFV` body_fvs)
, AnnLam b body' )
where
body'@(body_fvs, _) = go body
b_ty = idType b
b_fvs = tyCoVarsOfTypeDSet b_ty
-- See Note [The FVAnn invariant]
go (App fun arg)
= ( freeVarsOf fun' `unionFVs` freeVarsOf arg'
, AnnApp fun' arg' )
where
fun' = go fun
arg' = go arg
go (Case scrut bndr ty alts)
= ( (bndr `delBinderFV` alts_fvs)
`unionFVs` freeVarsOf scrut2
`unionFVs` tyCoVarsOfTypeDSet ty
-- Don't need to look at (idType bndr)
-- because that's redundant with scrut
, AnnCase scrut2 bndr ty alts2 )
where
scrut2 = go scrut
(alts_fvs_s, alts2) = mapAndUnzip fv_alt alts
alts_fvs = unionFVss alts_fvs_s
fv_alt (Alt con args rhs) = (delBindersFV args (freeVarsOf rhs2),
(AnnAlt con args rhs2))
where
rhs2 = go rhs
go (Let bind body)
= (bind_fvs, AnnLet bind2 body2)
where
(bind2, bind_fvs) = freeVarsBind bind (freeVarsOf body2)
body2 = go body
go (Cast expr co)
= ( freeVarsOf expr2 `unionFVs` cfvs
, AnnCast expr2 (cfvs, co) )
where
expr2 = go expr
cfvs = tyCoVarsOfCoDSet co
go (Tick tickish expr)
= ( tickishFVs tickish `unionFVs` freeVarsOf expr2
, AnnTick tickish expr2 )
where
expr2 = go expr
tickishFVs (Breakpoint _ _ ids) = mkDVarSet ids
tickishFVs _ = emptyDVarSet
go (Type ty) = (tyCoVarsOfTypeDSet ty, AnnType ty)
go (Coercion co) = (tyCoVarsOfCoDSet co, AnnCoercion co)
|