1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
|
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE UnboxedTuples #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1993-1998
A ``lint'' pass to check for Core correctness.
See Note [Core Lint guarantee].
-}
module GHC.Core.Lint (
LintPassResultConfig (..),
LintFlags (..),
StaticPtrCheck (..),
LintConfig (..),
WarnsAndErrs,
lintCoreBindings', lintUnfolding,
lintPassResult, lintExpr,
lintAnnots, lintAxioms,
-- ** Debug output
EndPassConfig (..),
endPassIO,
displayLintResults, dumpPassResult
) where
import GHC.Prelude
import GHC.Driver.Session
import GHC.Tc.Utils.TcType ( isFloatingPrimTy, isTyFamFree )
import GHC.Unit.Module.ModGuts
import GHC.Platform
import GHC.Core
import GHC.Core.FVs
import GHC.Core.Utils
import GHC.Core.Stats ( coreBindsStats )
import GHC.Core.DataCon
import GHC.Core.Ppr
import GHC.Core.Coercion
import GHC.Core.Type as Type
import GHC.Core.Multiplicity
import GHC.Core.UsageEnv
import GHC.Core.TyCo.Rep -- checks validity of types/coercions
import GHC.Core.TyCo.Compare( eqType )
import GHC.Core.TyCo.Subst
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Ppr
import GHC.Core.TyCon as TyCon
import GHC.Core.Coercion.Axiom
import GHC.Core.FamInstEnv( compatibleBranches )
import GHC.Core.Unify
import GHC.Core.Coercion.Opt ( checkAxInstCo )
import GHC.Core.Opt.Arity ( typeArity, exprIsDeadEnd )
import GHC.Core.Opt.Monad
import GHC.Types.Literal
import GHC.Types.Var as Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.SrcLoc
import GHC.Types.Tickish
import GHC.Types.RepType
import GHC.Types.Basic
import GHC.Types.Demand ( splitDmdSig, isDeadEndDiv )
import GHC.Builtin.Names
import GHC.Builtin.Types.Prim
import GHC.Builtin.Types ( multiplicityTy )
import GHC.Data.Bag
import GHC.Data.List.SetOps
import GHC.Utils.Monad
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Utils.Constants (debugIsOn)
import GHC.Utils.Misc
import GHC.Utils.Error
import qualified GHC.Utils.Error as Err
import GHC.Utils.Logger
import Control.Monad
import Data.Foldable ( for_, toList )
import Data.List.NonEmpty ( NonEmpty(..), groupWith )
import Data.List ( partition )
import Data.Maybe
import GHC.Data.Pair
import GHC.Base (oneShot)
import GHC.Data.Unboxed
{-
Note [Core Lint guarantee]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Core Lint is the type-checker for Core. Using it, we get the following guarantee:
If all of:
1. Core Lint passes,
2. there are no unsafe coercions (i.e. unsafeEqualityProof),
3. all plugin-supplied coercions (i.e. PluginProv) are valid, and
4. all case-matches are complete
then running the compiled program will not seg-fault, assuming no bugs downstream
(e.g. in the code generator). This guarantee is quite powerful, in that it allows us
to decouple the safety of the resulting program from the type inference algorithm.
However, do note point (4) above. Core Lint does not check for incomplete case-matches;
see Note [Case expression invariants] in GHC.Core, invariant (4). As explained there,
an incomplete case-match might slip by Core Lint and cause trouble at runtime.
Note [GHC Formalism]
~~~~~~~~~~~~~~~~~~~~
This file implements the type-checking algorithm for System FC, the "official"
name of the Core language. Type safety of FC is heart of the claim that
executables produced by GHC do not have segmentation faults. Thus, it is
useful to be able to reason about System FC independently of reading the code.
To this purpose, there is a document core-spec.pdf built in docs/core-spec that
contains a formalism of the types and functions dealt with here. If you change
just about anything in this file or you change other types/functions throughout
the Core language (all signposted to this note), you should update that
formalism. See docs/core-spec/README for more info about how to do so.
Note [check vs lint]
~~~~~~~~~~~~~~~~~~~~
This file implements both a type checking algorithm and also general sanity
checking. For example, the "sanity checking" checks for TyConApp on the left
of an AppTy, which should never happen. These sanity checks don't really
affect any notion of type soundness. Yet, it is convenient to do the sanity
checks at the same time as the type checks. So, we use the following naming
convention:
- Functions that begin with 'lint'... are involved in type checking. These
functions might also do some sanity checking.
- Functions that begin with 'check'... are *not* involved in type checking.
They exist only for sanity checking.
Issues surrounding variable naming, shadowing, and such are considered *not*
to be part of type checking, as the formalism omits these details.
Summary of checks
~~~~~~~~~~~~~~~~~
Checks that a set of core bindings is well-formed. The PprStyle and String
just control what we print in the event of an error. The Bool value
indicates whether we have done any specialisation yet (in which case we do
some extra checks).
We check for
(a) type errors
(b) Out-of-scope type variables
(c) Out-of-scope local variables
(d) Ill-kinded types
(e) Incorrect unsafe coercions
If we have done specialisation the we check that there are
(a) No top-level bindings of primitive (unboxed type)
Note [Linting function types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All saturated applications of funTyCon are represented with the FunTy constructor.
See Note [Function type constructors and FunTy] in GHC.Builtin.Types.Prim
We check this invariant in lintType.
Note [Linting type lets]
~~~~~~~~~~~~~~~~~~~~~~~~
In the desugarer, it's very very convenient to be able to say (in effect)
let a = Type Bool in
let x::a = True in <body>
That is, use a type let. See Note [Core type and coercion invariant] in "GHC.Core".
One place it is used is in mkWwBodies; see Note [Join points and beta-redexes]
in GHC.Core.Opt.WorkWrap.Utils. (Maybe there are other "clients" of this feature; I'm not sure).
* Hence when linting <body> we need to remember that a=Int, else we
might reject a correct program. So we carry a type substitution (in
this example [a -> Bool]) and apply this substitution before
comparing types. In effect, in Lint, type equality is always
equality-modulo-le-subst. This is in the le_subst field of
LintEnv. But nota bene:
(SI1) The le_subst substitution is applied to types and coercions only
(SI2) The result of that substitution is used only to check for type
equality, to check well-typed-ness, /but is then discarded/.
The result of substitution does not outlive the CoreLint pass.
(SI3) The InScopeSet of le_subst includes only TyVar and CoVar binders.
* The function
lintInTy :: Type -> LintM (Type, Kind)
returns a substituted type.
* When we encounter a binder (like x::a) we must apply the substitution
to the type of the binding variable. lintBinders does this.
* Clearly we need to clone tyvar binders as we go.
* But take care (#17590)! We must also clone CoVar binders:
let a = TYPE (ty |> cv)
in \cv -> blah
blindly substituting for `a` might capture `cv`.
* Alas, when cloning a coercion variable we might choose a unique
that happens to clash with an inner Id, thus
\cv_66 -> let wild_X7 = blah in blah
We decide to clone `cv_66` because it's already in scope. Fine,
choose a new unique. Aha, X7 looks good. So we check the lambda
body with le_subst of [cv_66 :-> cv_X7]
This is all fine, even though we use the same unique as wild_X7.
As (SI2) says, we do /not/ return a new lambda
(\cv_X7 -> let wild_X7 = blah in ...)
We simply use the le_subst substitution in types/coercions only, when
checking for equality.
* We still need to check that Id occurrences are bound by some
enclosing binding. We do /not/ use the InScopeSet for the le_subst
for this purpose -- it contains only TyCoVars. Instead we have a separate
le_ids for the in-scope Id binders.
Sigh. We might want to explore getting rid of type-let!
Note [Bad unsafe coercion]
~~~~~~~~~~~~~~~~~~~~~~~~~~
For discussion see https://gitlab.haskell.org/ghc/ghc/wikis/bad-unsafe-coercions
Linter introduces additional rules that checks improper coercion between
different types, called bad coercions. Following coercions are forbidden:
(a) coercions between boxed and unboxed values;
(b) coercions between unlifted values of the different sizes, here
active size is checked, i.e. size of the actual value but not
the space allocated for value;
(c) coercions between floating and integral boxed values, this check
is not yet supported for unboxed tuples, as no semantics were
specified for that;
(d) coercions from / to vector type
(e) If types are unboxed tuples then tuple (# A_1,..,A_n #) can be
coerced to (# B_1,..,B_m #) if n=m and for each pair A_i, B_i rules
(a-e) holds.
Note [Join points]
~~~~~~~~~~~~~~~~~~
We check the rules listed in Note [Invariants on join points] in GHC.Core. The
only one that causes any difficulty is the first: All occurrences must be tail
calls. To this end, along with the in-scope set, we remember in le_joins the
subset of in-scope Ids that are valid join ids. For example:
join j x = ... in
case e of
A -> jump j y -- good
B -> case (jump j z) of -- BAD
C -> join h = jump j w in ... -- good
D -> let x = jump j v in ... -- BAD
A join point remains valid in case branches, so when checking the A
branch, j is still valid. When we check the scrutinee of the inner
case, however, we set le_joins to empty, and catch the
error. Similarly, join points can occur free in RHSes of other join
points but not the RHSes of value bindings (thunks and functions).
Note [Avoiding compiler perf traps when constructing error messages.]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's quite common to put error messages into a where clause when it might
be triggered by multiple branches. E.g.
checkThing x y z =
case x of
X -> unless (correctX x) $ failWithL errMsg
Y -> unless (correctY y) $ failWithL errMsg
where
errMsg = text "My error involving:" $$ ppr x <+> ppr y
However ghc will compile this to:
checkThink x y z =
let errMsg = text "My error involving:" $$ ppr x <+> ppr y
in case x of
X -> unless (correctX x) $ failWithL errMsg
Y -> unless (correctY y) $ failWithL errMsg
Putting the allocation of errMsg into the common non-error path.
One way to work around this is to turn errMsg into a function:
checkThink x y z =
case x of
X -> unless (correctX x) $ failWithL (errMsg x y)
Y -> unless (correctY y) $ failWithL (errMsg x y)
where
errMsg x y = text "My error involving:" $$ ppr x <+> ppr y
This way `errMsg` is a static function and it being defined in the common
path does not result in allocation in the hot path. This can be surprisingly
impactful. Changing `lint_app` reduced allocations for one test program I was
looking at by ~4%.
************************************************************************
* *
Beginning and ending passes
* *
************************************************************************
-}
-- | Configuration for boilerplate operations at the end of a
-- compilation pass producing Core.
data EndPassConfig = EndPassConfig
{ ep_dumpCoreSizes :: !Bool
-- ^ Whether core bindings should be dumped with the size of what they
-- are binding (i.e. the size of the RHS of the binding).
, ep_lintPassResult :: !(Maybe LintPassResultConfig)
-- ^ Whether we should lint the result of this pass.
, ep_namePprCtx :: !NamePprCtx
, ep_dumpFlag :: !(Maybe DumpFlag)
, ep_prettyPass :: !SDoc
, ep_passDetails :: !SDoc
}
endPassIO :: Logger
-> EndPassConfig
-> CoreProgram -> [CoreRule]
-> IO ()
-- Used by the IO-is CorePrep too
endPassIO logger cfg binds rules
= do { dumpPassResult logger (ep_dumpCoreSizes cfg) (ep_namePprCtx cfg) mb_flag
(renderWithContext defaultSDocContext (ep_prettyPass cfg))
(ep_passDetails cfg) binds rules
; for_ (ep_lintPassResult cfg) $ \lp_cfg ->
lintPassResult logger lp_cfg binds
}
where
mb_flag = case ep_dumpFlag cfg of
Just flag | logHasDumpFlag logger flag -> Just flag
| logHasDumpFlag logger Opt_D_verbose_core2core -> Just flag
_ -> Nothing
dumpPassResult :: Logger
-> Bool -- dump core sizes?
-> NamePprCtx
-> Maybe DumpFlag -- Just df => show details in a file whose
-- name is specified by df
-> String -- Header
-> SDoc -- Extra info to appear after header
-> CoreProgram -> [CoreRule]
-> IO ()
dumpPassResult logger dump_core_sizes name_ppr_ctx mb_flag hdr extra_info binds rules
= do { forM_ mb_flag $ \flag -> do
logDumpFile logger (mkDumpStyle name_ppr_ctx) flag hdr FormatCore dump_doc
-- Report result size
-- This has the side effect of forcing the intermediate to be evaluated
-- if it's not already forced by a -ddump flag.
; Err.debugTraceMsg logger 2 size_doc
}
where
size_doc = sep [text "Result size of" <+> text hdr, nest 2 (equals <+> ppr (coreBindsStats binds))]
dump_doc = vcat [ nest 2 extra_info
, size_doc
, blankLine
, if dump_core_sizes
then pprCoreBindingsWithSize binds
else pprCoreBindings binds
, ppUnless (null rules) pp_rules ]
pp_rules = vcat [ blankLine
, text "------ Local rules for imported ids --------"
, pprRules rules ]
{-
************************************************************************
* *
Top-level interfaces
* *
************************************************************************
-}
data LintPassResultConfig = LintPassResultConfig
{ lpr_diagOpts :: !DiagOpts
, lpr_platform :: !Platform
, lpr_makeLintFlags :: !LintFlags
, lpr_showLintWarnings :: !Bool
, lpr_passPpr :: !SDoc
, lpr_localsInScope :: ![Var]
}
lintPassResult :: Logger -> LintPassResultConfig
-> CoreProgram -> IO ()
lintPassResult logger cfg binds
= do { let warns_and_errs = lintCoreBindings'
(LintConfig
{ l_diagOpts = lpr_diagOpts cfg
, l_platform = lpr_platform cfg
, l_flags = lpr_makeLintFlags cfg
, l_vars = lpr_localsInScope cfg
})
binds
; Err.showPass logger $
"Core Linted result of " ++
renderWithContext defaultSDocContext (lpr_passPpr cfg)
; displayLintResults logger
(lpr_showLintWarnings cfg) (lpr_passPpr cfg)
(pprCoreBindings binds) warns_and_errs
}
displayLintResults :: Logger
-> Bool -- ^ If 'True', display linter warnings.
-- If 'False', ignore linter warnings.
-> SDoc -- ^ The source of the linted program
-> SDoc -- ^ The linted program, pretty-printed
-> WarnsAndErrs
-> IO ()
displayLintResults logger display_warnings pp_what pp_pgm (warns, errs)
| not (isEmptyBag errs)
= do { logMsg logger Err.MCDump noSrcSpan
$ withPprStyle defaultDumpStyle
(vcat [ lint_banner "errors" pp_what, Err.pprMessageBag errs
, text "*** Offending Program ***"
, pp_pgm
, text "*** End of Offense ***" ])
; Err.ghcExit logger 1 }
| not (isEmptyBag warns)
, log_enable_debug (logFlags logger)
, display_warnings
-- If the Core linter encounters an error, output to stderr instead of
-- stdout (#13342)
= logMsg logger Err.MCInfo noSrcSpan
$ withPprStyle defaultDumpStyle
(lint_banner "warnings" pp_what $$ Err.pprMessageBag (mapBag ($$ blankLine) warns))
| otherwise = return ()
lint_banner :: String -> SDoc -> SDoc
lint_banner string pass = text "*** Core Lint" <+> text string
<+> text ": in result of" <+> pass
<+> text "***"
-- | Type-check a 'CoreProgram'. See Note [Core Lint guarantee].
lintCoreBindings' :: LintConfig -> CoreProgram -> WarnsAndErrs
-- Returns (warnings, errors)
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintCoreBindings' cfg binds
= initL cfg $
addLoc TopLevelBindings $
do { checkL (null dups) (dupVars dups)
; checkL (null ext_dups) (dupExtVars ext_dups)
; lintRecBindings TopLevel all_pairs $ \_ ->
return () }
where
all_pairs = flattenBinds binds
-- Put all the top-level binders in scope at the start
-- This is because rewrite rules can bring something
-- into use 'unexpectedly'; see Note [Glomming] in "GHC.Core.Opt.OccurAnal"
binders = map fst all_pairs
(_, dups) = removeDups compare binders
-- dups_ext checks for names with different uniques
-- but the same External name M.n. We don't
-- allow this at top level:
-- M.n{r3} = ...
-- M.n{r29} = ...
-- because they both get the same linker symbol
ext_dups = snd (removeDups ord_ext (map Var.varName binders))
ord_ext n1 n2 | Just m1 <- nameModule_maybe n1
, Just m2 <- nameModule_maybe n2
= compare (m1, nameOccName n1) (m2, nameOccName n2)
| otherwise = LT
{-
************************************************************************
* *
\subsection[lintUnfolding]{lintUnfolding}
* *
************************************************************************
Note [Linting Unfoldings from Interfaces]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use this to check all top-level unfoldings that come in from interfaces
(it is very painful to catch errors otherwise).
We do not need to call lintUnfolding on unfoldings that are nested within
top-level unfoldings; they are linted when we lint the top-level unfolding;
hence the `TopLevelFlag` on `tcPragExpr` in GHC.IfaceToCore.
-}
lintUnfolding :: Bool -- ^ True <=> is a compulsory unfolding
-> LintConfig
-> SrcLoc
-> CoreExpr
-> Maybe (Bag SDoc) -- Nothing => OK
lintUnfolding is_compulsory cfg locn expr
| isEmptyBag errs = Nothing
| otherwise = Just errs
where
(_warns, errs) = initL cfg $
if is_compulsory
-- See Note [Checking for representation polymorphism]
then noFixedRuntimeRepChecks linter
else linter
linter = addLoc (ImportedUnfolding locn) $
lintCoreExpr expr
lintExpr :: LintConfig
-> CoreExpr
-> Maybe (Bag SDoc) -- Nothing => OK
lintExpr cfg expr
| isEmptyBag errs = Nothing
| otherwise = Just errs
where
(_warns, errs) = initL cfg linter
linter = addLoc TopLevelBindings $
lintCoreExpr expr
{-
************************************************************************
* *
\subsection[lintCoreBinding]{lintCoreBinding}
* *
************************************************************************
Check a core binding, returning the list of variables bound.
-}
-- Returns a UsageEnv because this function is called in lintCoreExpr for
-- Let
lintRecBindings :: TopLevelFlag -> [(Id, CoreExpr)]
-> ([LintedId] -> LintM a) -> LintM (a, [UsageEnv])
lintRecBindings top_lvl pairs thing_inside
= lintIdBndrs top_lvl bndrs $ \ bndrs' ->
do { ues <- zipWithM lint_pair bndrs' rhss
; a <- thing_inside bndrs'
; return (a, ues) }
where
(bndrs, rhss) = unzip pairs
lint_pair bndr' rhs
= addLoc (RhsOf bndr') $
do { (rhs_ty, ue) <- lintRhs bndr' rhs -- Check the rhs
; lintLetBind top_lvl Recursive bndr' rhs rhs_ty
; return ue }
lintLetBody :: [LintedId] -> CoreExpr -> LintM (LintedType, UsageEnv)
lintLetBody bndrs body
= do { (body_ty, body_ue) <- addLoc (BodyOfLetRec bndrs) (lintCoreExpr body)
; mapM_ (lintJoinBndrType body_ty) bndrs
; return (body_ty, body_ue) }
lintLetBind :: TopLevelFlag -> RecFlag -> LintedId
-> CoreExpr -> LintedType -> LintM ()
-- Binder's type, and the RHS, have already been linted
-- This function checks other invariants
lintLetBind top_lvl rec_flag binder rhs rhs_ty
= do { let binder_ty = idType binder
; ensureEqTys binder_ty rhs_ty (mkRhsMsg binder (text "RHS") rhs_ty)
-- If the binding is for a CoVar, the RHS should be (Coercion co)
-- See Note [Core type and coercion invariant] in GHC.Core
; checkL (not (isCoVar binder) || isCoArg rhs)
(mkLetErr binder rhs)
-- Check the let-can-float invariant
-- See Note [Core let-can-float invariant] in GHC.Core
; checkL ( isJoinId binder
|| mightBeLiftedType binder_ty
|| (isNonRec rec_flag && exprOkForSpeculation rhs)
|| isDataConWorkId binder || isDataConWrapId binder -- until #17521 is fixed
|| exprIsTickedString rhs)
(badBndrTyMsg binder (text "unlifted"))
-- Check that if the binder is at the top level and has type Addr#,
-- that it is a string literal.
-- See Note [Core top-level string literals].
; checkL (not (isTopLevel top_lvl && binder_ty `eqType` addrPrimTy)
|| exprIsTickedString rhs)
(mkTopNonLitStrMsg binder)
; flags <- getLintFlags
-- Check that a join-point binder has a valid type
-- NB: lintIdBinder has checked that it is not top-level bound
; case isJoinId_maybe binder of
Nothing -> return ()
Just arity -> checkL (isValidJoinPointType arity binder_ty)
(mkInvalidJoinPointMsg binder binder_ty)
; when (lf_check_inline_loop_breakers flags
&& isStableUnfolding (realIdUnfolding binder)
&& isStrongLoopBreaker (idOccInfo binder)
&& isInlinePragma (idInlinePragma binder))
(addWarnL (text "INLINE binder is (non-rule) loop breaker:" <+> ppr binder))
-- Only non-rule loop breakers inhibit inlining
-- We used to check that the dmdTypeDepth of a demand signature never
-- exceeds idArity, but that is an unnecessary complication, see
-- Note [idArity varies independently of dmdTypeDepth] in GHC.Core.Opt.DmdAnal
-- Check that the binder's arity is within the bounds imposed by the type
-- and the strictness signature. See Note [Arity invariants for bindings]
-- and Note [Trimming arity]
; checkL (typeArity (idType binder) >= idArity binder)
(text "idArity" <+> ppr (idArity binder) <+>
text "exceeds typeArity" <+>
ppr (typeArity (idType binder)) <> colon <+>
ppr binder)
-- See Note [idArity varies independently of dmdTypeDepth]
-- in GHC.Core.Opt.DmdAnal
; case splitDmdSig (idDmdSig binder) of
(demands, result_info) | isDeadEndDiv result_info ->
checkL (demands `lengthAtLeast` idArity binder)
(text "idArity" <+> ppr (idArity binder) <+>
text "exceeds arity imposed by the strictness signature" <+>
ppr (idDmdSig binder) <> colon <+>
ppr binder)
_ -> return ()
; addLoc (RuleOf binder) $ mapM_ (lintCoreRule binder binder_ty) (idCoreRules binder)
; addLoc (UnfoldingOf binder) $
lintIdUnfolding binder binder_ty (idUnfolding binder)
; return () }
-- We should check the unfolding, if any, but this is tricky because
-- the unfolding is a SimplifiableCoreExpr. Give up for now.
-- | Checks the RHS of bindings. It only differs from 'lintCoreExpr'
-- in that it doesn't reject occurrences of the function 'makeStatic' when they
-- appear at the top level and @lf_check_static_ptrs == AllowAtTopLevel@, and
-- for join points, it skips the outer lambdas that take arguments to the
-- join point.
--
-- See Note [Checking StaticPtrs].
lintRhs :: Id -> CoreExpr -> LintM (LintedType, UsageEnv)
-- NB: the Id can be Linted or not -- it's only used for
-- its OccInfo and join-pointer-hood
lintRhs bndr rhs
| Just arity <- isJoinId_maybe bndr
= lintJoinLams arity (Just bndr) rhs
| AlwaysTailCalled arity <- tailCallInfo (idOccInfo bndr)
= lintJoinLams arity Nothing rhs
-- Allow applications of the data constructor @StaticPtr@ at the top
-- but produce errors otherwise.
lintRhs _bndr rhs = fmap lf_check_static_ptrs getLintFlags >>= go
where
-- Allow occurrences of 'makeStatic' at the top-level but produce errors
-- otherwise.
go :: StaticPtrCheck -> LintM (OutType, UsageEnv)
go AllowAtTopLevel
| (binders0, rhs') <- collectTyBinders rhs
, Just (fun, t, info, e) <- collectMakeStaticArgs rhs'
= markAllJoinsBad $
foldr
-- imitate @lintCoreExpr (Lam ...)@
lintLambda
-- imitate @lintCoreExpr (App ...)@
(do fun_ty_ue <- lintCoreExpr fun
lintCoreArgs fun_ty_ue [Type t, info, e]
)
binders0
go _ = markAllJoinsBad $ lintCoreExpr rhs
-- | Lint the RHS of a join point with expected join arity of @n@ (see Note
-- [Join points] in "GHC.Core").
lintJoinLams :: JoinArity -> Maybe Id -> CoreExpr -> LintM (LintedType, UsageEnv)
lintJoinLams join_arity enforce rhs
= go join_arity rhs
where
go 0 expr = lintCoreExpr expr
go n (Lam var body) = lintLambda var $ go (n-1) body
go n expr | Just bndr <- enforce -- Join point with too few RHS lambdas
= failWithL $ mkBadJoinArityMsg bndr join_arity n rhs
| otherwise -- Future join point, not yet eta-expanded
= markAllJoinsBad $ lintCoreExpr expr
-- Body of lambda is not a tail position
lintIdUnfolding :: Id -> Type -> Unfolding -> LintM ()
lintIdUnfolding bndr bndr_ty uf
| isStableUnfolding uf
, Just rhs <- maybeUnfoldingTemplate uf
= do { ty <- fst <$> (if isCompulsoryUnfolding uf
then noFixedRuntimeRepChecks $ lintRhs bndr rhs
-- ^^^^^^^^^^^^^^^^^^^^^^^
-- See Note [Checking for representation polymorphism]
else lintRhs bndr rhs)
; ensureEqTys bndr_ty ty (mkRhsMsg bndr (text "unfolding") ty) }
lintIdUnfolding _ _ _
= return () -- Do not Lint unstable unfoldings, because that leads
-- to exponential behaviour; c.f. GHC.Core.FVs.idUnfoldingVars
{- Note [Checking for INLINE loop breakers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very suspicious if a strong loop breaker is marked INLINE.
However, the desugarer generates instance methods with INLINE pragmas
that form a mutually recursive group. Only after a round of
simplification are they unravelled. So we suppress the test for
the desugarer. Here is an example:
instance Eq T where
t1 == t2 = blah
t1 /= t2 = not (t1 == t2)
{-# INLINE (/=) #-}
This will generate something like
-- From the class decl for Eq
data Eq a = EqDict (a->a->Bool) (a->a->Bool)
eq_sel :: Eq a -> (a->a->Bool)
eq_sel (EqDict eq _) = eq
-- From the instance Eq T
$ceq :: T -> T -> Bool
$ceq = blah
Rec { $dfEqT :: Eq T {-# DFunId #-}
$dfEqT = EqDict $ceq $cnoteq
$cnoteq :: T -> T -> Bool {-# INLINE #-}
$cnoteq x y = not (eq_sel $dfEqT x y) }
Notice that
* `$dfEqT` and `$cnotEq` are mutually recursive.
* We do not want `$dfEqT` to be the loop breaker: it's a DFunId, and
we want to let it "cancel" with "eq_sel" (see Note [ClassOp/DFun
selection] in GHC.Tc.TyCl.Instance, which it can't do if it's a loop
breaker.
So we make `$cnoteq` into the loop breaker. That means it can't
inline, despite the INLINE pragma. That's what gives rise to the
warning, which is perfectly appropriate for, say
Rec { {-# INLINE f #-} f = \x -> ...f.... }
We can't inline a recursive function -- it's a loop breaker.
But now we can optimise `eq_sel $dfEqT` to `$ceq`, so we get
Rec {
$dfEqT :: Eq T {-# DFunId #-}
$dfEqT = EqDict $ceq $cnoteq
$cnoteq :: T -> T -> Bool {-# INLINE #-}
$cnoteq x y = not ($ceq x y) }
and now the dependencies of the Rec have gone, and we can split it up to give
NonRec { $dfEqT :: Eq T {-# DFunId #-}
$dfEqT = EqDict $ceq $cnoteq }
NonRec { $cnoteq :: T -> T -> Bool {-# INLINE #-}
$cnoteq x y = not ($ceq x y) }
Now $cnoteq is not a loop breaker any more, so the INLINE pragma can
take effect -- the warning turned out to be temporary.
To stop excessive warnings, this warning for INLINE loop breakers is
switched off when linting the result of the desugarer. See
lf_check_inline_loop_breakers in GHC.Core.Lint.
Note [Checking for representation polymorphism]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We ordinarily want to check for bad representation polymorphism. See
Note [Representation polymorphism invariants] in GHC.Core. However, we do *not*
want to do this in a compulsory unfolding. Compulsory unfoldings arise
only internally, for things like newtype wrappers, dictionaries, and
(notably) unsafeCoerce#. These might legitimately be representation-polymorphic;
indeed representation-polymorphic unfoldings are a primary reason for the
very existence of compulsory unfoldings (we can't compile code for
the original, representation-polymorphic, binding).
It is vitally important that we do representation polymorphism checks *after*
performing the unfolding, but not beforehand. This is all safe because
we will check any unfolding after it has been unfolded; checking the
unfolding beforehand is merely an optimization, and one that actively
hurts us here.
Note [Linting of runRW#]
~~~~~~~~~~~~~~~~~~~~~~~~
runRW# has some very special behavior (see Note [runRW magic] in
GHC.CoreToStg.Prep) which CoreLint must accommodate, by allowing
join points in its argument. For example, this is fine:
join j x = ...
in runRW# (\s. case v of
A -> j 3
B -> j 4)
Usually those calls to the join point 'j' would not be valid tail calls,
because they occur in a function argument. But in the case of runRW#
they are fine, because runRW# (\s.e) behaves operationally just like e.
(runRW# is ultimately inlined in GHC.CoreToStg.Prep.)
In the case that the continuation is /not/ a lambda we simply disable this
special behaviour. For example, this is /not/ fine:
join j = ...
in runRW# @r @ty (jump j)
************************************************************************
* *
\subsection[lintCoreExpr]{lintCoreExpr}
* *
************************************************************************
-}
-- Linted things: substitution applied, and type is linted
type LintedType = Type
type LintedKind = Kind
type LintedCoercion = Coercion
type LintedTyCoVar = TyCoVar
type LintedId = Id
-- | Lint an expression cast through the given coercion, returning the type
-- resulting from the cast.
lintCastExpr :: CoreExpr -> LintedType -> Coercion -> LintM LintedType
lintCastExpr expr expr_ty co
= do { co' <- lintCoercion co
; let (Pair from_ty to_ty, role) = coercionKindRole co'
; checkValueType to_ty $
text "target of cast" <+> quotes (ppr co')
; lintRole co' Representational role
; ensureEqTys from_ty expr_ty (mkCastErr expr co' from_ty expr_ty)
; return to_ty }
lintCoreExpr :: CoreExpr -> LintM (LintedType, UsageEnv)
-- The returned type has the substitution from the monad
-- already applied to it:
-- lintCoreExpr e subst = exprType (subst e)
--
-- The returned "type" can be a kind, if the expression is (Type ty)
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintCoreExpr (Var var)
= do
var_pair@(var_ty, _) <- lintIdOcc var 0
checkCanEtaExpand (Var var) [] var_ty
return var_pair
lintCoreExpr (Lit lit)
= return (literalType lit, zeroUE)
lintCoreExpr (Cast expr co)
= do (expr_ty, ue) <- markAllJoinsBad (lintCoreExpr expr)
-- markAllJoinsBad: see Note [Join points and casts]
to_ty <- lintCastExpr expr expr_ty co
return (to_ty, ue)
lintCoreExpr (Tick tickish expr)
= do case tickish of
Breakpoint _ _ ids -> forM_ ids $ \id -> do
checkDeadIdOcc id
lookupIdInScope id
_ -> return ()
markAllJoinsBadIf block_joins $ lintCoreExpr expr
where
block_joins = not (tickish `tickishScopesLike` SoftScope)
-- TODO Consider whether this is the correct rule. It is consistent with
-- the simplifier's behaviour - cost-centre-scoped ticks become part of
-- the continuation, and thus they behave like part of an evaluation
-- context, but soft-scoped and non-scoped ticks simply wrap the result
-- (see Simplify.simplTick).
lintCoreExpr (Let (NonRec tv (Type ty)) body)
| isTyVar tv
= -- See Note [Linting type lets]
do { ty' <- lintType ty
; lintTyBndr tv $ \ tv' ->
do { addLoc (RhsOf tv) $ lintTyKind tv' ty'
-- Now extend the substitution so we
-- take advantage of it in the body
; extendTvSubstL tv ty' $
addLoc (BodyOfLetRec [tv]) $
lintCoreExpr body } }
lintCoreExpr (Let (NonRec bndr rhs) body)
| isId bndr
= do { -- First Lint the RHS, before bringing the binder into scope
(rhs_ty, let_ue) <- lintRhs bndr rhs
-- See Note [Multiplicity of let binders] in Var
-- Now lint the binder
; lintBinder LetBind bndr $ \bndr' ->
do { lintLetBind NotTopLevel NonRecursive bndr' rhs rhs_ty
; addAliasUE bndr let_ue (lintLetBody [bndr'] body) } }
| otherwise
= failWithL (mkLetErr bndr rhs) -- Not quite accurate
lintCoreExpr e@(Let (Rec pairs) body)
= do { -- Check that the list of pairs is non-empty
checkL (not (null pairs)) (emptyRec e)
-- Check that there are no duplicated binders
; let (_, dups) = removeDups compare bndrs
; checkL (null dups) (dupVars dups)
-- Check that either all the binders are joins, or none
; checkL (all isJoinId bndrs || all (not . isJoinId) bndrs) $
mkInconsistentRecMsg bndrs
-- See Note [Multiplicity of let binders] in Var
; ((body_type, body_ue), ues) <-
lintRecBindings NotTopLevel pairs $ \ bndrs' ->
lintLetBody bndrs' body
; return (body_type, body_ue `addUE` scaleUE ManyTy (foldr1 addUE ues)) }
where
bndrs = map fst pairs
lintCoreExpr e@(App _ _)
| Var fun <- fun
, fun `hasKey` runRWKey
-- N.B. we may have an over-saturated application of the form:
-- runRW (\s -> \x -> ...) y
, ty_arg1 : ty_arg2 : arg3 : rest <- args
= do { fun_pair1 <- lintCoreArg (idType fun, zeroUE) ty_arg1
; (fun_ty2, ue2) <- lintCoreArg fun_pair1 ty_arg2
-- See Note [Linting of runRW#]
; let lintRunRWCont :: CoreArg -> LintM (LintedType, UsageEnv)
lintRunRWCont expr@(Lam _ _) =
lintJoinLams 1 (Just fun) expr
lintRunRWCont other = markAllJoinsBad $ lintCoreExpr other
-- TODO: Look through ticks?
; (arg3_ty, ue3) <- lintRunRWCont arg3
; app_ty <- lintValApp arg3 fun_ty2 arg3_ty ue2 ue3
; lintCoreArgs app_ty rest }
| otherwise
= do { fun_pair <- lintCoreFun fun (length args)
; app_pair@(app_ty, _) <- lintCoreArgs fun_pair args
; checkCanEtaExpand fun args app_ty
; return app_pair}
where
skipTick t = case collectFunSimple e of
(Var v) -> etaExpansionTick v t
_ -> tickishFloatable t
(fun, args, _source_ticks) = collectArgsTicks skipTick e
-- We must look through source ticks to avoid #21152, for example:
--
-- reallyUnsafePtrEquality
-- = \ @a ->
-- (src<loc> reallyUnsafePtrEquality#)
-- @Lifted @a @Lifted @a
--
-- To do this, we use `collectArgsTicks tickishFloatable` to match
-- the eta expansion behaviour, as per Note [Eta expansion and source notes]
-- in GHC.Core.Opt.Arity.
-- Sadly this was not quite enough. So we now also accept things that CorePrep will allow.
-- See Note [Ticks and mandatory eta expansion]
lintCoreExpr (Lam var expr)
= markAllJoinsBad $
lintLambda var $ lintCoreExpr expr
lintCoreExpr (Case scrut var alt_ty alts)
= lintCaseExpr scrut var alt_ty alts
-- This case can't happen; linting types in expressions gets routed through
-- lintCoreArgs
lintCoreExpr (Type ty)
= failWithL (text "Type found as expression" <+> ppr ty)
lintCoreExpr (Coercion co)
= do { co' <- addLoc (InCo co) $
lintCoercion co
; return (coercionType co', zeroUE) }
----------------------
lintIdOcc :: Var -> Int -- Number of arguments (type or value) being passed
-> LintM (LintedType, UsageEnv) -- returns type of the *variable*
lintIdOcc var nargs
= addLoc (OccOf var) $
do { checkL (isNonCoVarId var)
(text "Non term variable" <+> ppr var)
-- See GHC.Core Note [Variable occurrences in Core]
-- Check that the type of the occurrence is the same
-- as the type of the binding site. The inScopeIds are
-- /un-substituted/, so this checks that the occurrence type
-- is identical to the binder type.
-- This makes things much easier for things like:
-- /\a. \(x::Maybe a). /\a. ...(x::Maybe a)...
-- The "::Maybe a" on the occurrence is referring to the /outer/ a.
-- If we compared /substituted/ types we'd risk comparing
-- (Maybe a) from the binding site with bogus (Maybe a1) from
-- the occurrence site. Comparing un-substituted types finesses
-- this altogether
; (bndr, linted_bndr_ty) <- lookupIdInScope var
; let occ_ty = idType var
bndr_ty = idType bndr
; ensureEqTys occ_ty bndr_ty $
mkBndrOccTypeMismatchMsg bndr var bndr_ty occ_ty
-- Check for a nested occurrence of the StaticPtr constructor.
-- See Note [Checking StaticPtrs].
; lf <- getLintFlags
; when (nargs /= 0 && lf_check_static_ptrs lf /= AllowAnywhere) $
checkL (idName var /= makeStaticName) $
text "Found makeStatic nested in an expression"
; checkDeadIdOcc var
; checkJoinOcc var nargs
; usage <- varCallSiteUsage var
; return (linted_bndr_ty, usage) }
lintCoreFun :: CoreExpr
-> Int -- Number of arguments (type or val) being passed
-> LintM (LintedType, UsageEnv) -- Returns type of the *function*
lintCoreFun (Var var) nargs
= lintIdOcc var nargs
lintCoreFun (Lam var body) nargs
-- Act like lintCoreExpr of Lam, but *don't* call markAllJoinsBad;
-- See Note [Beta redexes]
| nargs /= 0
= lintLambda var $ lintCoreFun body (nargs - 1)
lintCoreFun expr nargs
= markAllJoinsBadIf (nargs /= 0) $
-- See Note [Join points are less general than the paper]
lintCoreExpr expr
------------------
lintLambda :: Var -> LintM (Type, UsageEnv) -> LintM (Type, UsageEnv)
lintLambda var lintBody =
addLoc (LambdaBodyOf var) $
lintBinder LambdaBind var $ \ var' ->
do { (body_ty, ue) <- lintBody
; ue' <- checkLinearity ue var'
; return (mkLamType var' body_ty, ue') }
------------------
checkDeadIdOcc :: Id -> LintM ()
-- Occurrences of an Id should never be dead....
-- except when we are checking a case pattern
checkDeadIdOcc id
| isDeadOcc (idOccInfo id)
= do { in_case <- inCasePat
; checkL in_case
(text "Occurrence of a dead Id" <+> ppr id) }
| otherwise
= return ()
------------------
lintJoinBndrType :: LintedType -- Type of the body
-> LintedId -- Possibly a join Id
-> LintM ()
-- Checks that the return type of a join Id matches the body
-- E.g. join j x = rhs in body
-- The type of 'rhs' must be the same as the type of 'body'
lintJoinBndrType body_ty bndr
| Just arity <- isJoinId_maybe bndr
, let bndr_ty = idType bndr
, (bndrs, res) <- splitPiTys bndr_ty
= checkL (length bndrs >= arity
&& body_ty `eqType` mkPiTys (drop arity bndrs) res) $
hang (text "Join point returns different type than body")
2 (vcat [ text "Join bndr:" <+> ppr bndr <+> dcolon <+> ppr (idType bndr)
, text "Join arity:" <+> ppr arity
, text "Body type:" <+> ppr body_ty ])
| otherwise
= return ()
checkJoinOcc :: Id -> JoinArity -> LintM ()
-- Check that if the occurrence is a JoinId, then so is the
-- binding site, and it's a valid join Id
checkJoinOcc var n_args
| Just join_arity_occ <- isJoinId_maybe var
= do { mb_join_arity_bndr <- lookupJoinId var
; case mb_join_arity_bndr of {
Nothing -> -- Binder is not a join point
do { join_set <- getValidJoins
; addErrL (text "join set " <+> ppr join_set $$
invalidJoinOcc var) } ;
Just join_arity_bndr ->
do { checkL (join_arity_bndr == join_arity_occ) $
-- Arity differs at binding site and occurrence
mkJoinBndrOccMismatchMsg var join_arity_bndr join_arity_occ
; checkL (n_args == join_arity_occ) $
-- Arity doesn't match #args
mkBadJumpMsg var join_arity_occ n_args } } }
| otherwise
= return ()
-- | This function checks that we are able to perform eta expansion for
-- functions with no binding, in order to satisfy invariant I3
-- from Note [Representation polymorphism invariants] in GHC.Core.
checkCanEtaExpand :: CoreExpr -- ^ the function (head of the application) we are checking
-> [CoreArg] -- ^ the arguments to the application
-> LintedType -- ^ the instantiated type of the overall application
-> LintM ()
checkCanEtaExpand (Var fun_id) args app_ty
= do { do_rep_poly_checks <- lf_check_fixed_rep <$> getLintFlags
; when (do_rep_poly_checks && hasNoBinding fun_id) $
checkL (null bad_arg_tys) err_msg }
where
arity :: Arity
arity = idArity fun_id
nb_val_args :: Int
nb_val_args = count isValArg args
-- Check the remaining argument types, past the
-- given arguments and up to the arity of the 'Id'.
-- Returns the types that couldn't be determined to have
-- a fixed RuntimeRep.
check_args :: [Type] -> [Type]
check_args = go (nb_val_args + 1)
where
go :: Int -- index of the argument (starting from 1)
-> [Type] -- arguments
-> [Type] -- value argument types that could not be
-- determined to have a fixed runtime representation
go i _
| i > arity
= []
go _ []
-- The Arity of an Id should never exceed the number of value arguments
-- that can be read off from the Id's type.
-- See Note [Arity and function types] in GHC.Types.Id.Info.
= pprPanic "checkCanEtaExpand: arity larger than number of value arguments apparent in type"
$ vcat
[ text "fun_id =" <+> ppr fun_id
, text "arity =" <+> ppr arity
, text "app_ty =" <+> ppr app_ty
, text "args = " <+> ppr args
, text "nb_val_args =" <+> ppr nb_val_args ]
go i (ty : bndrs)
| typeHasFixedRuntimeRep ty
= go (i+1) bndrs
| otherwise
= ty : go (i+1) bndrs
bad_arg_tys :: [Type]
bad_arg_tys = check_args . map (scaledThing . fst) $ getRuntimeArgTys app_ty
-- We use 'getRuntimeArgTys' to find all the argument types,
-- including those hidden under newtypes. For example,
-- if `FunNT a b` is a newtype around `a -> b`, then
-- when checking
--
-- foo :: forall r (a :: TYPE r) (b :: TYPE r) c. a -> FunNT b c
--
-- we should check that the instantiations of BOTH `a` AND `b`
-- have a fixed runtime representation.
err_msg :: SDoc
err_msg
= vcat [ text "Cannot eta expand" <+> quotes (ppr fun_id)
, text "The following type" <> plural bad_arg_tys
<+> doOrDoes bad_arg_tys <+> text "not have a fixed runtime representation:"
, nest 2 $ vcat $ map ppr_ty_ki bad_arg_tys ]
ppr_ty_ki :: Type -> SDoc
ppr_ty_ki ty = bullet <+> ppr ty <+> dcolon <+> ppr (typeKind ty)
checkCanEtaExpand _ _ _
= return ()
-- Check that the usage of var is consistent with var itself, and pop the var
-- from the usage environment (this is important because of shadowing).
checkLinearity :: UsageEnv -> Var -> LintM UsageEnv
checkLinearity body_ue lam_var =
case varMultMaybe lam_var of
Just mult -> do ensureSubUsage lhs mult (err_msg mult)
return $ deleteUE body_ue lam_var
Nothing -> return body_ue -- A type variable
where
lhs = lookupUE body_ue lam_var
err_msg mult = text "Linearity failure in lambda:" <+> ppr lam_var
$$ ppr lhs <+> text "⊈" <+> ppr mult
{- Note [Join points and casts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might think that this should be OK:
join j x = rhs
in (case e of
A -> alt1
B x -> (jump j x) |> co)
You might think that, since the cast is ultimately erased, the jump to
`j` should still be OK as a join point. But no! See #21716. Suppose
newtype Age = MkAge Int -- axAge :: Age ~ Int
f :: Int -> ... -- f strict in it's first argument
and consider the expression
f (join j :: Bool -> Age
j x = (rhs1 :: Age)
in case v of
Just x -> (j x |> axAge :: Int)
Nothing -> rhs2)
Then, if the Simplifier pushes the strict call into the join points
and alternatives we'll get
join j' x = f (rhs1 :: Age)
in case v of
Just x -> j' x |> axAge
Nothing -> f rhs2
Utterly bogus. `f` expects an `Int` and we are giving it an `Age`.
No no no. Casts destroy the tail-call property. Henc markAllJoinsBad
in the (Cast expr co) case of lintCoreExpr.
Note [No alternatives lint check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Case expressions with no alternatives are odd beasts, and it would seem
like they would worth be looking at in the linter (cf #10180). We
used to check two things:
* exprIsHNF is false: it would *seem* to be terribly wrong if
the scrutinee was already in head normal form.
* exprIsDeadEnd is true: we should be able to see why GHC believes the
scrutinee is diverging for sure.
It was already known that the second test was not entirely reliable.
Unfortunately (#13990), the first test turned out not to be reliable
either. Getting the checks right turns out to be somewhat complicated.
For example, suppose we have (comment 8)
data T a where
TInt :: T Int
absurdTBool :: T Bool -> a
absurdTBool v = case v of
data Foo = Foo !(T Bool)
absurdFoo :: Foo -> a
absurdFoo (Foo x) = absurdTBool x
GHC initially accepts the empty case because of the GADT conditions. But then
we inline absurdTBool, getting
absurdFoo (Foo x) = case x of
x is in normal form (because the Foo constructor is strict) but the
case is empty. To avoid this problem, GHC would have to recognize
that matching on Foo x is already absurd, which is not so easy.
More generally, we don't really know all the ways that GHC can
lose track of why an expression is bottom, so we shouldn't make too
much fuss when that happens.
Note [Beta redexes]
~~~~~~~~~~~~~~~~~~~
Consider:
join j @x y z = ... in
(\@x y z -> jump j @x y z) @t e1 e2
This is clearly ill-typed, since the jump is inside both an application and a
lambda, either of which is enough to disqualify it as a tail call (see Note
[Invariants on join points] in GHC.Core). However, strictly from a
lambda-calculus perspective, the term doesn't go wrong---after the two beta
reductions, the jump *is* a tail call and everything is fine.
Why would we want to allow this when we have let? One reason is that a compound
beta redex (that is, one with more than one argument) has different scoping
rules: naively reducing the above example using lets will capture any free
occurrence of y in e2. More fundamentally, type lets are tricky; many passes,
such as Float Out, tacitly assume that the incoming program's type lets have
all been dealt with by the simplifier. Thus we don't want to let-bind any types
in, say, GHC.Core.Subst.simpleOptPgm, which in some circumstances can run immediately
before Float Out.
All that said, currently GHC.Core.Subst.simpleOptPgm is the only thing using this
loophole, doing so to avoid re-traversing large functions (beta-reducing a type
lambda without introducing a type let requires a substitution). TODO: Improve
simpleOptPgm so that we can forget all this ever happened.
************************************************************************
* *
\subsection[lintCoreArgs]{lintCoreArgs}
* *
************************************************************************
The basic version of these functions checks that the argument is a
subtype of the required type, as one would expect.
-}
-- Takes the functions type and arguments as argument.
-- Returns the *result* of applying the function to arguments.
-- e.g. f :: Int -> Bool -> Int would return `Int` as result type.
lintCoreArgs :: (LintedType, UsageEnv) -> [CoreArg] -> LintM (LintedType, UsageEnv)
lintCoreArgs (fun_ty, fun_ue) args = foldM lintCoreArg (fun_ty, fun_ue) args
lintCoreArg :: (LintedType, UsageEnv) -> CoreArg -> LintM (LintedType, UsageEnv)
lintCoreArg (fun_ty, ue) (Type arg_ty)
= do { checkL (not (isCoercionTy arg_ty))
(text "Unnecessary coercion-to-type injection:"
<+> ppr arg_ty)
; arg_ty' <- lintType arg_ty
; res <- lintTyApp fun_ty arg_ty'
; return (res, ue) }
lintCoreArg (fun_ty, fun_ue) arg
= do { (arg_ty, arg_ue) <- markAllJoinsBad $ lintCoreExpr arg
-- See Note [Representation polymorphism invariants] in GHC.Core
; flags <- getLintFlags
; when (lf_check_fixed_rep flags) $
-- Only check that 'arg_ty' has a fixed RuntimeRep
-- if 'lf_check_fixed_rep' is on.
do { checkL (typeHasFixedRuntimeRep arg_ty)
(text "Argument does not have a fixed runtime representation"
<+> ppr arg <+> dcolon
<+> parens (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))) }
; lintValApp arg fun_ty arg_ty fun_ue arg_ue }
-----------------
lintAltBinders :: UsageEnv
-> Var -- Case binder
-> LintedType -- Scrutinee type
-> LintedType -- Constructor type
-> [(Mult, OutVar)] -- Binders
-> LintM UsageEnv
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintAltBinders rhs_ue _case_bndr scrut_ty con_ty []
= do { ensureEqTys con_ty scrut_ty (mkBadPatMsg con_ty scrut_ty)
; return rhs_ue }
lintAltBinders rhs_ue case_bndr scrut_ty con_ty ((var_w, bndr):bndrs)
| isTyVar bndr
= do { con_ty' <- lintTyApp con_ty (mkTyVarTy bndr)
; lintAltBinders rhs_ue case_bndr scrut_ty con_ty' bndrs }
| otherwise
= do { (con_ty', _) <- lintValApp (Var bndr) con_ty (idType bndr) zeroUE zeroUE
-- We can pass zeroUE to lintValApp because we ignore its usage
-- calculation and compute it in the call for checkCaseLinearity below.
; rhs_ue' <- checkCaseLinearity rhs_ue case_bndr var_w bndr
; lintAltBinders rhs_ue' case_bndr scrut_ty con_ty' bndrs }
-- | Implements the case rules for linearity
checkCaseLinearity :: UsageEnv -> Var -> Mult -> Var -> LintM UsageEnv
checkCaseLinearity ue case_bndr var_w bndr = do
ensureSubUsage lhs rhs err_msg
lintLinearBinder (ppr bndr) (case_bndr_w `mkMultMul` var_w) (varMult bndr)
return $ deleteUE ue bndr
where
lhs = bndr_usage `addUsage` (var_w `scaleUsage` case_bndr_usage)
rhs = case_bndr_w `mkMultMul` var_w
err_msg = (text "Linearity failure in variable:" <+> ppr bndr
$$ ppr lhs <+> text "⊈" <+> ppr rhs
$$ text "Computed by:"
<+> text "LHS:" <+> lhs_formula
<+> text "RHS:" <+> rhs_formula)
lhs_formula = ppr bndr_usage <+> text "+"
<+> parens (ppr case_bndr_usage <+> text "*" <+> ppr var_w)
rhs_formula = ppr case_bndr_w <+> text "*" <+> ppr var_w
case_bndr_w = varMult case_bndr
case_bndr_usage = lookupUE ue case_bndr
bndr_usage = lookupUE ue bndr
-----------------
lintTyApp :: LintedType -> LintedType -> LintM LintedType
lintTyApp fun_ty arg_ty
| Just (tv,body_ty) <- splitForAllTyCoVar_maybe fun_ty
= do { lintTyKind tv arg_ty
; in_scope <- getInScope
-- substTy needs the set of tyvars in scope to avoid generating
-- uniques that are already in scope.
-- See Note [The substitution invariant] in GHC.Core.TyCo.Subst
; return (substTyWithInScope in_scope [tv] [arg_ty] body_ty) }
| otherwise
= failWithL (mkTyAppMsg fun_ty arg_ty)
-----------------
-- | @lintValApp arg fun_ty arg_ty@ lints an application of @fun arg@
-- where @fun :: fun_ty@ and @arg :: arg_ty@, returning the type of the
-- application.
lintValApp :: CoreExpr -> LintedType -> LintedType -> UsageEnv -> UsageEnv -> LintM (LintedType, UsageEnv)
lintValApp arg fun_ty arg_ty fun_ue arg_ue
| Just (_, w, arg_ty', res_ty') <- splitFunTy_maybe fun_ty
= do { ensureEqTys arg_ty' arg_ty (mkAppMsg arg_ty' arg_ty arg)
; let app_ue = addUE fun_ue (scaleUE w arg_ue)
; return (res_ty', app_ue) }
| otherwise
= failWithL err2
where
err2 = mkNonFunAppMsg fun_ty arg_ty arg
lintTyKind :: OutTyVar -> LintedType -> LintM ()
-- Both args have had substitution applied
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintTyKind tyvar arg_ty
= unless (arg_kind `eqType` tyvar_kind) $
addErrL (mkKindErrMsg tyvar arg_ty $$ (text "Linted Arg kind:" <+> ppr arg_kind))
where
tyvar_kind = tyVarKind tyvar
arg_kind = typeKind arg_ty
{-
************************************************************************
* *
\subsection[lintCoreAlts]{lintCoreAlts}
* *
************************************************************************
-}
lintCaseExpr :: CoreExpr -> Id -> Type -> [CoreAlt] -> LintM (LintedType, UsageEnv)
lintCaseExpr scrut var alt_ty alts =
do { let e = Case scrut var alt_ty alts -- Just for error messages
-- Check the scrutinee
; (scrut_ty, scrut_ue) <- markAllJoinsBad $ lintCoreExpr scrut
-- See Note [Join points are less general than the paper]
-- in GHC.Core
; let scrut_mult = varMult var
; alt_ty <- addLoc (CaseTy scrut) $
lintValueType alt_ty
; var_ty <- addLoc (IdTy var) $
lintValueType (idType var)
-- We used to try to check whether a case expression with no
-- alternatives was legitimate, but this didn't work.
-- See Note [No alternatives lint check] for details.
-- Check that the scrutinee is not a floating-point type
-- if there are any literal alternatives
-- See GHC.Core Note [Case expression invariants] item (5)
-- See Note [Rules for floating-point comparisons] in GHC.Core.Opt.ConstantFold
; let isLitPat (Alt (LitAlt _) _ _) = True
isLitPat _ = False
; checkL (not $ isFloatingPrimTy scrut_ty && any isLitPat alts)
(text "Lint warning: Scrutinising floating-point expression with literal pattern in case analysis (see #9238)."
$$ text "scrut" <+> ppr scrut)
; case tyConAppTyCon_maybe (idType var) of
Just tycon
| debugIsOn
, isAlgTyCon tycon
, not (isAbstractTyCon tycon)
, null (tyConDataCons tycon)
, not (exprIsDeadEnd scrut)
-> pprTrace "Lint warning: case binder's type has no constructors" (ppr var <+> ppr (idType var))
-- This can legitimately happen for type families
$ return ()
_otherwise -> return ()
-- Don't use lintIdBndr on var, because unboxed tuple is legitimate
; subst <- getSubst
; ensureEqTys var_ty scrut_ty (mkScrutMsg var var_ty scrut_ty subst)
-- See GHC.Core Note [Case expression invariants] item (7)
; lintBinder CaseBind var $ \_ ->
do { -- Check the alternatives
; alt_ues <- mapM (lintCoreAlt var scrut_ty scrut_mult alt_ty) alts
; let case_ue = (scaleUE scrut_mult scrut_ue) `addUE` supUEs alt_ues
; checkCaseAlts e scrut_ty alts
; return (alt_ty, case_ue) } }
checkCaseAlts :: CoreExpr -> LintedType -> [CoreAlt] -> LintM ()
-- a) Check that the alts are non-empty
-- b1) Check that the DEFAULT comes first, if it exists
-- b2) Check that the others are in increasing order
-- c) Check that there's a default for infinite types
-- NB: Algebraic cases are not necessarily exhaustive, because
-- the simplifier correctly eliminates case that can't
-- possibly match.
checkCaseAlts e ty alts =
do { checkL (all non_deflt con_alts) (mkNonDefltMsg e)
-- See GHC.Core Note [Case expression invariants] item (2)
; checkL (increasing_tag con_alts) (mkNonIncreasingAltsMsg e)
-- See GHC.Core Note [Case expression invariants] item (3)
-- For types Int#, Word# with an infinite (well, large!) number of
-- possible values, there should usually be a DEFAULT case
-- But (see Note [Empty case alternatives] in GHC.Core) it's ok to
-- have *no* case alternatives.
-- In effect, this is a kind of partial test. I suppose it's possible
-- that we might *know* that 'x' was 1 or 2, in which case
-- case x of { 1 -> e1; 2 -> e2 }
-- would be fine.
; checkL (isJust maybe_deflt || not is_infinite_ty || null alts)
(nonExhaustiveAltsMsg e) }
where
(con_alts, maybe_deflt) = findDefault alts
-- Check that successive alternatives have strictly increasing tags
increasing_tag (alt1 : rest@( alt2 : _)) = alt1 `ltAlt` alt2 && increasing_tag rest
increasing_tag _ = True
non_deflt (Alt DEFAULT _ _) = False
non_deflt _ = True
is_infinite_ty = case tyConAppTyCon_maybe ty of
Nothing -> False
Just tycon -> isPrimTyCon tycon
lintAltExpr :: CoreExpr -> LintedType -> LintM UsageEnv
lintAltExpr expr ann_ty
= do { (actual_ty, ue) <- lintCoreExpr expr
; ensureEqTys actual_ty ann_ty (mkCaseAltMsg expr actual_ty ann_ty)
; return ue }
-- See GHC.Core Note [Case expression invariants] item (6)
lintCoreAlt :: Var -- Case binder
-> LintedType -- Type of scrutinee
-> Mult -- Multiplicity of scrutinee
-> LintedType -- Type of the alternative
-> CoreAlt
-> LintM UsageEnv
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintCoreAlt _ _ _ alt_ty (Alt DEFAULT args rhs) =
do { lintL (null args) (mkDefaultArgsMsg args)
; lintAltExpr rhs alt_ty }
lintCoreAlt _case_bndr scrut_ty _ alt_ty (Alt (LitAlt lit) args rhs)
| litIsLifted lit
= failWithL integerScrutinisedMsg
| otherwise
= do { lintL (null args) (mkDefaultArgsMsg args)
; ensureEqTys lit_ty scrut_ty (mkBadPatMsg lit_ty scrut_ty)
; lintAltExpr rhs alt_ty }
where
lit_ty = literalType lit
lintCoreAlt case_bndr scrut_ty _scrut_mult alt_ty alt@(Alt (DataAlt con) args rhs)
| isNewTyCon (dataConTyCon con)
= zeroUE <$ addErrL (mkNewTyDataConAltMsg scrut_ty alt)
| Just (tycon, tycon_arg_tys) <- splitTyConApp_maybe scrut_ty
= addLoc (CaseAlt alt) $ do
{ -- First instantiate the universally quantified
-- type variables of the data constructor
-- We've already check
lintL (tycon == dataConTyCon con) (mkBadConMsg tycon con)
; let { con_payload_ty = piResultTys (dataConRepType con) tycon_arg_tys
; binderMult (Named _) = ManyTy
; binderMult (Anon st _) = scaledMult st
-- See Note [Validating multiplicities in a case]
; multiplicities = map binderMult $ fst $ splitPiTys con_payload_ty }
-- And now bring the new binders into scope
; lintBinders CasePatBind args $ \ args' -> do
{
rhs_ue <- lintAltExpr rhs alt_ty
; rhs_ue' <- addLoc (CasePat alt) (lintAltBinders rhs_ue case_bndr scrut_ty con_payload_ty (zipEqual "lintCoreAlt" multiplicities args'))
; return $ deleteUE rhs_ue' case_bndr
}
}
| otherwise -- Scrut-ty is wrong shape
= zeroUE <$ addErrL (mkBadAltMsg scrut_ty alt)
{-
Note [Validating multiplicities in a case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose 'MkT :: a %m -> T m a'.
If we are validating 'case (x :: T Many a) of MkT y -> ...',
we have to substitute m := Many in the type of MkT - in particular,
y can be used Many times and that expression would still be linear in x.
We do this by looking at con_payload_ty, which is the type of the datacon
applied to the surrounding arguments.
Testcase: linear/should_compile/MultConstructor
Data constructors containing existential tyvars will then have
Named binders, which are always multiplicity Many.
Testcase: indexed-types/should_compile/GADT1
-}
lintLinearBinder :: SDoc -> Mult -> Mult -> LintM ()
lintLinearBinder doc actual_usage described_usage
= ensureSubMult actual_usage described_usage err_msg
where
err_msg = (text "Multiplicity of variable does not agree with its context"
$$ doc
$$ ppr actual_usage
$$ text "Annotation:" <+> ppr described_usage)
{-
************************************************************************
* *
\subsection[lint-types]{Types}
* *
************************************************************************
-}
-- When we lint binders, we (one at a time and in order):
-- 1. Lint var types or kinds (possibly substituting)
-- 2. Add the binder to the in scope set, and if its a coercion var,
-- we may extend the substitution to reflect its (possibly) new kind
lintBinders :: BindingSite -> [Var] -> ([Var] -> LintM a) -> LintM a
lintBinders _ [] linterF = linterF []
lintBinders site (var:vars) linterF = lintBinder site var $ \var' ->
lintBinders site vars $ \ vars' ->
linterF (var':vars')
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintBinder :: BindingSite -> Var -> (Var -> LintM a) -> LintM a
lintBinder site var linterF
| isTyCoVar var = lintTyCoBndr var linterF
| otherwise = lintIdBndr NotTopLevel site var linterF
lintTyBndr :: TyVar -> (LintedTyCoVar -> LintM a) -> LintM a
lintTyBndr = lintTyCoBndr -- We could specialise it, I guess
lintTyCoBndr :: TyCoVar -> (LintedTyCoVar -> LintM a) -> LintM a
lintTyCoBndr tcv thing_inside
= do { subst <- getSubst
; tcv_type' <- lintType (varType tcv)
; let tcv' = uniqAway (getSubstInScope subst) $
setVarType tcv tcv_type'
subst' = extendTCvSubstWithClone subst tcv tcv'
-- See (FORALL1) and (FORALL2) in GHC.Core.Type
; if (isTyVar tcv)
then -- Check that in (forall (a:ki). blah) we have ki:Type
lintL (isLiftedTypeKind (typeKind tcv_type')) $
hang (text "TyVar whose kind does not have kind Type:")
2 (ppr tcv' <+> dcolon <+> ppr tcv_type' <+> dcolon <+> ppr (typeKind tcv_type'))
else -- Check that in (forall (cv::ty). blah),
-- then ty looks like (t1 ~# t2)
lintL (isCoVarType tcv_type') $
text "CoVar with non-coercion type:" <+> pprTyVar tcv
; updateSubst subst' (thing_inside tcv') }
lintIdBndrs :: forall a. TopLevelFlag -> [Id] -> ([LintedId] -> LintM a) -> LintM a
lintIdBndrs top_lvl ids thing_inside
= go ids thing_inside
where
go :: [Id] -> ([Id] -> LintM a) -> LintM a
go [] thing_inside = thing_inside []
go (id:ids) thing_inside = lintIdBndr top_lvl LetBind id $ \id' ->
go ids $ \ids' ->
thing_inside (id' : ids')
lintIdBndr :: TopLevelFlag -> BindingSite
-> InVar -> (OutVar -> LintM a) -> LintM a
-- Do substitution on the type of a binder and add the var with this
-- new type to the in-scope set of the second argument
-- ToDo: lint its rules
lintIdBndr top_lvl bind_site id thing_inside
= assertPpr (isId id) (ppr id) $
do { flags <- getLintFlags
; checkL (not (lf_check_global_ids flags) || isLocalId id)
(text "Non-local Id binder" <+> ppr id)
-- See Note [Checking for global Ids]
-- Check that if the binder is nested, it is not marked as exported
; checkL (not (isExportedId id) || is_top_lvl)
(mkNonTopExportedMsg id)
-- Check that if the binder is nested, it does not have an external name
; checkL (not (isExternalName (Var.varName id)) || is_top_lvl)
(mkNonTopExternalNameMsg id)
-- See Note [Representation polymorphism invariants] in GHC.Core
; lintL (isJoinId id || not (lf_check_fixed_rep flags)
|| typeHasFixedRuntimeRep id_ty) $
text "Binder does not have a fixed runtime representation:" <+> ppr id <+> dcolon <+>
parens (ppr id_ty <+> dcolon <+> ppr (typeKind id_ty))
-- Check that a join-id is a not-top-level let-binding
; when (isJoinId id) $
checkL (not is_top_lvl && is_let_bind) $
mkBadJoinBindMsg id
-- Check that the Id does not have type (t1 ~# t2) or (t1 ~R# t2);
-- if so, it should be a CoVar, and checked by lintCoVarBndr
; lintL (not (isCoVarType id_ty))
(text "Non-CoVar has coercion type" <+> ppr id <+> dcolon <+> ppr id_ty)
-- Check that the lambda binder has no value or OtherCon unfolding.
-- See #21496
; lintL (not (bind_site == LambdaBind && isEvaldUnfolding (idUnfolding id)))
(text "Lambda binder with value or OtherCon unfolding.")
; linted_ty <- addLoc (IdTy id) (lintValueType id_ty)
; addInScopeId id linted_ty $
thing_inside (setIdType id linted_ty) }
where
id_ty = idType id
is_top_lvl = isTopLevel top_lvl
is_let_bind = case bind_site of
LetBind -> True
_ -> False
{-
%************************************************************************
%* *
Types
%* *
%************************************************************************
-}
lintValueType :: Type -> LintM LintedType
-- Types only, not kinds
-- Check the type, and apply the substitution to it
-- See Note [Linting type lets]
lintValueType ty
= addLoc (InType ty) $
do { ty' <- lintType ty
; let sk = typeKind ty'
; lintL (isTYPEorCONSTRAINT sk) $
hang (text "Ill-kinded type:" <+> ppr ty)
2 (text "has kind:" <+> ppr sk)
; return ty' }
checkTyCon :: TyCon -> LintM ()
checkTyCon tc
= checkL (not (isTcTyCon tc)) (text "Found TcTyCon:" <+> ppr tc)
-------------------
lintType :: Type -> LintM LintedType
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintType (TyVarTy tv)
| not (isTyVar tv)
= failWithL (mkBadTyVarMsg tv)
| otherwise
= do { subst <- getSubst
; case lookupTyVar subst tv of
Just linted_ty -> return linted_ty
-- In GHCi we may lint an expression with a free
-- type variable. Then it won't be in the
-- substitution, but it should be in scope
Nothing | tv `isInScope` subst
-> return (TyVarTy tv)
| otherwise
-> failWithL $
hang (text "The type variable" <+> pprBndr LetBind tv)
2 (text "is out of scope")
}
lintType ty@(AppTy t1 t2)
| TyConApp {} <- t1
= failWithL $ text "TyConApp to the left of AppTy:" <+> ppr ty
| otherwise
= do { t1' <- lintType t1
; t2' <- lintType t2
; lint_ty_app ty (typeKind t1') [t2']
; return (AppTy t1' t2') }
lintType ty@(TyConApp tc tys)
| isTypeSynonymTyCon tc || isTypeFamilyTyCon tc
= do { report_unsat <- lf_report_unsat_syns <$> getLintFlags
; lintTySynFamApp report_unsat ty tc tys }
| Just {} <- tyConAppFunTy_maybe tc tys
-- We should never see a saturated application of funTyCon; such
-- applications should be represented with the FunTy constructor.
-- See Note [Linting function types]
= failWithL (hang (text "Saturated application of" <+> quotes (ppr tc)) 2 (ppr ty))
| otherwise -- Data types, data families, primitive types
= do { checkTyCon tc
; tys' <- mapM lintType tys
; lint_ty_app ty (tyConKind tc) tys'
; return (TyConApp tc tys') }
-- arrows can related *unlifted* kinds, so this has to be separate from
-- a dependent forall.
lintType ty@(FunTy af tw t1 t2)
= do { t1' <- lintType t1
; t2' <- lintType t2
; tw' <- lintType tw
; lintArrow (text "type or kind" <+> quotes (ppr ty)) t1' t2' tw'
; let real_af = chooseFunTyFlag t1 t2
; unless (real_af == af) $ addErrL $
hang (text "Bad FunTyFlag in FunTy")
2 (vcat [ ppr ty
, text "FunTyFlag =" <+> ppr af
, text "Computed FunTyFlag =" <+> ppr real_af ])
; return (FunTy af tw' t1' t2') }
lintType ty@(ForAllTy (Bndr tcv vis) body_ty)
| not (isTyCoVar tcv)
= failWithL (text "Non-Tyvar or Non-Covar bound in type:" <+> ppr ty)
| otherwise
= lintTyCoBndr tcv $ \tcv' ->
do { body_ty' <- lintType body_ty
; lintForAllBody tcv' body_ty'
; when (isCoVar tcv) $
lintL (tcv `elemVarSet` tyCoVarsOfType body_ty) $
text "Covar does not occur in the body:" <+> (ppr tcv $$ ppr body_ty)
-- See GHC.Core.TyCo.Rep Note [Unused coercion variable in ForAllTy]
-- and cf GHC.Core.Coercion Note [Unused coercion variable in ForAllCo]
; return (ForAllTy (Bndr tcv' vis) body_ty') }
lintType ty@(LitTy l)
= do { lintTyLit l; return ty }
lintType (CastTy ty co)
= do { ty' <- lintType ty
; co' <- lintStarCoercion co
; let tyk = typeKind ty'
cok = coercionLKind co'
; ensureEqTys tyk cok (mkCastTyErr ty co tyk cok)
; return (CastTy ty' co') }
lintType (CoercionTy co)
= do { co' <- lintCoercion co
; return (CoercionTy co') }
-----------------
lintForAllBody :: LintedTyCoVar -> LintedType -> LintM ()
-- Do the checks for the body of a forall-type
lintForAllBody tcv body_ty
= do { checkValueType body_ty (text "the body of forall:" <+> ppr body_ty)
-- For type variables, check for skolem escape
-- See Note [Phantom type variables in kinds] in GHC.Core.Type
-- The kind of (forall cv. th) is liftedTypeKind, so no
-- need to check for skolem-escape in the CoVar case
; let body_kind = typeKind body_ty
; when (isTyVar tcv) $
case occCheckExpand [tcv] body_kind of
Just {} -> return ()
Nothing -> failWithL $
hang (text "Variable escape in forall:")
2 (vcat [ text "tyvar:" <+> ppr tcv
, text "type:" <+> ppr body_ty
, text "kind:" <+> ppr body_kind ])
}
-----------------
lintTySynFamApp :: Bool -> InType -> TyCon -> [InType] -> LintM LintedType
-- The TyCon is a type synonym or a type family (not a data family)
-- See Note [Linting type synonym applications]
-- c.f. GHC.Tc.Validity.check_syn_tc_app
lintTySynFamApp report_unsat ty tc tys
| report_unsat -- Report unsaturated only if report_unsat is on
, tys `lengthLessThan` tyConArity tc
= failWithL (hang (text "Un-saturated type application") 2 (ppr ty))
-- Deal with type synonyms
| ExpandsSyn tenv rhs tys' <- expandSynTyCon_maybe tc tys
, let expanded_ty = mkAppTys (substTy (mkTvSubstPrs tenv) rhs) tys'
= do { -- Kind-check the argument types, but without reporting
-- un-saturated type families/synonyms
tys' <- setReportUnsat False (mapM lintType tys)
; when report_unsat $
do { _ <- lintType expanded_ty
; return () }
; lint_ty_app ty (tyConKind tc) tys'
; return (TyConApp tc tys') }
-- Otherwise this must be a type family
| otherwise
= do { tys' <- mapM lintType tys
; lint_ty_app ty (tyConKind tc) tys'
; return (TyConApp tc tys') }
-----------------
-- Confirms that a type is really TYPE r or Constraint
checkValueType :: LintedType -> SDoc -> LintM ()
checkValueType ty doc
= lintL (isTYPEorCONSTRAINT kind)
(text "Non-Type-like kind when Type-like expected:" <+> ppr kind $$
text "when checking" <+> doc)
where
kind = typeKind ty
-----------------
lintArrow :: SDoc -> LintedType -> LintedType -> LintedType -> LintM ()
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintArrow what t1 t2 tw -- Eg lintArrow "type or kind `blah'" k1 k2 kw
-- or lintArrow "coercion `blah'" k1 k2 kw
= do { unless (isTYPEorCONSTRAINT k1) (report (text "argument") k1)
; unless (isTYPEorCONSTRAINT k2) (report (text "result") k2)
; unless (isMultiplicityTy kw) (report (text "multiplicity") kw) }
where
k1 = typeKind t1
k2 = typeKind t2
kw = typeKind tw
report ar k = addErrL (vcat [ hang (text "Ill-kinded" <+> ar)
2 (text "in" <+> what)
, what <+> text "kind:" <+> ppr k ])
-----------------
lint_ty_app :: Type -> LintedKind -> [LintedType] -> LintM ()
lint_ty_app msg_ty k tys
-- See Note [Avoiding compiler perf traps when constructing error messages.]
= lint_app (\msg_ty -> text "type" <+> quotes (ppr msg_ty)) msg_ty k tys
----------------
lint_co_app :: Coercion -> LintedKind -> [LintedType] -> LintM ()
lint_co_app msg_ty k tys
-- See Note [Avoiding compiler perf traps when constructing error messages.]
= lint_app (\msg_ty -> text "coercion" <+> quotes (ppr msg_ty)) msg_ty k tys
----------------
lintTyLit :: TyLit -> LintM ()
lintTyLit (NumTyLit n)
| n >= 0 = return ()
| otherwise = failWithL msg
where msg = text "Negative type literal:" <+> integer n
lintTyLit (StrTyLit _) = return ()
lintTyLit (CharTyLit _) = return ()
lint_app :: Outputable msg_thing => (msg_thing -> SDoc) -> msg_thing -> LintedKind -> [LintedType] -> LintM ()
-- (lint_app d fun_kind arg_tys)
-- We have an application (f arg_ty1 .. arg_tyn),
-- where f :: fun_kind
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
--
-- Being strict in the kind here avoids quite a few pointless thunks
-- reducing allocations by ~5%
lint_app mk_msg msg_type !kfn arg_tys
= do { !in_scope <- getInScope
-- We need the in_scope set to satisfy the invariant in
-- Note [The substitution invariant] in GHC.Core.TyCo.Subst
-- Forcing the in scope set eagerly here reduces allocations by up to 4%.
; go_app in_scope kfn arg_tys
}
where
-- We use explicit recursion instead of a fold here to avoid go_app becoming
-- an allocated function closure. This reduced allocations by up to 7% for some
-- modules.
go_app :: InScopeSet -> LintedKind -> [Type] -> LintM ()
go_app !in_scope !kfn ta
| Just kfn' <- coreView kfn
= go_app in_scope kfn' ta
go_app _in_scope _kind [] = return ()
go_app in_scope fun_kind@(FunTy _ _ kfa kfb) (ta:tas)
= do { let ka = typeKind ta
; unless (ka `eqType` kfa) $
addErrL (lint_app_fail_msg kfn arg_tys mk_msg msg_type (text "Fun:" <+> (ppr fun_kind $$ ppr ta <+> dcolon <+> ppr ka)))
; go_app in_scope kfb tas }
go_app in_scope (ForAllTy (Bndr kv _vis) kfn) (ta:tas)
= do { let kv_kind = varType kv
ka = typeKind ta
; unless (ka `eqType` kv_kind) $
addErrL (lint_app_fail_msg kfn arg_tys mk_msg msg_type (text "Forall:" <+> (ppr kv $$ ppr kv_kind $$
ppr ta <+> dcolon <+> ppr ka)))
; let kind' = substTy (extendTCvSubst (mkEmptySubst in_scope) kv ta) kfn
; go_app in_scope kind' tas }
go_app _ kfn ta
= failWithL (lint_app_fail_msg kfn arg_tys mk_msg msg_type (text "Not a fun:" <+> (ppr kfn $$ ppr ta)))
-- This is a top level definition to ensure we pass all variables of the error message
-- explicitly and don't capture them as free variables. Otherwise this binder might
-- become a thunk that get's allocated in the hot code path.
-- See Note [Avoiding compiler perf traps when constructing error messages.]
lint_app_fail_msg :: (Outputable a1, Outputable a2) => a1 -> a2 -> (t -> SDoc) -> t -> SDoc -> SDoc
lint_app_fail_msg kfn arg_tys mk_msg msg_type extra = vcat [ hang (text "Kind application error in") 2 (mk_msg msg_type)
, nest 2 (text "Function kind =" <+> ppr kfn)
, nest 2 (text "Arg types =" <+> ppr arg_tys)
, extra ]
{- *********************************************************************
* *
Linting rules
* *
********************************************************************* -}
lintCoreRule :: OutVar -> LintedType -> CoreRule -> LintM ()
lintCoreRule _ _ (BuiltinRule {})
= return () -- Don't bother
lintCoreRule fun fun_ty rule@(Rule { ru_name = name, ru_bndrs = bndrs
, ru_args = args, ru_rhs = rhs })
= lintBinders LambdaBind bndrs $ \ _ ->
do { (lhs_ty, _) <- lintCoreArgs (fun_ty, zeroUE) args
; (rhs_ty, _) <- case isJoinId_maybe fun of
Just join_arity
-> do { checkL (args `lengthIs` join_arity) $
mkBadJoinPointRuleMsg fun join_arity rule
-- See Note [Rules for join points]
; lintCoreExpr rhs }
_ -> markAllJoinsBad $ lintCoreExpr rhs
; ensureEqTys lhs_ty rhs_ty $
(rule_doc <+> vcat [ text "lhs type:" <+> ppr lhs_ty
, text "rhs type:" <+> ppr rhs_ty
, text "fun_ty:" <+> ppr fun_ty ])
; let bad_bndrs = filter is_bad_bndr bndrs
; checkL (null bad_bndrs)
(rule_doc <+> text "unbound" <+> ppr bad_bndrs)
-- See Note [Linting rules]
}
where
rule_doc = text "Rule" <+> doubleQuotes (ftext name) <> colon
lhs_fvs = exprsFreeVars args
rhs_fvs = exprFreeVars rhs
is_bad_bndr :: Var -> Bool
-- See Note [Unbound RULE binders] in GHC.Core.Rules
is_bad_bndr bndr = not (bndr `elemVarSet` lhs_fvs)
&& bndr `elemVarSet` rhs_fvs
&& isNothing (isReflCoVar_maybe bndr)
{- Note [Linting rules]
~~~~~~~~~~~~~~~~~~~~~~~
It's very bad if simplifying a rule means that one of the template
variables (ru_bndrs) that /is/ mentioned on the RHS becomes
not-mentioned in the LHS (ru_args). How can that happen? Well, in #10602,
SpecConstr stupidly constructed a rule like
forall x,c1,c2.
f (x |> c1 |> c2) = ....
But simplExpr collapses those coercions into one. (Indeed in #10602,
it collapsed to the identity and was removed altogether.)
We don't have a great story for what to do here, but at least
this check will nail it.
NB (#11643): it's possible that a variable listed in the
binders becomes not-mentioned on both LHS and RHS. Here's a silly
example:
RULE forall x y. f (g x y) = g (x+1) (y-1)
And suppose worker/wrapper decides that 'x' is Absent. Then
we'll end up with
RULE forall x y. f ($gw y) = $gw (x+1)
This seems sufficiently obscure that there isn't enough payoff to
try to trim the forall'd binder list.
Note [Rules for join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A join point cannot be partially applied. However, the left-hand side of a rule
for a join point is effectively a *pattern*, not a piece of code, so there's an
argument to be made for allowing a situation like this:
join $sj :: Int -> Int -> String
$sj n m = ...
j :: forall a. Eq a => a -> a -> String
{-# RULES "SPEC j" jump j @ Int $dEq = jump $sj #-}
j @a $dEq x y = ...
Applying this rule can't turn a well-typed program into an ill-typed one, so
conceivably we could allow it. But we can always eta-expand such an
"undersaturated" rule (see 'GHC.Core.Opt.Arity.etaExpandToJoinPointRule'), and in fact
the simplifier would have to in order to deal with the RHS. So we take a
conservative view and don't allow undersaturated rules for join points. See
Note [Join points and unfoldings/rules] in "GHC.Core.Opt.OccurAnal" for further discussion.
-}
{-
************************************************************************
* *
Linting coercions
* *
************************************************************************
-}
{- Note [Asymptotic efficiency]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When linting coercions (and types actually) we return a linted
(substituted) coercion. Then we often have to take the coercionKind of
that returned coercion. If we get long chains, that can be asymptotically
inefficient, notably in
* TransCo
* InstCo
* SelCo (cf #9233)
* LRCo
But the code is simple. And this is only Lint. Let's wait to see if
the bad perf bites us in practice.
A solution would be to return the kind and role of the coercion,
as well as the linted coercion. Or perhaps even *only* the kind and role,
which is what used to happen. But that proved tricky and error prone
(#17923), so now we return the coercion.
-}
-- lints a coercion, confirming that its lh kind and its rh kind are both *
-- also ensures that the role is Nominal
lintStarCoercion :: InCoercion -> LintM LintedCoercion
lintStarCoercion g
= do { g' <- lintCoercion g
; let Pair t1 t2 = coercionKind g'
; checkValueType t1 (text "the kind of the left type in" <+> ppr g)
; checkValueType t2 (text "the kind of the right type in" <+> ppr g)
; lintRole g Nominal (coercionRole g)
; return g' }
lintCoercion :: InCoercion -> LintM LintedCoercion
-- If you edit this function, you may need to update the GHC formalism
-- See Note [GHC Formalism]
lintCoercion (CoVarCo cv)
| not (isCoVar cv)
= failWithL (hang (text "Bad CoVarCo:" <+> ppr cv)
2 (text "With offending type:" <+> ppr (varType cv)))
| otherwise
= do { subst <- getSubst
; case lookupCoVar subst cv of
Just linted_co -> return linted_co ;
Nothing
| cv `isInScope` subst
-> return (CoVarCo cv)
| otherwise
->
-- lintCoBndr always extends the substitution
failWithL $
hang (text "The coercion variable" <+> pprBndr LetBind cv)
2 (text "is out of scope")
}
lintCoercion (Refl ty)
= do { ty' <- lintType ty
; return (Refl ty') }
lintCoercion (GRefl r ty MRefl)
= do { ty' <- lintType ty
; return (GRefl r ty' MRefl) }
lintCoercion (GRefl r ty (MCo co))
= do { ty' <- lintType ty
; co' <- lintCoercion co
; let tk = typeKind ty'
tl = coercionLKind co'
; ensureEqTys tk tl $
hang (text "GRefl coercion kind mis-match:" <+> ppr co)
2 (vcat [ppr ty', ppr tk, ppr tl])
; lintRole co' Nominal (coercionRole co')
; return (GRefl r ty' (MCo co')) }
lintCoercion co@(TyConAppCo r tc cos)
| Just {} <- tyConAppFunCo_maybe r tc cos
= failWithL (hang (text "Saturated application of" <+> quotes (ppr tc))
2 (ppr co))
-- All saturated TyConAppCos should be FunCos
| Just {} <- synTyConDefn_maybe tc
= failWithL (text "Synonym in TyConAppCo:" <+> ppr co)
| otherwise
= do { checkTyCon tc
; cos' <- mapM lintCoercion cos
; let (co_kinds, co_roles) = unzip (map coercionKindRole cos')
; lint_co_app co (tyConKind tc) (map pFst co_kinds)
; lint_co_app co (tyConKind tc) (map pSnd co_kinds)
; zipWithM_ (lintRole co) (tyConRoleListX r tc) co_roles
; return (TyConAppCo r tc cos') }
lintCoercion co@(AppCo co1 co2)
| TyConAppCo {} <- co1
= failWithL (text "TyConAppCo to the left of AppCo:" <+> ppr co)
| Just (TyConApp {}, _) <- isReflCo_maybe co1
= failWithL (text "Refl (TyConApp ...) to the left of AppCo:" <+> ppr co)
| otherwise
= do { co1' <- lintCoercion co1
; co2' <- lintCoercion co2
; let (Pair lk1 rk1, r1) = coercionKindRole co1'
(Pair lk2 rk2, r2) = coercionKindRole co2'
; lint_co_app co (typeKind lk1) [lk2]
; lint_co_app co (typeKind rk1) [rk2]
; if r1 == Phantom
then lintL (r2 == Phantom || r2 == Nominal)
(text "Second argument in AppCo cannot be R:" $$
ppr co)
else lintRole co Nominal r2
; return (AppCo co1' co2') }
----------
lintCoercion co@(ForAllCo tcv kind_co body_co)
| not (isTyCoVar tcv)
= failWithL (text "Non tyco binder in ForAllCo:" <+> ppr co)
| otherwise
= do { kind_co' <- lintStarCoercion kind_co
; lintTyCoBndr tcv $ \tcv' ->
do { body_co' <- lintCoercion body_co
; ensureEqTys (varType tcv') (coercionLKind kind_co') $
text "Kind mis-match in ForallCo" <+> ppr co
-- Assuming kind_co :: k1 ~ k2
-- Need to check that
-- (forall (tcv:k1). lty) and
-- (forall (tcv:k2). rty[(tcv:k2) |> sym kind_co/tcv])
-- are both well formed. Easiest way is to call lintForAllBody
-- for each; there is actually no need to do the funky substitution
; let Pair lty rty = coercionKind body_co'
; lintForAllBody tcv' lty
; lintForAllBody tcv' rty
; when (isCoVar tcv) $
lintL (almostDevoidCoVarOfCo tcv body_co) $
text "Covar can only appear in Refl and GRefl: " <+> ppr co
-- See "last wrinkle" in GHC.Core.Coercion
-- Note [Unused coercion variable in ForAllCo]
-- and c.f. GHC.Core.TyCo.Rep Note [Unused coercion variable in ForAllTy]
; return (ForAllCo tcv' kind_co' body_co') } }
lintCoercion co@(FunCo { fco_role = r, fco_afl = afl, fco_afr = afr
, fco_mult = cow, fco_arg = co1, fco_res = co2 })
= do { co1' <- lintCoercion co1
; co2' <- lintCoercion co2
; cow' <- lintCoercion cow
; let Pair lt1 rt1 = coercionKind co1
Pair lt2 rt2 = coercionKind co2
Pair ltw rtw = coercionKind cow
; lintL (afl == chooseFunTyFlag lt1 lt2) (bad_co_msg "afl")
; lintL (afr == chooseFunTyFlag rt1 rt2) (bad_co_msg "afr")
; lintArrow (bad_co_msg "arrowl") lt1 lt2 ltw
; lintArrow (bad_co_msg "arrowr") rt1 rt2 rtw
; lintRole co1 r (coercionRole co1)
; lintRole co2 r (coercionRole co2)
; ensureEqTys (typeKind ltw) multiplicityTy (bad_co_msg "mult-l")
; ensureEqTys (typeKind rtw) multiplicityTy (bad_co_msg "mult-r")
; let expected_mult_role = case r of
Phantom -> Phantom
_ -> Nominal
; lintRole cow expected_mult_role (coercionRole cow)
; return (co { fco_mult = cow', fco_arg = co1', fco_res = co2' }) }
where
bad_co_msg s = hang (text "Bad coercion" <+> parens (text s))
2 (vcat [ text "afl:" <+> ppr afl
, text "afr:" <+> ppr afr
, text "arg_co:" <+> ppr co1
, text "res_co:" <+> ppr co2 ])
-- See Note [Bad unsafe coercion]
lintCoercion co@(UnivCo prov r ty1 ty2)
= do { ty1' <- lintType ty1
; ty2' <- lintType ty2
; let k1 = typeKind ty1'
k2 = typeKind ty2'
; prov' <- lint_prov k1 k2 prov
; when (r /= Phantom && isTYPEorCONSTRAINT k1
&& isTYPEorCONSTRAINT k2)
(checkTypes ty1 ty2)
; return (UnivCo prov' r ty1' ty2') }
where
report s = hang (text $ "Unsafe coercion: " ++ s)
2 (vcat [ text "From:" <+> ppr ty1
, text " To:" <+> ppr ty2])
isUnBoxed :: PrimRep -> Bool
isUnBoxed = not . isGcPtrRep
-- see #9122 for discussion of these checks
checkTypes t1 t2
| allow_ill_kinded_univ_co prov
= return () -- Skip kind checks
| otherwise
= do { checkWarnL fixed_rep_1
(report "left-hand type does not have a fixed runtime representation")
; checkWarnL fixed_rep_2
(report "right-hand type does not have a fixed runtime representation")
; when (fixed_rep_1 && fixed_rep_2) $
do { checkWarnL (reps1 `equalLength` reps2)
(report "between values with different # of reps")
; zipWithM_ validateCoercion reps1 reps2 }}
where
fixed_rep_1 = typeHasFixedRuntimeRep t1
fixed_rep_2 = typeHasFixedRuntimeRep t2
-- don't look at these unless lev_poly1/2 are False
-- Otherwise, we get #13458
reps1 = typePrimRep t1
reps2 = typePrimRep t2
-- CorePrep deliberately makes ill-kinded casts
-- e.g (case error @Int "blah" of {}) :: Int#
-- ==> (error @Int "blah") |> Unsafe Int Int#
-- See Note [Unsafe coercions] in GHC.Core.CoreToStg.Prep
allow_ill_kinded_univ_co (CorePrepProv homo_kind) = not homo_kind
allow_ill_kinded_univ_co _ = False
validateCoercion :: PrimRep -> PrimRep -> LintM ()
validateCoercion rep1 rep2
= do { platform <- getPlatform
; checkWarnL (isUnBoxed rep1 == isUnBoxed rep2)
(report "between unboxed and boxed value")
; checkWarnL (TyCon.primRepSizeB platform rep1
== TyCon.primRepSizeB platform rep2)
(report "between unboxed values of different size")
; let fl = liftM2 (==) (TyCon.primRepIsFloat rep1)
(TyCon.primRepIsFloat rep2)
; case fl of
Nothing -> addWarnL (report "between vector types")
Just False -> addWarnL (report "between float and integral values")
_ -> return ()
}
lint_prov k1 k2 (PhantomProv kco)
= do { kco' <- lintStarCoercion kco
; lintRole co Phantom r
; check_kinds kco' k1 k2
; return (PhantomProv kco') }
lint_prov k1 k2 (ProofIrrelProv kco)
= do { lintL (isCoercionTy ty1) (mkBadProofIrrelMsg ty1 co)
; lintL (isCoercionTy ty2) (mkBadProofIrrelMsg ty2 co)
; kco' <- lintStarCoercion kco
; check_kinds kco k1 k2
; return (ProofIrrelProv kco') }
lint_prov _ _ prov@(PluginProv _) = return prov
lint_prov _ _ prov@(CorePrepProv _) = return prov
check_kinds kco k1 k2
= do { let Pair k1' k2' = coercionKind kco
; ensureEqTys k1 k1' (mkBadUnivCoMsg CLeft co)
; ensureEqTys k2 k2' (mkBadUnivCoMsg CRight co) }
lintCoercion (SymCo co)
= do { co' <- lintCoercion co
; return (SymCo co') }
lintCoercion co@(TransCo co1 co2)
= do { co1' <- lintCoercion co1
; co2' <- lintCoercion co2
; let ty1b = coercionRKind co1'
ty2a = coercionLKind co2'
; ensureEqTys ty1b ty2a
(hang (text "Trans coercion mis-match:" <+> ppr co)
2 (vcat [ppr (coercionKind co1'), ppr (coercionKind co2')]))
; lintRole co (coercionRole co1) (coercionRole co2)
; return (TransCo co1' co2') }
lintCoercion the_co@(SelCo cs co)
= do { co' <- lintCoercion co
; let (Pair s t, co_role) = coercionKindRole co'
; if -- forall (both TyVar and CoVar)
| Just _ <- splitForAllTyCoVar_maybe s
, Just _ <- splitForAllTyCoVar_maybe t
, SelForAll <- cs
, (isForAllTy_ty s && isForAllTy_ty t)
|| (isForAllTy_co s && isForAllTy_co t)
-> return (SelCo cs co')
-- function
| isFunTy s
, isFunTy t
, SelFun {} <- cs
-> return (SelCo cs co')
-- TyCon
| Just (tc_s, tys_s) <- splitTyConApp_maybe s
, Just (tc_t, tys_t) <- splitTyConApp_maybe t
, tc_s == tc_t
, SelTyCon n r0 <- cs
, isInjectiveTyCon tc_s co_role
-- see Note [SelCo and newtypes] in GHC.Core.TyCo.Rep
, tys_s `equalLength` tys_t
, tys_s `lengthExceeds` n
-> do { lintRole the_co (tyConRole co_role tc_s n) r0
; return (SelCo cs co') }
| otherwise
-> failWithL (hang (text "Bad SelCo:")
2 (ppr the_co $$ ppr s $$ ppr t)) }
lintCoercion the_co@(LRCo lr co)
= do { co' <- lintCoercion co
; let Pair s t = coercionKind co'
r = coercionRole co'
; lintRole co Nominal r
; case (splitAppTy_maybe s, splitAppTy_maybe t) of
(Just _, Just _) -> return (LRCo lr co')
_ -> failWithL (hang (text "Bad LRCo:")
2 (ppr the_co $$ ppr s $$ ppr t)) }
lintCoercion (InstCo co arg)
= do { co' <- lintCoercion co
; arg' <- lintCoercion arg
; let Pair t1 t2 = coercionKind co'
Pair s1 s2 = coercionKind arg'
; lintRole arg Nominal (coercionRole arg')
; case (splitForAllTyVar_maybe t1, splitForAllTyVar_maybe t2) of
-- forall over tvar
{ (Just (tv1,_), Just (tv2,_))
| typeKind s1 `eqType` tyVarKind tv1
, typeKind s2 `eqType` tyVarKind tv2
-> return (InstCo co' arg')
| otherwise
-> failWithL (text "Kind mis-match in inst coercion1" <+> ppr co)
; _ -> case (splitForAllCoVar_maybe t1, splitForAllCoVar_maybe t2) of
-- forall over covar
{ (Just (cv1, _), Just (cv2, _))
| typeKind s1 `eqType` varType cv1
, typeKind s2 `eqType` varType cv2
, CoercionTy _ <- s1
, CoercionTy _ <- s2
-> return (InstCo co' arg')
| otherwise
-> failWithL (text "Kind mis-match in inst coercion2" <+> ppr co)
; _ -> failWithL (text "Bad argument of inst") }}}
lintCoercion co@(AxiomInstCo con ind cos)
= do { unless (0 <= ind && ind < numBranches (coAxiomBranches con))
(bad_ax (text "index out of range"))
; let CoAxBranch { cab_tvs = ktvs
, cab_cvs = cvs
, cab_roles = roles } = coAxiomNthBranch con ind
; unless (cos `equalLength` (ktvs ++ cvs)) $
bad_ax (text "lengths")
; cos' <- mapM lintCoercion cos
; subst <- getSubst
; let empty_subst = zapSubst subst
; _ <- foldlM check_ki (empty_subst, empty_subst)
(zip3 (ktvs ++ cvs) roles cos')
; let fam_tc = coAxiomTyCon con
; case checkAxInstCo co of
Just bad_branch -> bad_ax $ text "inconsistent with" <+>
pprCoAxBranch fam_tc bad_branch
Nothing -> return ()
; return (AxiomInstCo con ind cos') }
where
bad_ax what = addErrL (hang (text "Bad axiom application" <+> parens what)
2 (ppr co))
check_ki (subst_l, subst_r) (ktv, role, arg')
= do { let Pair s' t' = coercionKind arg'
sk' = typeKind s'
tk' = typeKind t'
; lintRole arg' role (coercionRole arg')
; let ktv_kind_l = substTy subst_l (tyVarKind ktv)
ktv_kind_r = substTy subst_r (tyVarKind ktv)
; unless (sk' `eqType` ktv_kind_l)
(bad_ax (text "check_ki1" <+> vcat [ ppr co, ppr sk', ppr ktv, ppr ktv_kind_l ] ))
; unless (tk' `eqType` ktv_kind_r)
(bad_ax (text "check_ki2" <+> vcat [ ppr co, ppr tk', ppr ktv, ppr ktv_kind_r ] ))
; return (extendTCvSubst subst_l ktv s',
extendTCvSubst subst_r ktv t') }
lintCoercion (KindCo co)
= do { co' <- lintCoercion co
; return (KindCo co') }
lintCoercion (SubCo co')
= do { co' <- lintCoercion co'
; lintRole co' Nominal (coercionRole co')
; return (SubCo co') }
lintCoercion this@(AxiomRuleCo ax cos)
= do { cos' <- mapM lintCoercion cos
; lint_roles 0 (coaxrAsmpRoles ax) cos'
; case coaxrProves ax (map coercionKind cos') of
Nothing -> err "Malformed use of AxiomRuleCo" [ ppr this ]
Just _ -> return (AxiomRuleCo ax cos') }
where
err :: forall a. String -> [SDoc] -> LintM a
err m xs = failWithL $
hang (text m) 2 $ vcat (text "Rule:" <+> ppr (coaxrName ax) : xs)
lint_roles n (e : es) (co : cos)
| e == coercionRole co = lint_roles (n+1) es cos
| otherwise = err "Argument roles mismatch"
[ text "In argument:" <+> int (n+1)
, text "Expected:" <+> ppr e
, text "Found:" <+> ppr (coercionRole co) ]
lint_roles _ [] [] = return ()
lint_roles n [] rs = err "Too many coercion arguments"
[ text "Expected:" <+> int n
, text "Provided:" <+> int (n + length rs) ]
lint_roles n es [] = err "Not enough coercion arguments"
[ text "Expected:" <+> int (n + length es)
, text "Provided:" <+> int n ]
lintCoercion (HoleCo h)
= do { addErrL $ text "Unfilled coercion hole:" <+> ppr h
; lintCoercion (CoVarCo (coHoleCoVar h)) }
{-
************************************************************************
* *
Axioms
* *
************************************************************************
-}
lintAxioms :: Logger
-> LintConfig
-> SDoc -- ^ The source of the linted axioms
-> [CoAxiom Branched]
-> IO ()
lintAxioms logger cfg what axioms =
displayLintResults logger True what (vcat $ map pprCoAxiom axioms) $
initL cfg $
do { mapM_ lint_axiom axioms
; let axiom_groups = groupWith coAxiomTyCon axioms
; mapM_ lint_axiom_group axiom_groups }
lint_axiom :: CoAxiom Branched -> LintM ()
lint_axiom ax@(CoAxiom { co_ax_tc = tc, co_ax_branches = branches
, co_ax_role = ax_role })
= addLoc (InAxiom ax) $
do { mapM_ (lint_branch tc) branch_list
; extra_checks }
where
branch_list = fromBranches branches
extra_checks
| isNewTyCon tc
= do { CoAxBranch { cab_tvs = tvs
, cab_eta_tvs = eta_tvs
, cab_cvs = cvs
, cab_roles = roles
, cab_lhs = lhs_tys }
<- case branch_list of
[branch] -> return branch
_ -> failWithL (text "multi-branch axiom with newtype")
; let ax_lhs = mkInfForAllTys tvs $
mkTyConApp tc lhs_tys
nt_tvs = takeList tvs (tyConTyVars tc)
-- axiom may be eta-reduced: Note [Newtype eta] in GHC.Core.TyCon
nt_lhs = mkInfForAllTys nt_tvs $
mkTyConApp tc (mkTyVarTys nt_tvs)
-- See Note [Newtype eta] in GHC.Core.TyCon
; lintL (ax_lhs `eqType` nt_lhs)
(text "Newtype axiom LHS does not match newtype definition")
; lintL (null cvs)
(text "Newtype axiom binds coercion variables")
; lintL (null eta_tvs) -- See Note [Eta reduction for data families]
-- which is not about newtype axioms
(text "Newtype axiom has eta-tvs")
; lintL (ax_role == Representational)
(text "Newtype axiom role not representational")
; lintL (roles `equalLength` tvs)
(text "Newtype axiom roles list is the wrong length." $$
text "roles:" <+> sep (map ppr roles))
; lintL (roles == takeList roles (tyConRoles tc))
(vcat [ text "Newtype axiom roles do not match newtype tycon's."
, text "axiom roles:" <+> sep (map ppr roles)
, text "tycon roles:" <+> sep (map ppr (tyConRoles tc)) ])
}
| isFamilyTyCon tc
= do { if | isTypeFamilyTyCon tc
-> lintL (ax_role == Nominal)
(text "type family axiom is not nominal")
| isDataFamilyTyCon tc
-> lintL (ax_role == Representational)
(text "data family axiom is not representational")
| otherwise
-> addErrL (text "A family TyCon is neither a type family nor a data family:" <+> ppr tc)
; mapM_ (lint_family_branch tc) branch_list }
| otherwise
= addErrL (text "Axiom tycon is neither a newtype nor a family.")
lint_branch :: TyCon -> CoAxBranch -> LintM ()
lint_branch ax_tc (CoAxBranch { cab_tvs = tvs, cab_cvs = cvs
, cab_lhs = lhs_args, cab_rhs = rhs })
= lintBinders LambdaBind (tvs ++ cvs) $ \_ ->
do { let lhs = mkTyConApp ax_tc lhs_args
; lhs' <- lintType lhs
; rhs' <- lintType rhs
; let lhs_kind = typeKind lhs'
rhs_kind = typeKind rhs'
; lintL (not (lhs_kind `typesAreApart` rhs_kind)) $
hang (text "Inhomogeneous axiom")
2 (text "lhs:" <+> ppr lhs <+> dcolon <+> ppr lhs_kind $$
text "rhs:" <+> ppr rhs <+> dcolon <+> ppr rhs_kind) }
-- Type and Constraint are not Apart, so this test allows
-- the newtype axiom for a single-method class. Indeed the
-- whole reason Type and Constraint are not Apart is to allow
-- such axioms!
-- these checks do not apply to newtype axioms
lint_family_branch :: TyCon -> CoAxBranch -> LintM ()
lint_family_branch fam_tc br@(CoAxBranch { cab_tvs = tvs
, cab_eta_tvs = eta_tvs
, cab_cvs = cvs
, cab_roles = roles
, cab_lhs = lhs
, cab_incomps = incomps })
= do { lintL (isDataFamilyTyCon fam_tc || null eta_tvs)
(text "Type family axiom has eta-tvs")
; lintL (all (`elemVarSet` tyCoVarsOfTypes lhs) tvs)
(text "Quantified variable in family axiom unused in LHS")
; lintL (all isTyFamFree lhs)
(text "Type family application on LHS of family axiom")
; lintL (all (== Nominal) roles)
(text "Non-nominal role in family axiom" $$
text "roles:" <+> sep (map ppr roles))
; lintL (null cvs)
(text "Coercion variables bound in family axiom")
; forM_ incomps $ \ br' ->
lintL (not (compatibleBranches br br')) $
hang (text "Incorrect incompatible branches:")
2 (vcat [text "Branch:" <+> ppr br,
text "Bogus incomp:" <+> ppr br']) }
lint_axiom_group :: NonEmpty (CoAxiom Branched) -> LintM ()
lint_axiom_group (_ :| []) = return ()
lint_axiom_group (ax :| axs)
= do { lintL (isOpenFamilyTyCon tc)
(text "Non-open-family with multiple axioms")
; let all_pairs = [ (ax1, ax2) | ax1 <- all_axs
, ax2 <- all_axs ]
; mapM_ (lint_axiom_pair tc) all_pairs }
where
all_axs = ax : axs
tc = coAxiomTyCon ax
lint_axiom_pair :: TyCon -> (CoAxiom Branched, CoAxiom Branched) -> LintM ()
lint_axiom_pair tc (ax1, ax2)
| Just br1@(CoAxBranch { cab_tvs = tvs1
, cab_lhs = lhs1
, cab_rhs = rhs1 }) <- coAxiomSingleBranch_maybe ax1
, Just br2@(CoAxBranch { cab_tvs = tvs2
, cab_lhs = lhs2
, cab_rhs = rhs2 }) <- coAxiomSingleBranch_maybe ax2
= lintL (compatibleBranches br1 br2) $
vcat [ hsep [ text "Axioms", ppr ax1, text "and", ppr ax2
, text "are incompatible" ]
, text "tvs1 =" <+> pprTyVars tvs1
, text "lhs1 =" <+> ppr (mkTyConApp tc lhs1)
, text "rhs1 =" <+> ppr rhs1
, text "tvs2 =" <+> pprTyVars tvs2
, text "lhs2 =" <+> ppr (mkTyConApp tc lhs2)
, text "rhs2 =" <+> ppr rhs2 ]
| otherwise
= addErrL (text "Open type family axiom has more than one branch: either" <+>
ppr ax1 <+> text "or" <+> ppr ax2)
{-
************************************************************************
* *
\subsection[lint-monad]{The Lint monad}
* *
************************************************************************
-}
-- If you edit this type, you may need to update the GHC formalism
-- See Note [GHC Formalism]
data LintEnv
= LE { le_flags :: LintFlags -- Linting the result of this pass
, le_loc :: [LintLocInfo] -- Locations
, le_subst :: Subst -- Current TyCo substitution
-- See Note [Linting type lets]
-- /Only/ substitutes for type variables;
-- but might clone CoVars
-- We also use le_subst to keep track of
-- in-scope TyVars and CoVars (but not Ids)
-- Range of the Subst is LintedType/LintedCo
, le_ids :: VarEnv (Id, LintedType) -- In-scope Ids
-- Used to check that occurrences have an enclosing binder.
-- The Id is /pre-substitution/, used to check that
-- the occurrence has an identical type to the binder
-- The LintedType is used to return the type of the occurrence,
-- without having to lint it again.
, le_joins :: IdSet -- Join points in scope that are valid
-- A subset of the InScopeSet in le_subst
-- See Note [Join points]
, le_ue_aliases :: NameEnv UsageEnv -- Assigns usage environments to the
-- alias-like binders, as found in
-- non-recursive lets.
, le_platform :: Platform -- ^ Target platform
, le_diagOpts :: DiagOpts -- ^ Target platform
}
data LintFlags
= LF { lf_check_global_ids :: Bool -- See Note [Checking for global Ids]
, lf_check_inline_loop_breakers :: Bool -- See Note [Checking for INLINE loop breakers]
, lf_check_static_ptrs :: StaticPtrCheck -- ^ See Note [Checking StaticPtrs]
, lf_report_unsat_syns :: Bool -- ^ See Note [Linting type synonym applications]
, lf_check_linearity :: Bool -- ^ See Note [Linting linearity]
, lf_check_fixed_rep :: Bool -- See Note [Checking for representation polymorphism]
}
-- See Note [Checking StaticPtrs]
data StaticPtrCheck
= AllowAnywhere
-- ^ Allow 'makeStatic' to occur anywhere.
| AllowAtTopLevel
-- ^ Allow 'makeStatic' calls at the top-level only.
| RejectEverywhere
-- ^ Reject any 'makeStatic' occurrence.
deriving Eq
newtype LintM a =
LintM' { unLintM ::
LintEnv ->
WarnsAndErrs -> -- Warning and error messages so far
LResult a } -- Result and messages (if any)
pattern LintM :: (LintEnv -> WarnsAndErrs -> LResult a) -> LintM a
-- See Note [The one-shot state monad trick] in GHC.Utils.Monad
pattern LintM m <- LintM' m
where
LintM m = LintM' (oneShot $ \env -> oneShot $ \we -> m env we)
-- LintM m = LintM' (oneShot $ oneShot m)
{-# COMPLETE LintM #-}
instance Functor (LintM) where
fmap f (LintM m) = LintM $ \e w -> mapLResult f (m e w)
type WarnsAndErrs = (Bag SDoc, Bag SDoc)
-- Using a unboxed tuple here reduced allocations for a lint heavy
-- file by ~6%. Using MaybeUB reduced them further by another ~12%.
type LResult a = (# MaybeUB a, WarnsAndErrs #)
pattern LResult :: MaybeUB a -> WarnsAndErrs -> LResult a
pattern LResult m w = (# m, w #)
{-# COMPLETE LResult #-}
mapLResult :: (a1 -> a2) -> LResult a1 -> LResult a2
mapLResult f (LResult r w) = LResult (fmapMaybeUB f r) w
-- Just for testing.
fromBoxedLResult :: (Maybe a, WarnsAndErrs) -> LResult a
fromBoxedLResult (Just x, errs) = LResult (JustUB x) errs
fromBoxedLResult (Nothing,errs) = LResult NothingUB errs
{- Note [Checking for global Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Before CoreTidy, all locally-bound Ids must be LocalIds, even
top-level ones. See Note [Exported LocalIds] and #9857.
Note [Checking StaticPtrs]
~~~~~~~~~~~~~~~~~~~~~~~~~~
See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable for an overview.
Every occurrence of the function 'makeStatic' should be moved to the
top level by the FloatOut pass. It's vital that we don't have nested
'makeStatic' occurrences after CorePrep, because we populate the Static
Pointer Table from the top-level bindings. See SimplCore Note [Grand
plan for static forms].
The linter checks that no occurrence is left behind, nested within an
expression. The check is enabled only after the FloatOut, CorePrep,
and CoreTidy passes and only if the module uses the StaticPointers
language extension. Checking more often doesn't help since the condition
doesn't hold until after the first FloatOut pass.
Note [Type substitution]
~~~~~~~~~~~~~~~~~~~~~~~~
Why do we need a type substitution? Consider
/\(a:*). \(x:a). /\(a:*). id a x
This is ill typed, because (renaming variables) it is really
/\(a:*). \(x:a). /\(b:*). id b x
Hence, when checking an application, we can't naively compare x's type
(at its binding site) with its expected type (at a use site). So we
rename type binders as we go, maintaining a substitution.
The same substitution also supports let-type, current expressed as
(/\(a:*). body) ty
Here we substitute 'ty' for 'a' in 'body', on the fly.
Note [Linting type synonym applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When linting a type-synonym, or type-family, application
S ty1 .. tyn
we behave as follows (#15057, #T15664):
* If lf_report_unsat_syns = True, and S has arity < n,
complain about an unsaturated type synonym or type family
* Switch off lf_report_unsat_syns, and lint ty1 .. tyn.
Reason: catch out of scope variables or other ill-kinded gubbins,
even if S discards that argument entirely. E.g. (#15012):
type FakeOut a = Int
type family TF a
type instance TF Int = FakeOut a
Here 'a' is out of scope; but if we expand FakeOut, we conceal
that out-of-scope error.
Reason for switching off lf_report_unsat_syns: with
LiberalTypeSynonyms, GHC allows unsaturated synonyms provided they
are saturated when the type is expanded. Example
type T f = f Int
type S a = a -> a
type Z = T S
In Z's RHS, S appears unsaturated, but it is saturated when T is expanded.
* If lf_report_unsat_syns is on, expand the synonym application and
lint the result. Reason: want to check that synonyms are saturated
when the type is expanded.
Note [Linting linearity]
~~~~~~~~~~~~~~~~~~~~~~~~
Core understands linear types: linearity is checked with the flag
`-dlinear-core-lint`. Why not make `-dcore-lint` check linearity? Because
optimisation passes are not (yet) guaranteed to maintain linearity. They should
do so semantically (GHC is careful not to duplicate computation) but it is much
harder to ensure that the statically-checkable constraints of Linear Core are
maintained. The current Linear Core is described in the wiki at:
https://gitlab.haskell.org/ghc/ghc/-/wikis/linear-types/implementation.
Why don't the optimisation passes maintain the static types of Linear Core?
Because doing so would cripple some important optimisations. Here is an
example:
data T = MkT {-# UNPACK #-} !Int
The wrapper for MkT is
$wMkT :: Int %1 -> T
$wMkT n = case %1 n of
I# n' -> MkT n'
This introduces, in particular, a `case %1` (this is not actual Haskell or Core
syntax), where the `%1` means that the `case` expression consumes its scrutinee
linearly.
Now, `case %1` interacts with the binder swap optimisation in a non-trivial
way. Take a slightly modified version of the code for $wMkT:
case %1 x of z {
I# n' -> (x, n')
}
Binder-swap wants to change this to
case %1 x of z {
I# n' -> let x = z in (x, n')
}
Now, this is not something that a linear type checker usually considers
well-typed. It is not something that `-dlinear-core-lint` considers to be
well-typed either. But it's only because `-dlinear-core-lint` is not good
enough. However, making `-dlinear-core-lint` recognise this expression as valid
is not obvious. There are many such interactions between a linear type system
and GHC optimisations documented in the linear-type implementation wiki page
[https://gitlab.haskell.org/ghc/ghc/-/wikis/linear-types/implementation#core-to-core-passes].
PRINCIPLE: The type system bends to the optimisation, not the other way around.
In the original linear-types implementation, we had tried to make every
optimisation pass produce code that passes `-dlinear-core-lint`. It had proved
very difficult. And we kept finding corner case after corner case. Plus, we
used to restrict transformations when `-dlinear-core-lint` couldn't typecheck
the result. There are still occurrences of such restrictions in the code. But
our current stance is that such restrictions can be removed.
For instance, some optimisations can create a letrec which uses a variable
linearly, e.g.
letrec f True = f False
f False = x
in f True
uses 'x' linearly, but this is not seen by the linter. This issue is discussed
in ticket #18694.
Plus in many cases, in order to make a transformation compatible with linear
linting, we ended up restricting to avoid producing patterns that were not
recognised as linear by the linter. This violates the above principle.
In the future, we may be able to lint the linearity of the output of
Core-to-Core passes (#19165). But right now, we can't. Therefore, in virtue of
the principle above, after the desguarer, the optimiser should take no special
pains to preserve linearity (in the type system sense).
In general the optimiser tries hard not to lose sharing, so it probably doesn't
actually make linear things non-linear. We postulate that any program
transformation which breaks linearity would negatively impact performance, and
therefore wouldn't be suitable for an optimiser. An alternative to linting
linearity after each pass is to prove this statement.
There is a useful discussion at https://gitlab.haskell.org/ghc/ghc/-/issues/22123
Note [checkCanEtaExpand]
~~~~~~~~~~~~~~~~~~~~~~~~
The checkCanEtaExpand function is responsible for enforcing invariant I3
from Note [Representation polymorphism invariants] in GHC.Core: in any
partial application `f e_1 .. e_n`, if `f` has no binding, we must be able to
eta expand `f` to match the declared arity of `f`.
Wrinkle 1: eta-expansion and newtypes
Most of the time, when we have a partial application `f e_1 .. e_n`
in which `f` is `hasNoBinding`, we eta-expand it up to its arity
as follows:
\ x_{n+1} ... x_arity -> f e_1 .. e_n x_{n+1} ... x_arity
However, we might need to insert casts if some of the arguments
that `f` takes are under a newtype.
For example, suppose `f` `hasNoBinding`, has arity 1 and type
f :: forall r (a :: TYPE r). Identity (a -> a)
then we eta-expand the nullary application `f` to
( \ x -> f x ) |> co
where
co :: ( forall r (a :: TYPE r). a -> a ) ~# ( forall r (a :: TYPE r). Identity (a -> a) )
In this case we would have to perform a representation-polymorphism check on the instantiation
of `a`.
Wrinkle 2: 'hasNoBinding' and laziness
It's important that we able to compute 'hasNoBinding' for an 'Id' without ever forcing
the unfolding of the 'Id'. Otherwise, we could end up with a loop, as outlined in
Note [Lazily checking Unfoldings] in GHC.IfaceToCore.
-}
instance Applicative LintM where
pure x = LintM $ \ _ errs -> LResult (JustUB x) errs
--(Just x, errs)
(<*>) = ap
instance Monad LintM where
m >>= k = LintM (\ env errs ->
let res = unLintM m env errs in
case res of
LResult (JustUB r) errs' -> unLintM (k r) env errs'
LResult NothingUB errs' -> LResult NothingUB errs'
)
-- LError errs'-> LError errs')
-- let (res, errs') = unLintM m env errs in
-- Just r -> unLintM (k r) env errs'
-- Nothing -> (Nothing, errs'))
instance MonadFail LintM where
fail err = failWithL (text err)
getPlatform :: LintM Platform
getPlatform = LintM (\ e errs -> (LResult (JustUB $ le_platform e) errs))
data LintLocInfo
= RhsOf Id -- The variable bound
| OccOf Id -- Occurrence of id
| LambdaBodyOf Id -- The lambda-binder
| RuleOf Id -- Rules attached to a binder
| UnfoldingOf Id -- Unfolding of a binder
| BodyOfLetRec [Id] -- One of the binders
| CaseAlt CoreAlt -- Case alternative
| CasePat CoreAlt -- The *pattern* of the case alternative
| CaseTy CoreExpr -- The type field of a case expression
-- with this scrutinee
| IdTy Id -- The type field of an Id binder
| AnExpr CoreExpr -- Some expression
| ImportedUnfolding SrcLoc -- Some imported unfolding (ToDo: say which)
| TopLevelBindings
| InType Type -- Inside a type
| InCo Coercion -- Inside a coercion
| InAxiom (CoAxiom Branched) -- Inside a CoAxiom
data LintConfig = LintConfig
{ l_diagOpts :: !DiagOpts -- ^ Diagnostics opts
, l_platform :: !Platform -- ^ Target platform
, l_flags :: !LintFlags -- ^ Linting the result of this pass
, l_vars :: ![Var] -- ^ 'Id's that should be treated as being in scope
}
initL :: LintConfig
-> LintM a -- ^ Action to run
-> WarnsAndErrs
initL cfg m
= case unLintM m env (emptyBag, emptyBag) of
LResult (JustUB _) errs -> errs
LResult NothingUB errs@(_, e) | not (isEmptyBag e) -> errs
| otherwise -> pprPanic ("Bug in Lint: a failure occurred " ++
"without reporting an error message") empty
where
(tcvs, ids) = partition isTyCoVar $ l_vars cfg
env = LE { le_flags = l_flags cfg
, le_subst = mkEmptySubst (mkInScopeSetList tcvs)
, le_ids = mkVarEnv [(id, (id,idType id)) | id <- ids]
, le_joins = emptyVarSet
, le_loc = []
, le_ue_aliases = emptyNameEnv
, le_platform = l_platform cfg
, le_diagOpts = l_diagOpts cfg
}
setReportUnsat :: Bool -> LintM a -> LintM a
-- Switch off lf_report_unsat_syns
setReportUnsat ru thing_inside
= LintM $ \ env errs ->
let env' = env { le_flags = (le_flags env) { lf_report_unsat_syns = ru } }
in unLintM thing_inside env' errs
-- See Note [Checking for representation polymorphism]
noFixedRuntimeRepChecks :: LintM a -> LintM a
noFixedRuntimeRepChecks thing_inside
= LintM $ \env errs ->
let env' = env { le_flags = (le_flags env) { lf_check_fixed_rep = False } }
in unLintM thing_inside env' errs
getLintFlags :: LintM LintFlags
getLintFlags = LintM $ \ env errs -> fromBoxedLResult (Just (le_flags env), errs)
checkL :: Bool -> SDoc -> LintM ()
checkL True _ = return ()
checkL False msg = failWithL msg
-- like checkL, but relevant to type checking
lintL :: Bool -> SDoc -> LintM ()
lintL = checkL
checkWarnL :: Bool -> SDoc -> LintM ()
checkWarnL True _ = return ()
checkWarnL False msg = addWarnL msg
failWithL :: SDoc -> LintM a
failWithL msg = LintM $ \ env (warns,errs) ->
fromBoxedLResult (Nothing, (warns, addMsg True env errs msg))
addErrL :: SDoc -> LintM ()
addErrL msg = LintM $ \ env (warns,errs) ->
fromBoxedLResult (Just (), (warns, addMsg True env errs msg))
addWarnL :: SDoc -> LintM ()
addWarnL msg = LintM $ \ env (warns,errs) ->
fromBoxedLResult (Just (), (addMsg False env warns msg, errs))
addMsg :: Bool -> LintEnv -> Bag SDoc -> SDoc -> Bag SDoc
addMsg is_error env msgs msg
= assertPpr (notNull loc_msgs) msg $
msgs `snocBag` mk_msg msg
where
loc_msgs :: [(SrcLoc, SDoc)] -- Innermost first
loc_msgs = map dumpLoc (le_loc env)
cxt_doc = vcat [ vcat $ reverse $ map snd loc_msgs
, text "Substitution:" <+> ppr (le_subst env) ]
context | is_error = cxt_doc
| otherwise = whenPprDebug cxt_doc
-- Print voluminous info for Lint errors
-- but not for warnings
msg_span = case [ span | (loc,_) <- loc_msgs
, let span = srcLocSpan loc
, isGoodSrcSpan span ] of
[] -> noSrcSpan
(s:_) -> s
!diag_opts = le_diagOpts env
mk_msg msg = mkLocMessage (mkMCDiagnostic diag_opts WarningWithoutFlag Nothing) msg_span
(msg $$ context)
addLoc :: LintLocInfo -> LintM a -> LintM a
addLoc extra_loc m
= LintM $ \ env errs ->
unLintM m (env { le_loc = extra_loc : le_loc env }) errs
inCasePat :: LintM Bool -- A slight hack; see the unique call site
inCasePat = LintM $ \ env errs -> fromBoxedLResult (Just (is_case_pat env), errs)
where
is_case_pat (LE { le_loc = CasePat {} : _ }) = True
is_case_pat _other = False
addInScopeId :: Id -> LintedType -> LintM a -> LintM a
addInScopeId id linted_ty m
= LintM $ \ env@(LE { le_ids = id_set, le_joins = join_set }) errs ->
unLintM m (env { le_ids = extendVarEnv id_set id (id, linted_ty)
, le_joins = add_joins join_set }) errs
where
add_joins join_set
| isJoinId id = extendVarSet join_set id -- Overwrite with new arity
| otherwise = delVarSet join_set id -- Remove any existing binding
getInScopeIds :: LintM (VarEnv (Id,LintedType))
getInScopeIds = LintM (\env errs -> fromBoxedLResult (Just (le_ids env), errs))
extendTvSubstL :: TyVar -> Type -> LintM a -> LintM a
extendTvSubstL tv ty m
= LintM $ \ env errs ->
unLintM m (env { le_subst = Type.extendTvSubst (le_subst env) tv ty }) errs
updateSubst :: Subst -> LintM a -> LintM a
updateSubst subst' m
= LintM $ \ env errs -> unLintM m (env { le_subst = subst' }) errs
markAllJoinsBad :: LintM a -> LintM a
markAllJoinsBad m
= LintM $ \ env errs -> unLintM m (env { le_joins = emptyVarSet }) errs
markAllJoinsBadIf :: Bool -> LintM a -> LintM a
markAllJoinsBadIf True m = markAllJoinsBad m
markAllJoinsBadIf False m = m
getValidJoins :: LintM IdSet
getValidJoins = LintM (\ env errs -> fromBoxedLResult (Just (le_joins env), errs))
getSubst :: LintM Subst
getSubst = LintM (\ env errs -> fromBoxedLResult (Just (le_subst env), errs))
getUEAliases :: LintM (NameEnv UsageEnv)
getUEAliases = LintM (\ env errs -> fromBoxedLResult (Just (le_ue_aliases env), errs))
getInScope :: LintM InScopeSet
getInScope = LintM (\ env errs -> fromBoxedLResult (Just (getSubstInScope $ le_subst env), errs))
lookupIdInScope :: Id -> LintM (Id, LintedType)
lookupIdInScope id_occ
= do { in_scope_ids <- getInScopeIds
; case lookupVarEnv in_scope_ids id_occ of
Just (id_bndr, linted_ty)
-> do { checkL (not (bad_global id_bndr)) global_in_scope
; return (id_bndr, linted_ty) }
Nothing -> do { checkL (not is_local) local_out_of_scope
; return (id_occ, idType id_occ) } }
-- We don't bother to lint the type
-- of global (i.e. imported) Ids
where
is_local = mustHaveLocalBinding id_occ
local_out_of_scope = text "Out of scope:" <+> pprBndr LetBind id_occ
global_in_scope = hang (text "Occurrence is GlobalId, but binding is LocalId")
2 (pprBndr LetBind id_occ)
bad_global id_bnd = isGlobalId id_occ
&& isLocalId id_bnd
&& not (isWiredIn id_occ)
-- 'bad_global' checks for the case where an /occurrence/ is
-- a GlobalId, but there is an enclosing binding fora a LocalId.
-- NB: the in-scope variables are mostly LocalIds, checked by lintIdBndr,
-- but GHCi adds GlobalIds from the interactive context. These
-- are fine; hence the test (isLocalId id == isLocalId v)
-- NB: when compiling Control.Exception.Base, things like absentError
-- are defined locally, but appear in expressions as (global)
-- wired-in Ids after worker/wrapper
-- So we simply disable the test in this case
lookupJoinId :: Id -> LintM (Maybe JoinArity)
-- Look up an Id which should be a join point, valid here
-- If so, return its arity, if not return Nothing
lookupJoinId id
= do { join_set <- getValidJoins
; case lookupVarSet join_set id of
Just id' -> return (isJoinId_maybe id')
Nothing -> return Nothing }
addAliasUE :: Id -> UsageEnv -> LintM a -> LintM a
addAliasUE id ue thing_inside = LintM $ \ env errs ->
let new_ue_aliases =
extendNameEnv (le_ue_aliases env) (getName id) ue
in
unLintM thing_inside (env { le_ue_aliases = new_ue_aliases }) errs
varCallSiteUsage :: Id -> LintM UsageEnv
varCallSiteUsage id =
do m <- getUEAliases
return $ case lookupNameEnv m (getName id) of
Nothing -> unitUE id OneTy
Just id_ue -> id_ue
ensureEqTys :: LintedType -> LintedType -> SDoc -> LintM ()
-- check ty2 is subtype of ty1 (ie, has same structure but usage
-- annotations need only be consistent, not equal)
-- Assumes ty1,ty2 are have already had the substitution applied
ensureEqTys ty1 ty2 msg = lintL (ty1 `eqType` ty2) msg
ensureSubUsage :: Usage -> Mult -> SDoc -> LintM ()
ensureSubUsage Bottom _ _ = return ()
ensureSubUsage Zero described_mult err_msg = ensureSubMult ManyTy described_mult err_msg
ensureSubUsage (MUsage m) described_mult err_msg = ensureSubMult m described_mult err_msg
ensureSubMult :: Mult -> Mult -> SDoc -> LintM ()
ensureSubMult actual_mult described_mult err_msg = do
flags <- getLintFlags
when (lf_check_linearity flags) $
unless (deepSubMult actual_mult described_mult) $
addErrL err_msg
where
-- Check for submultiplicity using the following rules:
-- 1. x*y <= z when x <= z and y <= z.
-- This rule follows from the fact that x*y = sup{x,y} for any
-- multiplicities x,y.
-- 2. x <= y*z when x <= y or x <= z.
-- This rule is not complete: when x = y*z, we cannot
-- change y*z <= y*z to y*z <= y or y*z <= z.
-- However, we eliminate products on the LHS in step 1.
-- 3. One <= x and x <= Many for any x, as checked by 'submult'.
-- 4. x <= x.
-- Otherwise, we fail.
deepSubMult :: Mult -> Mult -> Bool
deepSubMult m n
| Just (m1, m2) <- isMultMul m = deepSubMult m1 n && deepSubMult m2 n
| Just (n1, n2) <- isMultMul n = deepSubMult m n1 || deepSubMult m n2
| Submult <- m `submult` n = True
| otherwise = m `eqType` n
lintRole :: Outputable thing
=> thing -- where the role appeared
-> Role -- expected
-> Role -- actual
-> LintM ()
lintRole co r1 r2
= lintL (r1 == r2)
(text "Role incompatibility: expected" <+> ppr r1 <> comma <+>
text "got" <+> ppr r2 $$
text "in" <+> ppr co)
{-
************************************************************************
* *
\subsection{Error messages}
* *
************************************************************************
-}
dumpLoc :: LintLocInfo -> (SrcLoc, SDoc)
dumpLoc (RhsOf v)
= (getSrcLoc v, text "In the RHS of" <+> pp_binders [v])
dumpLoc (OccOf v)
= (getSrcLoc v, text "In an occurrence of" <+> pp_binder v)
dumpLoc (LambdaBodyOf b)
= (getSrcLoc b, text "In the body of lambda with binder" <+> pp_binder b)
dumpLoc (RuleOf b)
= (getSrcLoc b, text "In a rule attached to" <+> pp_binder b)
dumpLoc (UnfoldingOf b)
= (getSrcLoc b, text "In the unfolding of" <+> pp_binder b)
dumpLoc (BodyOfLetRec [])
= (noSrcLoc, text "In body of a letrec with no binders")
dumpLoc (BodyOfLetRec bs@(b:_))
= ( getSrcLoc b, text "In the body of letrec with binders" <+> pp_binders bs)
dumpLoc (AnExpr e)
= (noSrcLoc, text "In the expression:" <+> ppr e)
dumpLoc (CaseAlt (Alt con args _))
= (noSrcLoc, text "In a case alternative:" <+> parens (ppr con <+> pp_binders args))
dumpLoc (CasePat (Alt con args _))
= (noSrcLoc, text "In the pattern of a case alternative:" <+> parens (ppr con <+> pp_binders args))
dumpLoc (CaseTy scrut)
= (noSrcLoc, hang (text "In the result-type of a case with scrutinee:")
2 (ppr scrut))
dumpLoc (IdTy b)
= (getSrcLoc b, text "In the type of a binder:" <+> ppr b)
dumpLoc (ImportedUnfolding locn)
= (locn, text "In an imported unfolding")
dumpLoc TopLevelBindings
= (noSrcLoc, Outputable.empty)
dumpLoc (InType ty)
= (noSrcLoc, text "In the type" <+> quotes (ppr ty))
dumpLoc (InCo co)
= (noSrcLoc, text "In the coercion" <+> quotes (ppr co))
dumpLoc (InAxiom ax)
= (getSrcLoc ax, hang (text "In the coercion axiom")
2 (pprCoAxiom ax))
pp_binders :: [Var] -> SDoc
pp_binders bs = sep (punctuate comma (map pp_binder bs))
pp_binder :: Var -> SDoc
pp_binder b | isId b = hsep [ppr b, dcolon, ppr (idType b)]
| otherwise = hsep [ppr b, dcolon, ppr (tyVarKind b)]
------------------------------------------------------
-- Messages for case expressions
mkDefaultArgsMsg :: [Var] -> SDoc
mkDefaultArgsMsg args
= hang (text "DEFAULT case with binders")
4 (ppr args)
mkCaseAltMsg :: CoreExpr -> Type -> Type -> SDoc
mkCaseAltMsg e ty1 ty2
= hang (text "Type of case alternatives not the same as the annotation on case:")
4 (vcat [ text "Actual type:" <+> ppr ty1,
text "Annotation on case:" <+> ppr ty2,
text "Alt Rhs:" <+> ppr e ])
mkScrutMsg :: Id -> Type -> Type -> Subst -> SDoc
mkScrutMsg var var_ty scrut_ty subst
= vcat [text "Result binder in case doesn't match scrutinee:" <+> ppr var,
text "Result binder type:" <+> ppr var_ty,--(idType var),
text "Scrutinee type:" <+> ppr scrut_ty,
hsep [text "Current TCv subst", ppr subst]]
mkNonDefltMsg, mkNonIncreasingAltsMsg :: CoreExpr -> SDoc
mkNonDefltMsg e
= hang (text "Case expression with DEFAULT not at the beginning") 4 (ppr e)
mkNonIncreasingAltsMsg e
= hang (text "Case expression with badly-ordered alternatives") 4 (ppr e)
nonExhaustiveAltsMsg :: CoreExpr -> SDoc
nonExhaustiveAltsMsg e
= hang (text "Case expression with non-exhaustive alternatives") 4 (ppr e)
mkBadConMsg :: TyCon -> DataCon -> SDoc
mkBadConMsg tycon datacon
= vcat [
text "In a case alternative, data constructor isn't in scrutinee type:",
text "Scrutinee type constructor:" <+> ppr tycon,
text "Data con:" <+> ppr datacon
]
mkBadPatMsg :: Type -> Type -> SDoc
mkBadPatMsg con_result_ty scrut_ty
= vcat [
text "In a case alternative, pattern result type doesn't match scrutinee type:",
text "Pattern result type:" <+> ppr con_result_ty,
text "Scrutinee type:" <+> ppr scrut_ty
]
integerScrutinisedMsg :: SDoc
integerScrutinisedMsg
= text "In a LitAlt, the literal is lifted (probably Integer)"
mkBadAltMsg :: Type -> CoreAlt -> SDoc
mkBadAltMsg scrut_ty alt
= vcat [ text "Data alternative when scrutinee is not a tycon application",
text "Scrutinee type:" <+> ppr scrut_ty,
text "Alternative:" <+> pprCoreAlt alt ]
mkNewTyDataConAltMsg :: Type -> CoreAlt -> SDoc
mkNewTyDataConAltMsg scrut_ty alt
= vcat [ text "Data alternative for newtype datacon",
text "Scrutinee type:" <+> ppr scrut_ty,
text "Alternative:" <+> pprCoreAlt alt ]
------------------------------------------------------
-- Other error messages
mkAppMsg :: Type -> Type -> CoreExpr -> SDoc
mkAppMsg expected_arg_ty actual_arg_ty arg
= vcat [text "Argument value doesn't match argument type:",
hang (text "Expected arg type:") 4 (ppr expected_arg_ty),
hang (text "Actual arg type:") 4 (ppr actual_arg_ty),
hang (text "Arg:") 4 (ppr arg)]
mkNonFunAppMsg :: Type -> Type -> CoreExpr -> SDoc
mkNonFunAppMsg fun_ty arg_ty arg
= vcat [text "Non-function type in function position",
hang (text "Fun type:") 4 (ppr fun_ty),
hang (text "Arg type:") 4 (ppr arg_ty),
hang (text "Arg:") 4 (ppr arg)]
mkLetErr :: TyVar -> CoreExpr -> SDoc
mkLetErr bndr rhs
= vcat [text "Bad `let' binding:",
hang (text "Variable:")
4 (ppr bndr <+> dcolon <+> ppr (varType bndr)),
hang (text "Rhs:")
4 (ppr rhs)]
mkTyAppMsg :: Type -> Type -> SDoc
mkTyAppMsg ty arg_ty
= vcat [text "Illegal type application:",
hang (text "Exp type:")
4 (ppr ty <+> dcolon <+> ppr (typeKind ty)),
hang (text "Arg type:")
4 (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))]
emptyRec :: CoreExpr -> SDoc
emptyRec e = hang (text "Empty Rec binding:") 2 (ppr e)
mkRhsMsg :: Id -> SDoc -> Type -> SDoc
mkRhsMsg binder what ty
= vcat
[hsep [text "The type of this binder doesn't match the type of its" <+> what <> colon,
ppr binder],
hsep [text "Binder's type:", ppr (idType binder)],
hsep [text "Rhs type:", ppr ty]]
badBndrTyMsg :: Id -> SDoc -> SDoc
badBndrTyMsg binder what
= vcat [ text "The type of this binder is" <+> what <> colon <+> ppr binder
, text "Binder's type:" <+> ppr (idType binder) ]
mkNonTopExportedMsg :: Id -> SDoc
mkNonTopExportedMsg binder
= hsep [text "Non-top-level binder is marked as exported:", ppr binder]
mkNonTopExternalNameMsg :: Id -> SDoc
mkNonTopExternalNameMsg binder
= hsep [text "Non-top-level binder has an external name:", ppr binder]
mkTopNonLitStrMsg :: Id -> SDoc
mkTopNonLitStrMsg binder
= hsep [text "Top-level Addr# binder has a non-literal rhs:", ppr binder]
mkKindErrMsg :: TyVar -> Type -> SDoc
mkKindErrMsg tyvar arg_ty
= vcat [text "Kinds don't match in type application:",
hang (text "Type variable:")
4 (ppr tyvar <+> dcolon <+> ppr (tyVarKind tyvar)),
hang (text "Arg type:")
4 (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))]
mkCastErr :: CoreExpr -> Coercion -> Type -> Type -> SDoc
mkCastErr expr = mk_cast_err "expression" "type" (ppr expr)
mkCastTyErr :: Type -> Coercion -> Kind -> Kind -> SDoc
mkCastTyErr ty = mk_cast_err "type" "kind" (ppr ty)
mk_cast_err :: String -- ^ What sort of casted thing this is
-- (\"expression\" or \"type\").
-> String -- ^ What sort of coercion is being used
-- (\"type\" or \"kind\").
-> SDoc -- ^ The thing being casted.
-> Coercion -> Type -> Type -> SDoc
mk_cast_err thing_str co_str pp_thing co from_ty thing_ty
= vcat [from_msg <+> text "of Cast differs from" <+> co_msg
<+> text "of" <+> enclosed_msg,
from_msg <> colon <+> ppr from_ty,
text (capitalise co_str) <+> text "of" <+> enclosed_msg <> colon
<+> ppr thing_ty,
text "Actual" <+> enclosed_msg <> colon <+> pp_thing,
text "Coercion used in cast:" <+> ppr co
]
where
co_msg, from_msg, enclosed_msg :: SDoc
co_msg = text co_str
from_msg = text "From-" <> co_msg
enclosed_msg = text "enclosed" <+> text thing_str
mkBadUnivCoMsg :: LeftOrRight -> Coercion -> SDoc
mkBadUnivCoMsg lr co
= text "Kind mismatch on the" <+> pprLeftOrRight lr <+>
text "side of a UnivCo:" <+> ppr co
mkBadProofIrrelMsg :: Type -> Coercion -> SDoc
mkBadProofIrrelMsg ty co
= hang (text "Found a non-coercion in a proof-irrelevance UnivCo:")
2 (vcat [ text "type:" <+> ppr ty
, text "co:" <+> ppr co ])
mkBadTyVarMsg :: Var -> SDoc
mkBadTyVarMsg tv
= text "Non-tyvar used in TyVarTy:"
<+> ppr tv <+> dcolon <+> ppr (varType tv)
mkBadJoinBindMsg :: Var -> SDoc
mkBadJoinBindMsg var
= vcat [ text "Bad join point binding:" <+> ppr var
, text "Join points can be bound only by a non-top-level let" ]
mkInvalidJoinPointMsg :: Var -> Type -> SDoc
mkInvalidJoinPointMsg var ty
= hang (text "Join point has invalid type:")
2 (ppr var <+> dcolon <+> ppr ty)
mkBadJoinArityMsg :: Var -> Int -> Int -> CoreExpr -> SDoc
mkBadJoinArityMsg var ar n rhs
= vcat [ text "Join point has too few lambdas",
text "Join var:" <+> ppr var,
text "Join arity:" <+> ppr ar,
text "Number of lambdas:" <+> ppr (ar - n),
text "Rhs = " <+> ppr rhs
]
invalidJoinOcc :: Var -> SDoc
invalidJoinOcc var
= vcat [ text "Invalid occurrence of a join variable:" <+> ppr var
, text "The binder is either not a join point, or not valid here" ]
mkBadJumpMsg :: Var -> Int -> Int -> SDoc
mkBadJumpMsg var ar nargs
= vcat [ text "Join point invoked with wrong number of arguments",
text "Join var:" <+> ppr var,
text "Join arity:" <+> ppr ar,
text "Number of arguments:" <+> int nargs ]
mkInconsistentRecMsg :: [Var] -> SDoc
mkInconsistentRecMsg bndrs
= vcat [ text "Recursive let binders mix values and join points",
text "Binders:" <+> hsep (map ppr_with_details bndrs) ]
where
ppr_with_details bndr = ppr bndr <> ppr (idDetails bndr)
mkJoinBndrOccMismatchMsg :: Var -> JoinArity -> JoinArity -> SDoc
mkJoinBndrOccMismatchMsg bndr join_arity_bndr join_arity_occ
= vcat [ text "Mismatch in join point arity between binder and occurrence"
, text "Var:" <+> ppr bndr
, text "Arity at binding site:" <+> ppr join_arity_bndr
, text "Arity at occurrence: " <+> ppr join_arity_occ ]
mkBndrOccTypeMismatchMsg :: Var -> Var -> LintedType -> LintedType -> SDoc
mkBndrOccTypeMismatchMsg bndr var bndr_ty var_ty
= vcat [ text "Mismatch in type between binder and occurrence"
, text "Binder:" <+> ppr bndr <+> dcolon <+> ppr bndr_ty
, text "Occurrence:" <+> ppr var <+> dcolon <+> ppr var_ty
, text " Before subst:" <+> ppr (idType var) ]
mkBadJoinPointRuleMsg :: JoinId -> JoinArity -> CoreRule -> SDoc
mkBadJoinPointRuleMsg bndr join_arity rule
= vcat [ text "Join point has rule with wrong number of arguments"
, text "Var:" <+> ppr bndr
, text "Join arity:" <+> ppr join_arity
, text "Rule:" <+> ppr rule ]
pprLeftOrRight :: LeftOrRight -> SDoc
pprLeftOrRight CLeft = text "left"
pprLeftOrRight CRight = text "right"
dupVars :: [NonEmpty Var] -> SDoc
dupVars vars
= hang (text "Duplicate variables brought into scope")
2 (ppr (map toList vars))
dupExtVars :: [NonEmpty Name] -> SDoc
dupExtVars vars
= hang (text "Duplicate top-level variables with the same qualified name")
2 (ppr (map toList vars))
{-
************************************************************************
* *
\subsection{Annotation Linting}
* *
************************************************************************
-}
-- | This checks whether a pass correctly looks through debug
-- annotations (@SourceNote@). This works a bit different from other
-- consistency checks: We check this by running the given task twice,
-- noting all differences between the results.
lintAnnots :: SDoc -> (ModGuts -> CoreM ModGuts) -> ModGuts -> CoreM ModGuts
lintAnnots pname pass guts = {-# SCC "lintAnnots" #-} do
-- Run the pass as we normally would
dflags <- getDynFlags
logger <- getLogger
when (gopt Opt_DoAnnotationLinting dflags) $
liftIO $ Err.showPass logger "Annotation linting - first run"
-- If appropriate re-run it without debug annotations to make sure
-- that they made no difference.
if gopt Opt_DoAnnotationLinting dflags
then do
nguts <- pass guts
liftIO $ Err.showPass logger "Annotation linting - second run"
nguts' <- withoutAnnots pass guts
-- Finally compare the resulting bindings
liftIO $ Err.showPass logger "Annotation linting - comparison"
let binds = flattenBinds $ mg_binds nguts
binds' = flattenBinds $ mg_binds nguts'
(diffs,_) = diffBinds True (mkRnEnv2 emptyInScopeSet) binds binds'
when (not (null diffs)) $ GHC.Core.Opt.Monad.putMsg $ vcat
[ lint_banner "warning" pname
, text "Core changes with annotations:"
, withPprStyle defaultDumpStyle $ nest 2 $ vcat diffs
]
return nguts
else
pass guts
-- | Run the given pass without annotations. This means that we both
-- set the debugLevel setting to 0 in the environment as well as all
-- annotations from incoming modules.
withoutAnnots :: (ModGuts -> CoreM ModGuts) -> ModGuts -> CoreM ModGuts
withoutAnnots pass guts = do
-- Remove debug flag from environment.
-- TODO: supply tag here as well ?
let withoutFlag = mapDynFlagsCoreM $ \(!dflags) -> dflags { debugLevel = 0 }
-- Nuke existing ticks in module.
-- TODO: Ticks in unfoldings. Maybe change unfolding so it removes
-- them in absence of debugLevel > 0.
let nukeTicks = stripTicksE (not . tickishIsCode)
nukeAnnotsBind :: CoreBind -> CoreBind
nukeAnnotsBind bind = case bind of
Rec bs -> Rec $ map (\(b,e) -> (b, nukeTicks e)) bs
NonRec b e -> NonRec b $ nukeTicks e
nukeAnnotsMod mg@ModGuts{mg_binds=binds}
= mg{mg_binds = map nukeAnnotsBind binds}
-- Perform pass with all changes applied. Drop the simple count so it doesn't
-- effect the total also
dropSimplCount $ withoutFlag $ pass (nukeAnnotsMod guts)
|