1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
|
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Handy functions for creating much Core syntax
module GHC.Core.Make (
-- * Constructing normal syntax
mkCoreLet, mkCoreLets,
mkCoreApp, mkCoreApps, mkCoreConApps,
mkCoreLams, mkWildCase, mkIfThenElse,
mkWildValBinder, mkWildEvBinder,
mkSingleAltCase,
sortQuantVars, castBottomExpr,
-- * Constructing boxed literals
mkLitRubbish,
mkWordExpr,
mkIntExpr, mkIntExprInt, mkUncheckedIntExpr,
mkIntegerExpr, mkNaturalExpr,
mkFloatExpr, mkDoubleExpr,
mkCharExpr, mkStringExpr, mkStringExprFS, mkStringExprFSWith,
MkStringIds (..), getMkStringIds,
-- * Floats
FloatBind(..), wrapFloat, wrapFloats, floatBindings,
-- * Constructing small tuples
mkCoreVarTupTy, mkCoreTup, mkCoreUnboxedTuple, mkCoreUnboxedSum,
mkCoreTupBoxity, unitExpr,
-- * Constructing big tuples
mkChunkified, chunkify,
mkBigCoreVarTup, mkBigCoreVarTupSolo,
mkBigCoreVarTupTy, mkBigCoreTupTy,
mkBigCoreTup,
-- * Deconstructing big tuples
mkBigTupleSelector, mkBigTupleSelectorSolo, mkBigTupleCase,
-- * Constructing list expressions
mkNilExpr, mkConsExpr, mkListExpr,
mkFoldrExpr, mkBuildExpr,
-- * Constructing Maybe expressions
mkNothingExpr, mkJustExpr,
-- * Error Ids
mkRuntimeErrorApp, mkImpossibleExpr, mkAbsentErrorApp, errorIds,
rEC_CON_ERROR_ID,
nON_EXHAUSTIVE_GUARDS_ERROR_ID, nO_METHOD_BINDING_ERROR_ID,
pAT_ERROR_ID, rEC_SEL_ERROR_ID,
tYPE_ERROR_ID, aBSENT_SUM_FIELD_ERROR_ID
) where
import GHC.Prelude
import GHC.Platform
import GHC.Types.Id
import GHC.Types.Var ( EvVar, setTyVarUnique, visArgConstraintLike )
import GHC.Types.TyThing
import GHC.Types.Id.Info
import GHC.Types.Cpr
import GHC.Types.Basic( TypeOrConstraint(..) )
import GHC.Types.Demand
import GHC.Types.Name hiding ( varName )
import GHC.Types.Literal
import GHC.Types.Unique.Supply
import GHC.Core
import GHC.Core.Utils ( exprType, mkSingleAltCase, bindNonRec )
import GHC.Core.Type
import GHC.Core.TyCo.Compare( eqType )
import GHC.Core.Coercion ( isCoVar )
import GHC.Core.DataCon ( DataCon, dataConWorkId )
import GHC.Core.Multiplicity
import GHC.Builtin.Types
import GHC.Builtin.Names
import GHC.Builtin.Types.Prim
import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Settings.Constants( mAX_TUPLE_SIZE )
import GHC.Data.FastString
import Data.List ( partition )
import Data.Char ( ord )
infixl 4 `mkCoreApp`, `mkCoreApps`
{-
************************************************************************
* *
\subsection{Basic GHC.Core construction}
* *
************************************************************************
-}
-- | Sort the variables, putting type and covars first, in scoped order,
-- and then other Ids
--
-- It is a deterministic sort, meaning it doesn't look at the values of
-- Uniques. For explanation why it's important See Note [Unique Determinism]
-- in GHC.Types.Unique.
sortQuantVars :: [Var] -> [Var]
sortQuantVars vs = sorted_tcvs ++ ids
where
(tcvs, ids) = partition (isTyVar <||> isCoVar) vs
sorted_tcvs = scopedSort tcvs
-- | Bind a binding group over an expression, using a @let@ or @case@ as
-- appropriate (see "GHC.Core#let_can_float_invariant")
mkCoreLet :: CoreBind -> CoreExpr -> CoreExpr
mkCoreLet (NonRec bndr rhs) body -- See Note [Core let-can-float invariant]
= bindNonRec bndr rhs body
mkCoreLet bind body
= Let bind body
-- | Create a lambda where the given expression has a number of variables
-- bound over it. The leftmost binder is that bound by the outermost
-- lambda in the result
mkCoreLams :: [CoreBndr] -> CoreExpr -> CoreExpr
mkCoreLams = mkLams
-- | Bind a list of binding groups over an expression. The leftmost binding
-- group becomes the outermost group in the resulting expression
mkCoreLets :: [CoreBind] -> CoreExpr -> CoreExpr
mkCoreLets binds body = foldr mkCoreLet body binds
-- | Construct an expression which represents the application of a number of
-- expressions to that of a data constructor expression. The leftmost expression
-- in the list is applied first
mkCoreConApps :: DataCon -> [CoreExpr] -> CoreExpr
mkCoreConApps con args = mkCoreApps (Var (dataConWorkId con)) args
-- | Construct an expression which represents the application of a number of
-- expressions to another. The leftmost expression in the list is applied first
mkCoreApps :: CoreExpr -- ^ function
-> [CoreExpr] -- ^ arguments
-> CoreExpr
mkCoreApps fun args
= fst $
foldl' (mkCoreAppTyped doc_string) (fun, fun_ty) args
where
doc_string = ppr fun_ty $$ ppr fun $$ ppr args
fun_ty = exprType fun
-- | Construct an expression which represents the application of one expression
-- to the other
mkCoreApp :: SDoc
-> CoreExpr -- ^ function
-> CoreExpr -- ^ argument
-> CoreExpr
mkCoreApp s fun arg
= fst $ mkCoreAppTyped s (fun, exprType fun) arg
-- | Construct an expression which represents the application of one expression
-- paired with its type to an argument. The result is paired with its type. This
-- function is not exported and used in the definition of 'mkCoreApp' and
-- 'mkCoreApps'.
mkCoreAppTyped :: SDoc -> (CoreExpr, Type) -> CoreExpr -> (CoreExpr, Type)
mkCoreAppTyped _ (fun, fun_ty) (Type ty)
= (App fun (Type ty), piResultTy fun_ty ty)
mkCoreAppTyped _ (fun, fun_ty) (Coercion co)
= (App fun (Coercion co), funResultTy fun_ty)
mkCoreAppTyped d (fun, fun_ty) arg
= assertPpr (isFunTy fun_ty) (ppr fun $$ ppr arg $$ d)
(App fun arg, funResultTy fun_ty)
{- *********************************************************************
* *
Building case expressions
* *
********************************************************************* -}
mkWildEvBinder :: PredType -> EvVar
mkWildEvBinder pred = mkWildValBinder ManyTy pred
-- | Make a /wildcard binder/. This is typically used when you need a binder
-- that you expect to use only at a *binding* site. Do not use it at
-- occurrence sites because it has a single, fixed unique, and it's very
-- easy to get into difficulties with shadowing. That's why it is used so little.
--
-- See Note [WildCard binders] in "GHC.Core.Opt.Simplify.Env"
mkWildValBinder :: Mult -> Type -> Id
mkWildValBinder w ty = mkLocalIdOrCoVar wildCardName w ty
-- "OrCoVar" since a coercion can be a scrutinee with -fdefer-type-errors
-- (e.g. see test T15695). Ticket #17291 covers fixing this problem.
-- | Make a case expression whose case binder is unused
-- The alts and res_ty should not have any occurrences of WildId
mkWildCase :: CoreExpr -- ^ scrutinee
-> Scaled Type
-> Type -- ^ res_ty
-> [CoreAlt] -- ^ alts
-> CoreExpr
mkWildCase scrut (Scaled w scrut_ty) res_ty alts
= Case scrut (mkWildValBinder w scrut_ty) res_ty alts
mkIfThenElse :: CoreExpr -- ^ guard
-> CoreExpr -- ^ then
-> CoreExpr -- ^ else
-> CoreExpr
mkIfThenElse guard then_expr else_expr
-- Not going to be refining, so okay to take the type of the "then" clause
= mkWildCase guard (linear boolTy) (exprType then_expr)
[ Alt (DataAlt falseDataCon) [] else_expr, -- Increasing order of tag!
Alt (DataAlt trueDataCon) [] then_expr ]
castBottomExpr :: CoreExpr -> Type -> CoreExpr
-- (castBottomExpr e ty), assuming that 'e' diverges,
-- return an expression of type 'ty'
-- See Note [Empty case alternatives] in GHC.Core
castBottomExpr e res_ty
| e_ty `eqType` res_ty = e
| otherwise = Case e (mkWildValBinder OneTy e_ty) res_ty []
where
e_ty = exprType e
mkLitRubbish :: Type -> Maybe CoreExpr
-- Make a rubbish-literal CoreExpr of the given type.
-- Fail (returning Nothing) if
-- * the RuntimeRep of the Type is not monomorphic;
-- * the type is (a ~# b), the type of coercion
-- See INVARIANT 1 and 2 of item (2) in Note [Rubbish literals]
-- in GHC.Types.Literal
mkLitRubbish ty
| not (noFreeVarsOfType rep)
= Nothing -- Satisfy INVARIANT 1
| isCoVarType ty
= Nothing -- Satisfy INVARIANT 2
| otherwise
= Just (Lit (LitRubbish torc rep) `mkTyApps` [ty])
where
Just (torc, rep) = sORTKind_maybe (typeKind ty)
{-
************************************************************************
* *
\subsection{Making literals}
* *
************************************************************************
-}
-- | Create a 'CoreExpr' which will evaluate to the given @Int@
mkIntExpr :: Platform -> Integer -> CoreExpr -- Result = I# i :: Int
mkIntExpr platform i = mkCoreConApps intDataCon [mkIntLit platform i]
-- | Create a 'CoreExpr' which will evaluate to the given @Int@. Don't check
-- that the number is in the range of the target platform @Int@
mkUncheckedIntExpr :: Integer -> CoreExpr -- Result = I# i :: Int
mkUncheckedIntExpr i = mkCoreConApps intDataCon [Lit (mkLitIntUnchecked i)]
-- | Create a 'CoreExpr' which will evaluate to the given @Int@
mkIntExprInt :: Platform -> Int -> CoreExpr -- Result = I# i :: Int
mkIntExprInt platform i = mkCoreConApps intDataCon [mkIntLit platform (fromIntegral i)]
-- | Create a 'CoreExpr' which will evaluate to a @Word@ with the given value
mkWordExpr :: Platform -> Integer -> CoreExpr
mkWordExpr platform w = mkCoreConApps wordDataCon [mkWordLit platform w]
-- | Create a 'CoreExpr' which will evaluate to the given @Integer@
mkIntegerExpr :: Platform -> Integer -> CoreExpr -- Result :: Integer
mkIntegerExpr platform i
| platformInIntRange platform i = mkCoreConApps integerISDataCon [mkIntLit platform i]
| i < 0 = mkCoreConApps integerINDataCon [Lit (mkLitBigNat (negate i))]
| otherwise = mkCoreConApps integerIPDataCon [Lit (mkLitBigNat i)]
-- | Create a 'CoreExpr' which will evaluate to the given @Natural@
mkNaturalExpr :: Platform -> Integer -> CoreExpr
mkNaturalExpr platform w
| platformInWordRange platform w = mkCoreConApps naturalNSDataCon [mkWordLit platform w]
| otherwise = mkCoreConApps naturalNBDataCon [Lit (mkLitBigNat w)]
-- | Create a 'CoreExpr' which will evaluate to the given @Float@
mkFloatExpr :: Float -> CoreExpr
mkFloatExpr f = mkCoreConApps floatDataCon [mkFloatLitFloat f]
-- | Create a 'CoreExpr' which will evaluate to the given @Double@
mkDoubleExpr :: Double -> CoreExpr
mkDoubleExpr d = mkCoreConApps doubleDataCon [mkDoubleLitDouble d]
-- | Create a 'CoreExpr' which will evaluate to the given @Char@
mkCharExpr :: Char -> CoreExpr -- Result = C# c :: Int
mkCharExpr c = mkCoreConApps charDataCon [mkCharLit c]
-- | Create a 'CoreExpr' which will evaluate to the given @String@
mkStringExpr :: MonadThings m => String -> m CoreExpr -- Result :: String
mkStringExpr str = mkStringExprFS (mkFastString str)
-- | Create a 'CoreExpr' which will evaluate to a string morally equivalent to the given @FastString@
mkStringExprFS :: MonadThings m => FastString -> m CoreExpr -- Result :: String
mkStringExprFS = mkStringExprFSLookup lookupId
mkStringExprFSLookup :: Monad m => (Name -> m Id) -> FastString -> m CoreExpr
mkStringExprFSLookup lookupM str = do
mk <- getMkStringIds lookupM
pure (mkStringExprFSWith mk str)
getMkStringIds :: Applicative m => (Name -> m Id) -> m MkStringIds
getMkStringIds lookupM = MkStringIds <$> lookupM unpackCStringName <*> lookupM unpackCStringUtf8Name
data MkStringIds = MkStringIds
{ unpackCStringId :: !Id
, unpackCStringUtf8Id :: !Id
}
mkStringExprFSWith :: MkStringIds -> FastString -> CoreExpr
mkStringExprFSWith ids str
| nullFS str
= mkNilExpr charTy
| all safeChar chars
= let !unpack_id = unpackCStringId ids
in App (Var unpack_id) lit
| otherwise
= let !unpack_utf8_id = unpackCStringUtf8Id ids
in App (Var unpack_utf8_id) lit
where
chars = unpackFS str
safeChar c = ord c >= 1 && ord c <= 0x7F
lit = Lit (LitString (bytesFS str))
{-
************************************************************************
* *
Creating tuples and their types for Core expressions
* *
************************************************************************
-}
{- Note [Flattening one-tuples]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This family of functions creates a tuple of variables/expressions/types.
mkCoreTup [e1,e2,e3] = (e1,e2,e3)
What if there is just one variable/expression/type in the argument?
We could do one of two things:
* Flatten it out, so that
mkCoreTup [e1] = e1
* Build a one-tuple (see Note [One-tuples] in GHC.Builtin.Types)
mkCoreTupSolo [e1] = Solo e1
We use a suffix "Solo" to indicate this.
Usually we want the former, but occasionally the latter.
NB: The logic in tupleDataCon knows about () and Solo and (,), etc.
Note [Don't flatten tuples from HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we get an explicit 1-tuple from HsSyn somehow (likely: Template Haskell),
we should treat it really as a 1-tuple, without flattening. Note that a
1-tuple and a flattened value have different performance and laziness
characteristics, so should just do what we're asked.
This arose from discussions in #16881.
One-tuples that arise internally depend on the circumstance; often flattening
is a good idea. Decisions are made on a case-by-case basis.
'mkCoreBoxedTuple` and `mkBigCoreVarTupSolo` build tuples without flattening.
-}
-- | Build a small tuple holding the specified expressions
-- One-tuples are *not* flattened; see Note [Flattening one-tuples]
-- See also Note [Don't flatten tuples from HsSyn]
-- Arguments must have kind Type
mkCoreBoxedTuple :: HasDebugCallStack => [CoreExpr] -> CoreExpr
mkCoreBoxedTuple cs
= assertPpr (all (tcIsLiftedTypeKind . typeKind . exprType) cs) (ppr cs)
mkCoreConApps (tupleDataCon Boxed (length cs))
(map (Type . exprType) cs ++ cs)
-- | Build a small unboxed tuple holding the specified expressions.
-- Do not include the RuntimeRep specifiers; this function calculates them
-- for you.
-- Does /not/ flatten one-tuples; see Note [Flattening one-tuples]
mkCoreUnboxedTuple :: [CoreExpr] -> CoreExpr
mkCoreUnboxedTuple exps
= mkCoreConApps (tupleDataCon Unboxed (length tys))
(map (Type . getRuntimeRep) tys ++ map Type tys ++ exps)
where
tys = map exprType exps
-- | Make a core tuple of the given boxity; don't flatten 1-tuples
mkCoreTupBoxity :: Boxity -> [CoreExpr] -> CoreExpr
mkCoreTupBoxity Boxed exps = mkCoreBoxedTuple exps
mkCoreTupBoxity Unboxed exps = mkCoreUnboxedTuple exps
-- | Build the type of a small tuple that holds the specified variables
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkCoreVarTupTy :: [Id] -> Type
mkCoreVarTupTy ids = mkBoxedTupleTy (map idType ids)
-- | Build a small tuple holding the specified expressions
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkCoreTup :: [CoreExpr] -> CoreExpr
mkCoreTup [c] = c
mkCoreTup cs = mkCoreBoxedTuple cs -- non-1-tuples are uniform
-- | Build an unboxed sum.
--
-- Alternative number ("alt") starts from 1.
mkCoreUnboxedSum :: Int -> Int -> [Type] -> CoreExpr -> CoreExpr
mkCoreUnboxedSum arity alt tys exp
= assert (length tys == arity) $
assert (alt <= arity) $
mkCoreConApps (sumDataCon alt arity)
(map (Type . getRuntimeRep) tys
++ map Type tys
++ [exp])
{- Note [Big tuples]
~~~~~~~~~~~~~~~~~~~~
"Big" tuples (`mkBigCoreTup` and friends) are more general than "small"
ones (`mkCoreTup` and friends) in two ways.
1. GHCs built-in tuples can only go up to 'mAX_TUPLE_SIZE' in arity, but
we might conceivably want to build such a massive tuple as part of the
output of a desugaring stage (notably that for list comprehensions).
`mkBigCoreTup` encodes such big tuples by creating and pattern
matching on /nested/ small tuples that are directly expressible by
GHC.
Nesting policy: it's better to have a 2-tuple of 10-tuples (3 objects)
than a 10-tuple of 2-tuples (11 objects), so we want the leaves of any
construction to be big.
2. When desugaring arrows we gather up a tuple of free variables, which
may include dictionaries (of kind Constraint) and unboxed values.
These can't live in a tuple. `mkBigCoreTup` encodes such tuples by
boxing up the offending arguments: see Note [Boxing constructors]
in GHC.Builtin.Types.
If you just use the 'mkBigCoreTup', 'mkBigCoreVarTupTy', 'mkBigTupleSelector'
and 'mkBigTupleCase' functions to do all your work with tuples you should be
fine, and not have to worry about the arity limitation, or kind limitation at
all.
The "big" tuple operations flatten 1-tuples just like "small" tuples.
But see Note [Don't flatten tuples from HsSyn]
-}
mkBigCoreVarTupSolo :: [Id] -> CoreExpr
-- Same as mkBigCoreVarTup, but:
-- - one-tuples are not flattened
-- see Note [Flattening one-tuples]
-- - arguments should have kind Type
mkBigCoreVarTupSolo [id] = mkCoreBoxedTuple [Var id]
mkBigCoreVarTupSolo ids = mkChunkified mkCoreTup (map Var ids)
-- | Build a big tuple holding the specified variables
-- One-tuples are flattened; see Note [Flattening one-tuples]
-- Arguments don't have to have kind Type
mkBigCoreVarTup :: [Id] -> CoreExpr
mkBigCoreVarTup ids = mkBigCoreTup (map Var ids)
-- | Build a "big" tuple holding the specified expressions
-- One-tuples are flattened; see Note [Flattening one-tuples]
-- Arguments don't have to have kind Type; ones that do not are boxed
-- This function crashes (in wrapBox) if given a non-Type
-- argument that it doesn't know how to box.
mkBigCoreTup :: [CoreExpr] -> CoreExpr
mkBigCoreTup exprs = mkChunkified mkCoreTup (map wrapBox exprs)
-- | Build the type of a big tuple that holds the specified variables
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreVarTupTy :: [Id] -> Type
mkBigCoreVarTupTy ids = mkBigCoreTupTy (map idType ids)
-- | Build the type of a big tuple that holds the specified type of thing
-- One-tuples are flattened; see Note [Flattening one-tuples]
mkBigCoreTupTy :: [Type] -> Type
mkBigCoreTupTy tys = mkChunkified mkBoxedTupleTy $
map boxTy tys
-- | The unit expression
unitExpr :: CoreExpr
unitExpr = Var unitDataConId
--------------------------------------------------------------
wrapBox :: CoreExpr -> CoreExpr
-- ^ If (e :: ty) and (ty :: Type), wrapBox is a no-op
-- But if (ty :: ki), and ki is not Type, wrapBox returns (K @ty e)
-- which has kind Type
-- where K is the boxing data constructor for ki
-- See Note [Boxing constructors] in GHC.Builtin.Types
-- Panics if there /is/ no boxing data con
wrapBox e
= case boxingDataCon e_ty of
BI_NoBoxNeeded -> e
BI_Box { bi_inst_con = boxing_expr } -> App boxing_expr e
BI_NoBoxAvailable -> pprPanic "wrapBox" (ppr e $$ ppr (exprType e))
-- We should do better than panicing: #22336
where
e_ty = exprType e
boxTy :: Type -> Type
-- ^ `boxTy ty` is the boxed version of `ty`. That is,
-- if `e :: ty`, then `wrapBox e :: boxTy ty`.
-- Note that if `ty :: Type`, `boxTy ty` just returns `ty`.
-- Panics if it is not possible to box `ty`, like `wrapBox` (#22336)
-- See Note [Boxing constructors] in GHC.Builtin.Types
boxTy ty
= case boxingDataCon ty of
BI_NoBoxNeeded -> ty
BI_Box { bi_boxed_type = box_ty } -> box_ty
BI_NoBoxAvailable -> pprPanic "boxTy" (ppr ty)
-- We should do better than panicing: #22336
unwrapBox :: UniqSupply -> Id -> CoreExpr
-> (UniqSupply, Id, CoreExpr)
-- If v's type required boxing (i.e it is unlifted or a constraint)
-- then (unwrapBox us v body) returns
-- (case box_v of MkDict v -> body)
-- together with box_v
-- where box_v is a fresh variable
-- Otherwise unwrapBox is a no-op
-- Panics if no box is available (#22336)
unwrapBox us var body
= case boxingDataCon var_ty of
BI_NoBoxNeeded -> (us, var, body)
BI_NoBoxAvailable -> pprPanic "unwrapBox" (ppr var $$ ppr var_ty)
-- We should do better than panicing: #22336
BI_Box { bi_data_con = box_con, bi_boxed_type = box_ty }
-> (us', var', body')
where
var' = mkSysLocal (fsLit "uc") uniq ManyTy box_ty
body' = Case (Var var') var' (exprType body)
[Alt (DataAlt box_con) [var] body]
where
var_ty = idType var
(uniq, us') = takeUniqFromSupply us
-- | Lifts a \"small\" constructor into a \"big\" constructor by recursive decomposition
mkChunkified :: ([a] -> a) -- ^ \"Small\" constructor function, of maximum input arity 'mAX_TUPLE_SIZE'
-> [a] -- ^ Possible \"big\" list of things to construct from
-> a -- ^ Constructed thing made possible by recursive decomposition
mkChunkified small_tuple as = mk_big_tuple (chunkify as)
where
-- Each sub-list is short enough to fit in a tuple
mk_big_tuple [as] = small_tuple as
mk_big_tuple as_s = mk_big_tuple (chunkify (map small_tuple as_s))
chunkify :: [a] -> [[a]]
-- ^ Split a list into lists that are small enough to have a corresponding
-- tuple arity. The sub-lists of the result all have length <= 'mAX_TUPLE_SIZE'
-- But there may be more than 'mAX_TUPLE_SIZE' sub-lists
chunkify xs
| n_xs <= mAX_TUPLE_SIZE = [xs]
| otherwise = split xs
where
n_xs = length xs
split [] = []
split xs = take mAX_TUPLE_SIZE xs : split (drop mAX_TUPLE_SIZE xs)
{-
************************************************************************
* *
\subsection{Tuple destructors}
* *
************************************************************************
-}
-- | Builds a selector which scrutinises the given
-- expression and extracts the one name from the list given.
-- If you want the no-shadowing rule to apply, the caller
-- is responsible for making sure that none of these names
-- are in scope.
--
-- If there is just one 'Id' in the tuple, then the selector is
-- just the identity.
--
-- If necessary, we pattern match on a \"big\" tuple.
--
-- A tuple selector is not linear in its argument. Consequently, the case
-- expression built by `mkBigTupleSelector` must consume its scrutinee 'Many'
-- times. And all the argument variables must have multiplicity 'Many'.
mkBigTupleSelector, mkBigTupleSelectorSolo
:: [Id] -- ^ The 'Id's to pattern match the tuple against
-> Id -- ^ The 'Id' to select
-> Id -- ^ A variable of the same type as the scrutinee
-> CoreExpr -- ^ Scrutinee
-> CoreExpr -- ^ Selector expression
-- mkBigTupleSelector [a,b,c,d] b v e
-- = case e of v {
-- (p,q) -> case p of p {
-- (a,b) -> b }}
-- We use 'tpl' vars for the p,q, since shadowing does not matter.
--
-- In fact, it's more convenient to generate it innermost first, getting
--
-- case (case e of v
-- (p,q) -> p) of p
-- (a,b) -> b
mkBigTupleSelector vars the_var scrut_var scrut
= mk_tup_sel (chunkify vars) the_var
where
mk_tup_sel [vars] the_var = mkSmallTupleSelector vars the_var scrut_var scrut
mk_tup_sel vars_s the_var = mkSmallTupleSelector group the_var tpl_v $
mk_tup_sel (chunkify tpl_vs) tpl_v
where
tpl_tys = [mkBoxedTupleTy (map idType gp) | gp <- vars_s]
tpl_vs = mkTemplateLocals tpl_tys
[(tpl_v, group)] = [(tpl,gp) | (tpl,gp) <- zipEqual "mkBigTupleSelector" tpl_vs vars_s,
the_var `elem` gp ]
-- ^ 'mkBigTupleSelectorSolo' is like 'mkBigTupleSelector'
-- but one-tuples are NOT flattened (see Note [Flattening one-tuples])
mkBigTupleSelectorSolo vars the_var scrut_var scrut
| [_] <- vars
= mkSmallTupleSelector1 vars the_var scrut_var scrut
| otherwise
= mkBigTupleSelector vars the_var scrut_var scrut
-- | `mkSmallTupleSelector` is like 'mkBigTupleSelector', but for tuples that
-- are guaranteed never to be "big". Also does not unwrap boxed types.
--
-- > mkSmallTupleSelector [x] x v e = [| e |]
-- > mkSmallTupleSelector [x,y,z] x v e = [| case e of v { (x,y,z) -> x } |]
mkSmallTupleSelector, mkSmallTupleSelector1
:: [Id] -- The tuple args
-> Id -- The selected one
-> Id -- A variable of the same type as the scrutinee
-> CoreExpr -- Scrutinee
-> CoreExpr
mkSmallTupleSelector [var] should_be_the_same_var _ scrut
= assert (var == should_be_the_same_var) $
scrut -- Special case for 1-tuples
mkSmallTupleSelector vars the_var scrut_var scrut
= mkSmallTupleSelector1 vars the_var scrut_var scrut
-- ^ 'mkSmallTupleSelector1' is like 'mkSmallTupleSelector'
-- but one-tuples are NOT flattened (see Note [Flattening one-tuples])
mkSmallTupleSelector1 vars the_var scrut_var scrut
= assert (notNull vars) $
Case scrut scrut_var (idType the_var)
[Alt (DataAlt (tupleDataCon Boxed (length vars))) vars (Var the_var)]
-- | A generalization of 'mkBigTupleSelector', allowing the body
-- of the case to be an arbitrary expression.
--
-- To avoid shadowing, we use uniques to invent new variables.
--
-- If necessary we pattern match on a "big" tuple.
mkBigTupleCase :: UniqSupply -- ^ For inventing names of intermediate variables
-> [Id] -- ^ The tuple identifiers to pattern match on;
-- Bring these into scope in the body
-> CoreExpr -- ^ Body of the case
-> CoreExpr -- ^ Scrutinee
-> CoreExpr
-- ToDo: eliminate cases where none of the variables are needed.
--
-- mkBigTupleCase uniqs [a,b,c,d] body v e
-- = case e of v { (p,q) ->
-- case p of p { (a,b) ->
-- case q of q { (c,d) ->
-- body }}}
mkBigTupleCase us vars body scrut
= mk_tuple_case wrapped_us (chunkify wrapped_vars) wrapped_body
where
(wrapped_us, wrapped_vars, wrapped_body) = foldr unwrap (us,[],body) vars
scrut_ty = exprType scrut
unwrap var (us,vars,body)
= (us', var':vars, body')
where
(us', var', body') = unwrapBox us var body
mk_tuple_case :: UniqSupply -> [[Id]] -> CoreExpr -> CoreExpr
-- mk_tuple_case [[a1..an], [b1..bm], ...] body
-- case scrut of (p,q, ...) ->
-- case p of (a1,..an) ->
-- case q of (b1,..bm) ->
-- ... -> body
-- This is the case where don't need any nesting
mk_tuple_case us [vars] body
= mkSmallTupleCase vars body scrut_var scrut
where
scrut_var = case scrut of
Var v -> v
_ -> snd (new_var us scrut_ty)
-- This is the case where we must nest tuples at least once
mk_tuple_case us vars_s body
= mk_tuple_case us' (chunkify vars') body'
where
(us', vars', body') = foldr one_tuple_case (us, [], body) vars_s
one_tuple_case chunk_vars (us, vs, body)
= (us', scrut_var:vs, body')
where
tup_ty = mkBoxedTupleTy (map idType chunk_vars)
(us', scrut_var) = new_var us tup_ty
body' = mkSmallTupleCase chunk_vars body scrut_var (Var scrut_var)
new_var :: UniqSupply -> Type -> (UniqSupply, Id)
new_var us ty = (us', id)
where
(uniq, us') = takeUniqFromSupply us
id = mkSysLocal (fsLit "ds") uniq ManyTy ty
-- | As 'mkBigTupleCase', but for a tuple that is small enough to be guaranteed
-- not to need nesting.
mkSmallTupleCase
:: [Id] -- ^ The tuple args
-> CoreExpr -- ^ Body of the case
-> Id -- ^ A variable of the same type as the scrutinee
-> CoreExpr -- ^ Scrutinee
-> CoreExpr
mkSmallTupleCase [var] body _scrut_var scrut
= bindNonRec var scrut body
mkSmallTupleCase vars body scrut_var scrut
= Case scrut scrut_var (exprType body)
[Alt (DataAlt (tupleDataCon Boxed (length vars))) vars body]
{-
************************************************************************
* *
Floats
* *
************************************************************************
-}
data FloatBind
= FloatLet CoreBind
| FloatCase CoreExpr Id AltCon [Var]
-- case e of y { C ys -> ... }
-- See Note [Floating single-alternative cases] in GHC.Core.Opt.SetLevels
instance Outputable FloatBind where
ppr (FloatLet b) = text "LET" <+> ppr b
ppr (FloatCase e b c bs) = hang (text "CASE" <+> ppr e <+> text "of" <+> ppr b)
2 (ppr c <+> ppr bs)
wrapFloat :: FloatBind -> CoreExpr -> CoreExpr
wrapFloat (FloatLet defns) body = Let defns body
wrapFloat (FloatCase e b con bs) body = mkSingleAltCase e b con bs body
-- | Applies the floats from right to left. That is @wrapFloats [b1, b2, …, bn]
-- u = let b1 in let b2 in … in let bn in u@
wrapFloats :: [FloatBind] -> CoreExpr -> CoreExpr
wrapFloats floats expr = foldr wrapFloat expr floats
bindBindings :: CoreBind -> [Var]
bindBindings (NonRec b _) = [b]
bindBindings (Rec bnds) = map fst bnds
floatBindings :: FloatBind -> [Var]
floatBindings (FloatLet bnd) = bindBindings bnd
floatBindings (FloatCase _ b _ bs) = b:bs
{-
************************************************************************
* *
\subsection{Common list manipulation expressions}
* *
************************************************************************
Call the constructor Ids when building explicit lists, so that they
interact well with rules.
-}
-- | Makes a list @[]@ for lists of the specified type
mkNilExpr :: Type -> CoreExpr
mkNilExpr ty = mkCoreConApps nilDataCon [Type ty]
-- | Makes a list @(:)@ for lists of the specified type
mkConsExpr :: Type -> CoreExpr -> CoreExpr -> CoreExpr
mkConsExpr ty hd tl = mkCoreConApps consDataCon [Type ty, hd, tl]
-- | Make a list containing the given expressions, where the list has the given type
mkListExpr :: Type -> [CoreExpr] -> CoreExpr
mkListExpr ty xs = foldr (mkConsExpr ty) (mkNilExpr ty) xs
-- | Make a fully applied 'foldr' expression
mkFoldrExpr :: MonadThings m
=> Type -- ^ Element type of the list
-> Type -- ^ Fold result type
-> CoreExpr -- ^ "Cons" function expression for the fold
-> CoreExpr -- ^ "Nil" expression for the fold
-> CoreExpr -- ^ List expression being folded acress
-> m CoreExpr
mkFoldrExpr elt_ty result_ty c n list = do
foldr_id <- lookupId foldrName
return (Var foldr_id `App` Type elt_ty
`App` Type result_ty
`App` c
`App` n
`App` list)
-- | Make a 'build' expression applied to a locally-bound worker function
mkBuildExpr :: (MonadFail m, MonadThings m, MonadUnique m)
=> Type -- ^ Type of list elements to be built
-> ((Id, Type) -> (Id, Type) -> m CoreExpr) -- ^ Function that, given information about the 'Id's
-- of the binders for the build worker function, returns
-- the body of that worker
-> m CoreExpr
mkBuildExpr elt_ty mk_build_inside = do
n_tyvar <- newTyVar alphaTyVar
let n_ty = mkTyVarTy n_tyvar
c_ty = mkVisFunTysMany [elt_ty, n_ty] n_ty
[c, n] <- sequence [mkSysLocalM (fsLit "c") ManyTy c_ty, mkSysLocalM (fsLit "n") ManyTy n_ty]
build_inside <- mk_build_inside (c, c_ty) (n, n_ty)
build_id <- lookupId buildName
return $ Var build_id `App` Type elt_ty `App` mkLams [n_tyvar, c, n] build_inside
where
newTyVar tyvar_tmpl = do
uniq <- getUniqueM
return (setTyVarUnique tyvar_tmpl uniq)
{-
************************************************************************
* *
Manipulating Maybe data type
* *
************************************************************************
-}
-- | Makes a Nothing for the specified type
mkNothingExpr :: Type -> CoreExpr
mkNothingExpr ty = mkConApp nothingDataCon [Type ty]
-- | Makes a Just from a value of the specified type
mkJustExpr :: Type -> CoreExpr -> CoreExpr
mkJustExpr ty val = mkConApp justDataCon [Type ty, val]
{-
************************************************************************
* *
Error expressions
* *
************************************************************************
-}
mkRuntimeErrorApp
:: Id -- Should be of type
-- forall (r::RuntimeRep) (a::TYPE r). Addr# -> a
-- or (a :: CONSTRAINT r)
-- where Addr# points to a UTF8 encoded string
-> Type -- The type to instantiate 'a'
-> String -- The string to print
-> CoreExpr
mkRuntimeErrorApp err_id res_ty err_msg
= mkApps (Var err_id) [ Type (getRuntimeRep res_ty)
, Type res_ty, err_string ]
where
err_string = Lit (mkLitString err_msg)
{-
************************************************************************
* *
Error Ids
* *
************************************************************************
GHC randomly injects these into the code.
@patError@ is just a version of @error@ for pattern-matching
failures. It knows various ``codes'' which expand to longer
strings---this saves space!
@absentErr@ is a thing we put in for ``absent'' arguments. They jolly
well shouldn't be yanked on, but if one is, then you will get a
friendly message from @absentErr@ (rather than a totally random
crash).
-}
errorIds :: [Id]
errorIds
= [ nON_EXHAUSTIVE_GUARDS_ERROR_ID,
nO_METHOD_BINDING_ERROR_ID,
pAT_ERROR_ID,
rEC_CON_ERROR_ID,
rEC_SEL_ERROR_ID,
iMPOSSIBLE_ERROR_ID, iMPOSSIBLE_CONSTRAINT_ERROR_ID,
aBSENT_ERROR_ID, aBSENT_CONSTRAINT_ERROR_ID,
aBSENT_SUM_FIELD_ERROR_ID,
tYPE_ERROR_ID -- Used with Opt_DeferTypeErrors, see #10284
]
recSelErrorName, recConErrorName, patErrorName :: Name
nonExhaustiveGuardsErrorName, noMethodBindingErrorName :: Name
typeErrorName :: Name
absentSumFieldErrorName :: Name
recSelErrorName = err_nm "recSelError" recSelErrorIdKey rEC_SEL_ERROR_ID
recConErrorName = err_nm "recConError" recConErrorIdKey rEC_CON_ERROR_ID
patErrorName = err_nm "patError" patErrorIdKey pAT_ERROR_ID
typeErrorName = err_nm "typeError" typeErrorIdKey tYPE_ERROR_ID
noMethodBindingErrorName = err_nm "noMethodBindingError"
noMethodBindingErrorIdKey nO_METHOD_BINDING_ERROR_ID
nonExhaustiveGuardsErrorName = err_nm "nonExhaustiveGuardsError"
nonExhaustiveGuardsErrorIdKey nON_EXHAUSTIVE_GUARDS_ERROR_ID
err_nm :: String -> Unique -> Id -> Name
err_nm str uniq id = mkWiredInIdName cONTROL_EXCEPTION_BASE (fsLit str) uniq id
rEC_SEL_ERROR_ID, rEC_CON_ERROR_ID :: Id
pAT_ERROR_ID, nO_METHOD_BINDING_ERROR_ID, nON_EXHAUSTIVE_GUARDS_ERROR_ID :: Id
tYPE_ERROR_ID, aBSENT_SUM_FIELD_ERROR_ID :: Id
rEC_SEL_ERROR_ID = mkRuntimeErrorId TypeLike recSelErrorName
rEC_CON_ERROR_ID = mkRuntimeErrorId TypeLike recConErrorName
pAT_ERROR_ID = mkRuntimeErrorId TypeLike patErrorName
nO_METHOD_BINDING_ERROR_ID = mkRuntimeErrorId TypeLike noMethodBindingErrorName
nON_EXHAUSTIVE_GUARDS_ERROR_ID = mkRuntimeErrorId TypeLike nonExhaustiveGuardsErrorName
tYPE_ERROR_ID = mkRuntimeErrorId TypeLike typeErrorName
-- Note [aBSENT_SUM_FIELD_ERROR_ID]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Unboxed sums are transformed into unboxed tuples in GHC.Stg.Unarise.mkUbxSum
-- and fields that can't be reached are filled with rubbish values.
-- For instance, consider the case of the program:
--
-- f :: (# Int | Float# #) -> Int
-- f = ...
--
-- x = f (# | 2.0## #)
--
-- Unarise will represent f's unboxed sum argument as a tuple (# Int#, Int,
-- Float# #), where Int# is a tag. Consequently, `x` will be rewritten to:
--
-- x = f (# 2#, ???, 2.0## #)
--
-- We must come up with some rubbish literal to use in place of `???`. In the
-- case of unboxed integer types this is easy: we can simply use 0 for
-- Int#/Word# and 0.0 Float#/Double#.
--
-- However, coming up with a rubbish pointer value is more delicate as the
-- value must satisfy the following requirements:
--
-- 1. it needs to be a valid closure pointer for the GC (not a NULL pointer)
--
-- 2. it can't take arguments because it's used in unarise and applying an
-- argument would require allocating a thunk, which is both difficult to
-- do and costly.
--
-- 3. it shouldn't be CAFfy since this would make otherwise non-CAFfy
-- bindings CAFfy, incurring a cost in GC performance. Given that unboxed
-- sums are intended to be used in performance-critical code, this is to
-- We work-around this by declaring the absentSumFieldError as non-CAFfy,
-- as described in Note [Wired-in exceptions are not CAFfy].
--
-- Getting this wrong causes hard-to-debug runtime issues, see #15038.
--
-- 4. it can't be defined in `base` package. Afterall, not all code which
-- uses unboxed sums uses depends upon `base`. Specifically, this became
-- an issue when we wanted to use unboxed sums in boot libraries used by
-- `base`, see #17791.
--
-- To fill this role we define `ghc-prim:GHC.Prim.Panic.absentSumFieldError`
-- with the type:
--
-- absentSumFieldError :: forall a. a
--
-- Note that this type is something of a lie since Unarise may use it at an
-- unlifted type. However, this lie is benign as absent sum fields are examined
-- only by the GC, which does not care about levity..
--
-- When entered, this closure calls `stg_panic#`, which immediately halts
-- execution and cannot be caught. This is in contrast to most other runtime
-- errors, which are thrown as proper Haskell exceptions. This design is
-- intentional since entering an absent sum field is an indication that
-- something has gone horribly wrong, very likely due to a compiler bug.
--
-- Note [Wired-in exceptions are not CAFfy]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- GHC has logic wiring-in a small number of exceptions, which may be thrown in
-- generated code. Specifically, these are implemented via closures (defined
-- in `GHC.Prim.Exception` in `ghc-prim`) which, when entered, raise the desired
-- exception. For instance, in the case of OverflowError we have
--
-- raiseOverflow :: forall a. a
-- raiseOverflow = runRW# (\s ->
-- case raiseOverflow# s of
-- (# _, _ #) -> let x = x in x)
--
-- where `raiseOverflow#` is defined in the rts/Exception.cmm.
--
-- Note that `raiseOverflow` and friends, being top-level thunks, are CAFs.
-- Normally, this would be reflected in their IdInfo; however, as these
-- functions are widely used and CAFfyness is transitive, we very much want to
-- avoid declaring them as CAFfy. This is especially true in especially in
-- performance-critical code like that using unboxed sums and
-- absentSumFieldError.
--
-- Consequently, `mkExceptionId` instead declares the exceptions to be
-- non-CAFfy and rather ensure in the RTS (in `initBuiltinGcRoots` in
-- rts/RtsStartup.c) that these closures remain reachable by creating a
-- StablePtr to each. Note that we are using the StablePtr mechanism not
-- because we need a StablePtr# object, but rather because the stable pointer
-- table is a source of GC roots.
--
-- At some point we could consider removing this optimisation as it is quite
-- fragile, but we do want to be careful to avoid adding undue cost. Unboxed
-- sums in particular are intended to be used in performance-critical contexts.
--
-- See #15038, #21141.
absentSumFieldErrorName
= mkWiredInIdName
gHC_PRIM_PANIC
(fsLit "absentSumFieldError")
absentSumFieldErrorIdKey
aBSENT_SUM_FIELD_ERROR_ID
aBSENT_SUM_FIELD_ERROR_ID = mkExceptionId absentSumFieldErrorName
-- | Exception with type \"forall a. a\"
--
-- Any exceptions added via this function needs to be added to
-- the RTS's initBuiltinGcRoots() function.
mkExceptionId :: Name -> Id
mkExceptionId name
= mkVanillaGlobalWithInfo name
(mkSpecForAllTys [alphaTyVar] (mkTyVarTy alphaTyVar)) -- forall a . a
(divergingIdInfo [] `setCafInfo` NoCafRefs)
-- See Note [Wired-in exceptions are not CAFfy]
-- | An 'IdInfo' for an Id, such as 'aBSENT_ERROR_ID', that
-- throws an (imprecise) exception after being supplied one value arg for every
-- argument 'Demand' in the list. The demands end up in the demand signature.
--
-- 1. Sets the demand signature to unleash the given arg dmds 'botDiv'
-- 2. Sets the arity info so that it matches the length of arg demands
-- 3. Sets a bottoming CPR sig with the correct arity
--
-- It's important that all 3 agree on the arity, which is what this defn ensures.
divergingIdInfo :: [Demand] -> IdInfo
divergingIdInfo arg_dmds
= vanillaIdInfo `setArityInfo` arity
`setDmdSigInfo` mkClosedDmdSig arg_dmds botDiv
`setCprSigInfo` mkCprSig arity botCpr
where
arity = length arg_dmds
{- Note [Error and friends have an "open-tyvar" forall]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'error' and 'undefined' have types
error :: forall (v :: RuntimeRep) (a :: TYPE v). String -> a
undefined :: forall (v :: RuntimeRep) (a :: TYPE v). a
Notice the runtime-representation polymorphism. This ensures that
"error" can be instantiated at unboxed as well as boxed types.
This is OK because it never returns, so the return type is irrelevant.
************************************************************************
* *
iMPOSSIBLE_ERROR_ID
* *
************************************************************************
-}
iMPOSSIBLE_ERROR_ID, iMPOSSIBLE_CONSTRAINT_ERROR_ID :: Id
iMPOSSIBLE_ERROR_ID = mkRuntimeErrorId TypeLike impossibleErrorName
iMPOSSIBLE_CONSTRAINT_ERROR_ID = mkRuntimeErrorId ConstraintLike impossibleConstraintErrorName
impossibleErrorName, impossibleConstraintErrorName :: Name
impossibleErrorName = err_nm "impossibleError"
impossibleErrorIdKey iMPOSSIBLE_ERROR_ID
impossibleConstraintErrorName = err_nm "impossibleConstraintError"
impossibleConstraintErrorIdKey iMPOSSIBLE_CONSTRAINT_ERROR_ID
mkImpossibleExpr :: Type -> String -> CoreExpr
mkImpossibleExpr res_ty str
= mkRuntimeErrorApp err_id res_ty str
where -- See Note [Type vs Constraint for error ids]
err_id | isConstraintLikeKind (typeKind res_ty) = iMPOSSIBLE_CONSTRAINT_ERROR_ID
| otherwise = iMPOSSIBLE_ERROR_ID
{- Note [Type vs Constraint for error ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need both
iMPOSSIBLE_ERROR_ID :: forall (r::RuntimeRep) (a::TYPE r). Addr# -> a
iMPOSSIBLE_CONSTRAINT_ERROR_ID :: forall (r::RuntimeRep) (a::CONSTRAINT r). Addr# -> a
because we don't have polymorphism over TYPE vs CONSTRAINT. You
might wonder if iMPOSSIBLE_CONSTRAINT_ERROR_ID is ever needed in
practice, but it is: see #22634. So:
* In Control.Exception.Base we have
impossibleError :: forall (a::Type). Addr# -> a
impossibleConstraintError :: forall (a::Type). Addr# -> a
This generates the code for `impossibleError`, but because they are wired in
the interface file definitions are never looked at (indeed, they don't
even get serialised).
* In this module GHC.Core.Make we define /wired-in/ Ids for
iMPOSSIBLE_ERROR_ID
iMPOSSIBLE_CONSTRAINT_ERROR_ID
with the desired above types (i.e. runtime-rep polymorphic, and returning a
constraint for the latter.
Much the same plan works for aBSENT_ERROR_ID and aBSENT_CONSTRAINT_ERROR_ID
************************************************************************
* *
aBSENT_ERROR_ID
* *
************************************************************************
Note [aBSENT_ERROR_ID]
~~~~~~~~~~~~~~~~~~~~~~
We use aBSENT_ERROR_ID to build absent fillers for lifted types in workers. E.g.
f x = (case x of (a,b) -> b) + 1::Int
The demand analyser figures out that only the second component of x is
used, and does a w/w split thus
f x = case x of (a,b) -> $wf b
$wf b = let a = absentError "blah"
x = (a,b)
in <the original RHS of f>
After some simplification, the (absentError "blah") thunk normally goes away.
See also Note [Absent fillers] in GHC.Core.Opt.WorkWrap.Utils.
Historical Note
---------------
We used to have exprIsHNF respond True to absentError and *not* mark it as diverging.
Here's the reason for the former. It doesn't apply anymore because we no longer say
that `a` is absent (A). Instead it gets (head strict) demand 1A and we won't
emit the absent error:
#14285 had, roughly
data T a = MkT a !a
{-# INLINABLE f #-}
f x = case x of MkT a b -> g (MkT b a)
It turned out that g didn't use the second component, and hence f doesn't use
the first. But the stable-unfolding for f looks like
\x. case x of MkT a b -> g ($WMkT b a)
where $WMkT is the wrapper for MkT that evaluates its arguments. We
apply the same w/w split to this unfolding (see Note [Worker/wrapper
for INLINABLE functions] in GHC.Core.Opt.WorkWrap) so the template ends up like
\b. let a = absentError "blah"
x = MkT a b
in case x of MkT a b -> g ($WMkT b a)
After doing case-of-known-constructor, and expanding $WMkT we get
\b -> g (case absentError "blah" of a -> MkT b a)
Yikes! That bogusly appears to evaluate the absentError!
This is extremely tiresome. Another way to think of this is that, in
Core, it is an invariant that a strict data constructor, like MkT, must
be applied only to an argument in HNF. So (absentError "blah") had
better be non-bottom.
So the "solution" is to add a special case for absentError to exprIsHNFlike.
This allows Simplify.rebuildCase, in the Note [Case to let transformation]
branch, to convert the case on absentError into a let. We also make
absentError *not* be diverging, unlike the other error-ids, so that we
can be sure not to remove the case branches before converting the case to
a let.
If, by some bug or bizarre happenstance, we ever call absentError, we should
throw an exception. This should never happen, of course, but we definitely
can't return anything. e.g. if somehow we had
case absentError "foo" of
Nothing -> ...
Just x -> ...
then if we return, the case expression will select a field and continue.
Seg fault city. Better to throw an exception. (Even though we've said
it is in HNF :-)
It might seem a bit surprising that seq on absentError is simply erased
absentError "foo" `seq` x ==> x
but that should be okay; since there's no pattern match we can't really
be relying on anything from it.
-}
-- We need two absentError Ids:
-- absentError :: forall (a :: Type). Addr# -> a
-- absentConstraintError :: forall (a :: Constraint). Addr# -> a
-- We don't have polymorphism over TypeOrConstraint!
-- mkAbsentErrorApp chooses which one to use, based on the kind
-- See Note [Type vs Constraint for error ids]
mkAbsentErrorApp :: Type -- The type to instantiate 'a'
-> String -- The string to print
-> CoreExpr
mkAbsentErrorApp res_ty err_msg
= mkApps (Var err_id) [ Type res_ty, err_string ]
where
err_id | isConstraintLikeKind (typeKind res_ty) = aBSENT_CONSTRAINT_ERROR_ID
| otherwise = aBSENT_ERROR_ID
err_string = Lit (mkLitString err_msg)
absentErrorName, absentConstraintErrorName :: Name
absentErrorName
= mkWiredInIdName gHC_PRIM_PANIC (fsLit "absentError")
absentErrorIdKey aBSENT_ERROR_ID
absentConstraintErrorName -- See Note [Type vs Constraint for error ids]
= mkWiredInIdName gHC_PRIM_PANIC (fsLit "absentConstraintError")
absentConstraintErrorIdKey aBSENT_CONSTRAINT_ERROR_ID
aBSENT_ERROR_ID, aBSENT_CONSTRAINT_ERROR_ID :: Id
aBSENT_ERROR_ID -- See Note [aBSENT_ERROR_ID]
= mk_runtime_error_id absentErrorName absent_ty
where
-- absentError :: forall (a :: Type). Addr# -> a
absent_ty = mkSpecForAllTys [alphaTyVar] $
mkVisFunTyMany addrPrimTy (mkTyVarTy alphaTyVar)
-- Not runtime-rep polymorphic. aBSENT_ERROR_ID is only used for
-- lifted-type things; see Note [Absent fillers] in GHC.Core.Opt.WorkWrap.Utils
aBSENT_CONSTRAINT_ERROR_ID -- See Note [aBSENT_ERROR_ID]
= mk_runtime_error_id absentConstraintErrorName absent_ty
-- See Note [Type vs Constraint for error ids]
where
-- absentConstraintError :: forall (a :: Constraint). Addr# -> a
absent_ty = mkSpecForAllTys [alphaConstraintTyVar] $
mkFunTy visArgConstraintLike ManyTy
addrPrimTy (mkTyVarTy alphaConstraintTyVar)
{-
************************************************************************
* *
mkRuntimeErrorId
* *
************************************************************************
-}
mkRuntimeErrorId :: TypeOrConstraint -> Name -> Id
-- Error function
-- with type: forall (r:RuntimeRep) (a:TYPE r). Addr# -> a
-- with arity: 1
-- which diverges after being given one argument
-- The Addr# is expected to be the address of
-- a UTF8-encoded error string
mkRuntimeErrorId torc name = mk_runtime_error_id name (mkRuntimeErrorTy torc)
mk_runtime_error_id :: Name -> Type -> Id
mk_runtime_error_id name ty
= mkVanillaGlobalWithInfo name ty (divergingIdInfo [evalDmd])
-- Do *not* mark them as NoCafRefs, because they can indeed have
-- CAF refs. For example, pAT_ERROR_ID calls GHC.Err.untangle,
-- which has some CAFs
-- In due course we may arrange that these error-y things are
-- regarded by the GC as permanently live, in which case we
-- can give them NoCaf info. As it is, any function that calls
-- any pc_bottoming_Id will itself have CafRefs, which bloats
-- SRTs.
mkRuntimeErrorTy :: TypeOrConstraint -> Type
-- forall (rr :: RuntimeRep) (a :: rr). Addr# -> a
-- See Note [Error and friends have an "open-tyvar" forall]
mkRuntimeErrorTy torc = mkSpecForAllTys [runtimeRep1TyVar, tyvar] $
mkFunctionType ManyTy addrPrimTy (mkTyVarTy tyvar)
where
(tyvar:_) = mkTemplateTyVars [kind]
kind = case torc of
TypeLike -> mkTYPEapp runtimeRep1Ty
ConstraintLike -> mkCONSTRAINTapp runtimeRep1Ty
|