1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
|
{-
(c) The AQUA Project, Glasgow University, 1993-1998
\section[Simplify]{The main module of the simplifier}
-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE MultiWayIf #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module GHC.Core.Opt.Simplify.Iteration ( simplTopBinds, simplExpr, simplImpRules ) where
import GHC.Prelude
import GHC.Platform
import GHC.Driver.Flags
import GHC.Core
import GHC.Core.Opt.Simplify.Monad
import GHC.Core.Type hiding ( substTy, substTyVar, extendTvSubst, extendCvSubst )
import GHC.Core.TyCo.Compare( eqType )
import GHC.Core.Opt.Simplify.Env
import GHC.Core.Opt.Simplify.Utils
import GHC.Core.Opt.OccurAnal ( occurAnalyseExpr, zapLambdaBndrs, scrutBinderSwap_maybe )
import GHC.Core.Make ( FloatBind, mkImpossibleExpr, castBottomExpr )
import qualified GHC.Core.Make
import GHC.Core.Coercion hiding ( substCo, substCoVar )
import GHC.Core.Reduction
import GHC.Core.Coercion.Opt ( optCoercion )
import GHC.Core.FamInstEnv ( FamInstEnv, topNormaliseType_maybe )
import GHC.Core.DataCon
( DataCon, dataConWorkId, dataConRepStrictness
, dataConRepArgTys, isUnboxedTupleDataCon
, StrictnessMark (..) )
import GHC.Core.Opt.Stats ( Tick(..) )
import GHC.Core.Ppr ( pprCoreExpr )
import GHC.Core.Unfold
import GHC.Core.Unfold.Make
import GHC.Core.Utils
import GHC.Core.Opt.Arity ( ArityType, exprArity, arityTypeBotSigs_maybe
, pushCoTyArg, pushCoValArg, exprIsDeadEnd
, typeArity, arityTypeArity, etaExpandAT )
import GHC.Core.SimpleOpt ( exprIsConApp_maybe, joinPointBinding_maybe, joinPointBindings_maybe )
import GHC.Core.FVs ( mkRuleInfo )
import GHC.Core.Rules ( lookupRule, getRules )
import GHC.Core.Multiplicity
import GHC.Types.Literal ( litIsLifted ) --, mkLitInt ) -- temporarily commented out. See #8326
import GHC.Types.SourceText
import GHC.Types.Id
import GHC.Types.Id.Make ( seqId )
import GHC.Types.Id.Info
import GHC.Types.Name ( mkSystemVarName, isExternalName, getOccFS )
import GHC.Types.Demand
import GHC.Types.Unique ( hasKey )
import GHC.Types.Basic
import GHC.Types.Tickish
import GHC.Types.Var ( isTyCoVar )
import GHC.Builtin.PrimOps ( PrimOp (SeqOp) )
import GHC.Builtin.Types.Prim( realWorldStatePrimTy )
import GHC.Builtin.Names( runRWKey )
import GHC.Data.Maybe ( isNothing, orElse )
import GHC.Data.FastString
import GHC.Unit.Module ( moduleName )
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.Constants (debugIsOn)
import GHC.Utils.Monad ( mapAccumLM, liftIO )
import GHC.Utils.Logger
import GHC.Utils.Misc
import Control.Monad
{-
The guts of the simplifier is in this module, but the driver loop for
the simplifier is in GHC.Core.Opt.Pipeline
Note [The big picture]
~~~~~~~~~~~~~~~~~~~~~~
The general shape of the simplifier is this:
simplExpr :: SimplEnv -> InExpr -> SimplCont -> SimplM (SimplFloats, OutExpr)
simplBind :: SimplEnv -> InBind -> SimplM (SimplFloats, SimplEnv)
* SimplEnv contains
- Simplifier mode
- Ambient substitution
- InScopeSet
* SimplFloats contains
- Let-floats (which includes ok-for-spec case-floats)
- Join floats
- InScopeSet (including all the floats)
* Expressions
simplExpr :: SimplEnv -> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
The result of simplifying an /expression/ is (floats, expr)
- A bunch of floats (let bindings, join bindings)
- A simplified expression.
The overall result is effectively (let floats in expr)
* Bindings
simplBind :: SimplEnv -> InBind -> SimplM (SimplFloats, SimplEnv)
The result of simplifying a binding is
- A bunch of floats, the last of which is the simplified binding
There may be auxiliary bindings too; see prepareRhs
- An environment suitable for simplifying the scope of the binding
The floats may also be empty, if the binding is inlined unconditionally;
in that case the returned SimplEnv will have an augmented substitution.
The returned floats and env both have an in-scope set, and they are
guaranteed to be the same.
Note [Shadowing]
~~~~~~~~~~~~~~~~
The simplifier used to guarantee that the output had no shadowing, but
it does not do so any more. (Actually, it never did!) The reason is
documented with simplifyArgs.
Eta expansion
~~~~~~~~~~~~~~
For eta expansion, we want to catch things like
case e of (a,b) -> \x -> case a of (p,q) -> \y -> r
If the \x was on the RHS of a let, we'd eta expand to bring the two
lambdas together. And in general that's a good thing to do. Perhaps
we should eta expand wherever we find a (value) lambda? Then the eta
expansion at a let RHS can concentrate solely on the PAP case.
Note [In-scope set as a substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As per Note [Lookups in in-scope set], an in-scope set can act as
a substitution. Specifically, it acts as a substitution from variable to
variables /with the same unique/.
Why do we need this? Well, during the course of the simplifier, we may want to
adjust inessential properties of a variable. For instance, when performing a
beta-reduction, we change
(\x. e) u ==> let x = u in e
We typically want to add an unfolding to `x` so that it inlines to (the
simplification of) `u`.
We do that by adding the unfolding to the binder `x`, which is added to the
in-scope set. When simplifying occurrences of `x` (every occurrence!), they are
replaced by their “updated” version from the in-scope set, hence inherit the
unfolding. This happens in `SimplEnv.substId`.
Another example. Consider
case x of y { Node a b -> ...y...
; Leaf v -> ...y... }
In the Node branch want y's unfolding to be (Node a b); in the Leaf branch we
want y's unfolding to be (Leaf v). We achieve this by adding the appropriate
unfolding to y, and re-adding it to the in-scope set. See the calls to
`addBinderUnfolding` in `Simplify.addAltUnfoldings` and elsewhere.
It's quite convenient. This way we don't need to manipulate the substitution all
the time: every update to a binder is automatically reflected to its bound
occurrences.
Note [Bangs in the Simplifier]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Both SimplFloats and SimplEnv do *not* generally benefit from making
their fields strict. I don't know if this is because of good use of
laziness or unintended side effects like closures capturing more variables
after WW has run.
But the end result is that we keep these lazy, but force them in some places
where we know it's beneficial to the compiler.
Similarly environments returned from functions aren't *always* beneficial to
force. In some places they would never be demanded so forcing them early
increases allocation. In other places they almost always get demanded so
it's worthwhile to force them early.
Would it be better to through every allocation of e.g. SimplEnv and decide
wether or not to make this one strict? Absolutely! Would be a good use of
someones time? Absolutely not! I made these strict that showed up during
a profiled build or which I noticed while looking at core for one reason
or another.
The result sadly is that we end up with "random" bangs in the simplifier
where we sometimes force e.g. the returned environment from a function and
sometimes we don't for the same function. Depending on the context around
the call. The treatment is also not very consistent. I only added bangs
where I saw it making a difference either in the core or benchmarks. Some
patterns where it would be beneficial aren't convered as a consequence as
I neither have the time to go through all of the core and some cases are
too small to show up in benchmarks.
************************************************************************
* *
\subsection{Bindings}
* *
************************************************************************
-}
simplTopBinds :: SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
-- See Note [The big picture]
simplTopBinds env0 binds0
= do { -- Put all the top-level binders into scope at the start
-- so that if a rewrite rule has unexpectedly brought
-- anything into scope, then we don't get a complaint about that.
-- It's rather as if the top-level binders were imported.
-- See Note [Glomming] in "GHC.Core.Opt.OccurAnal".
-- See Note [Bangs in the Simplifier]
; !env1 <- {-#SCC "simplTopBinds-simplRecBndrs" #-} simplRecBndrs env0 (bindersOfBinds binds0)
; (floats, env2) <- {-#SCC "simplTopBinds-simpl_binds" #-} simpl_binds env1 binds0
; freeTick SimplifierDone
; return (floats, env2) }
where
-- We need to track the zapped top-level binders, because
-- they should have their fragile IdInfo zapped (notably occurrence info)
-- That's why we run down binds and bndrs' simultaneously.
--
simpl_binds :: SimplEnv -> [InBind] -> SimplM (SimplFloats, SimplEnv)
simpl_binds env [] = return (emptyFloats env, env)
simpl_binds env (bind:binds) = do { (float, env1) <- simpl_bind env bind
; (floats, env2) <- simpl_binds env1 binds
-- See Note [Bangs in the Simplifier]
; let !floats1 = float `addFloats` floats
; return (floats1, env2) }
simpl_bind env (Rec pairs)
= simplRecBind env (BC_Let TopLevel Recursive) pairs
simpl_bind env (NonRec b r)
= do { let bind_cxt = BC_Let TopLevel NonRecursive
; (env', b') <- addBndrRules env b (lookupRecBndr env b) bind_cxt
; simplRecOrTopPair env' bind_cxt b b' r }
{-
************************************************************************
* *
Lazy bindings
* *
************************************************************************
simplRecBind is used for
* recursive bindings only
-}
simplRecBind :: SimplEnv -> BindContext
-> [(InId, InExpr)]
-> SimplM (SimplFloats, SimplEnv)
simplRecBind env0 bind_cxt pairs0
= do { (env1, triples) <- mapAccumLM add_rules env0 pairs0
; let new_bndrs = map sndOf3 triples
; (rec_floats, env2) <- enterRecGroupRHSs env1 new_bndrs $ \env ->
go env triples
; return (mkRecFloats rec_floats, env2) }
where
add_rules :: SimplEnv -> (InBndr,InExpr) -> SimplM (SimplEnv, (InBndr, OutBndr, InExpr))
-- Add the (substituted) rules to the binder
add_rules env (bndr, rhs)
= do { (env', bndr') <- addBndrRules env bndr (lookupRecBndr env bndr) bind_cxt
; return (env', (bndr, bndr', rhs)) }
go env [] = return (emptyFloats env, env)
go env ((old_bndr, new_bndr, rhs) : pairs)
= do { (float, env1) <- simplRecOrTopPair env bind_cxt
old_bndr new_bndr rhs
; (floats, env2) <- go env1 pairs
; return (float `addFloats` floats, env2) }
{-
simplOrTopPair is used for
* recursive bindings (whether top level or not)
* top-level non-recursive bindings
It assumes the binder has already been simplified, but not its IdInfo.
-}
simplRecOrTopPair :: SimplEnv
-> BindContext
-> InId -> OutBndr -> InExpr -- Binder and rhs
-> SimplM (SimplFloats, SimplEnv)
simplRecOrTopPair env bind_cxt old_bndr new_bndr rhs
| Just env' <- preInlineUnconditionally env (bindContextLevel bind_cxt)
old_bndr rhs env
= {-#SCC "simplRecOrTopPair-pre-inline-uncond" #-}
simplTrace "SimplBindr:inline-uncond" (ppr old_bndr) $
do { tick (PreInlineUnconditionally old_bndr)
; return ( emptyFloats env, env' ) }
| otherwise
= case bind_cxt of
BC_Join is_rec cont -> simplTrace "SimplBind:join" (ppr old_bndr) $
simplJoinBind env is_rec cont old_bndr new_bndr rhs env
BC_Let top_lvl is_rec -> simplTrace "SimplBind:normal" (ppr old_bndr) $
simplLazyBind env top_lvl is_rec old_bndr new_bndr rhs env
simplTrace :: String -> SDoc -> SimplM a -> SimplM a
simplTrace herald doc thing_inside = do
logger <- getLogger
if logHasDumpFlag logger Opt_D_verbose_core2core
then logTraceMsg logger herald doc thing_inside
else thing_inside
--------------------------
simplLazyBind :: SimplEnv
-> TopLevelFlag -> RecFlag
-> InId -> OutId -- Binder, both pre-and post simpl
-- Not a JoinId
-- The OutId has IdInfo (notably RULES),
-- except arity, unfolding
-- Ids only, no TyVars
-> InExpr -> SimplEnv -- The RHS and its environment
-> SimplM (SimplFloats, SimplEnv)
-- Precondition: the OutId is already in the InScopeSet of the incoming 'env'
-- Precondition: not a JoinId
-- Precondition: rhs obeys the let-can-float invariant
simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se
= assert (isId bndr )
assertPpr (not (isJoinId bndr)) (ppr bndr) $
-- pprTrace "simplLazyBind" ((ppr bndr <+> ppr bndr1) $$ ppr rhs $$ ppr (seIdSubst rhs_se)) $
do { let !rhs_env = rhs_se `setInScopeFromE` env -- See Note [Bangs in the Simplifier]
(tvs, body) = case collectTyAndValBinders rhs of
(tvs, [], body)
| surely_not_lam body -> (tvs, body)
_ -> ([], rhs)
surely_not_lam (Lam {}) = False
surely_not_lam (Tick t e)
| not (tickishFloatable t) = surely_not_lam e
-- eta-reduction could float
surely_not_lam _ = True
-- Do not do the "abstract tyvar" thing if there's
-- a lambda inside, because it defeats eta-reduction
-- f = /\a. \x. g a x
-- should eta-reduce.
; (body_env, tvs') <- {-#SCC "simplBinders" #-} simplBinders rhs_env tvs
-- See Note [Floating and type abstraction] in GHC.Core.Opt.Simplify.Utils
-- Simplify the RHS
; let rhs_cont = mkRhsStop (substTy body_env (exprType body))
is_rec (idDemandInfo bndr)
; (body_floats0, body0) <- {-#SCC "simplExprF" #-} simplExprF body_env body rhs_cont
-- ANF-ise a constructor or PAP rhs
; (body_floats2, body2) <- {-#SCC "prepareBinding" #-}
prepareBinding env top_lvl is_rec
False -- Not strict; this is simplLazyBind
bndr1 body_floats0 body0
-- Subtle point: we do not need or want tvs' in the InScope set
-- of body_floats2, so we pass in 'env' not 'body_env'.
-- Don't want: if tvs' are in-scope in the scope of this let-binding, we may do
-- more renaming than necessary => extra work (see !7777 and test T16577).
-- Don't need: we wrap tvs' around the RHS anyway.
; (rhs_floats, body3)
<- if isEmptyFloats body_floats2 || null tvs then -- Simple floating
{-#SCC "simplLazyBind-simple-floating" #-}
return (body_floats2, body2)
else -- Non-empty floats, and non-empty tyvars: do type-abstraction first
{-#SCC "simplLazyBind-type-abstraction-first" #-}
do { (poly_binds, body3) <- abstractFloats (seUnfoldingOpts env) top_lvl
tvs' body_floats2 body2
; let poly_floats = foldl' extendFloats (emptyFloats env) poly_binds
; return (poly_floats, body3) }
; let env' = env `setInScopeFromF` rhs_floats
; rhs' <- rebuildLam env' tvs' body3 rhs_cont
; (bind_float, env2) <- completeBind env' (BC_Let top_lvl is_rec) bndr bndr1 rhs'
; return (rhs_floats `addFloats` bind_float, env2) }
--------------------------
simplJoinBind :: SimplEnv
-> RecFlag
-> SimplCont
-> InId -> OutId -- Binder, both pre-and post simpl
-- The OutId has IdInfo, except arity,
-- unfolding
-> InExpr -> SimplEnv -- The right hand side and its env
-> SimplM (SimplFloats, SimplEnv)
simplJoinBind env is_rec cont old_bndr new_bndr rhs rhs_se
= do { let rhs_env = rhs_se `setInScopeFromE` env
; rhs' <- simplJoinRhs rhs_env old_bndr rhs cont
; completeBind env (BC_Join is_rec cont) old_bndr new_bndr rhs' }
--------------------------
simplAuxBind :: SimplEnv
-> InId -- Old binder; not a JoinId
-> OutExpr -- Simplified RHS
-> SimplM (SimplFloats, SimplEnv)
-- A specialised variant of completeBindX used to construct non-recursive
-- auxiliary bindings, notably in knownCon.
--
-- The binder comes from a case expression (case binder or alternative)
-- and so does not have rules, inline pragmas etc.
--
-- Precondition: rhs satisfies the let-can-float invariant
simplAuxBind env bndr new_rhs
| assertPpr (isId bndr && not (isJoinId bndr)) (ppr bndr) $
isDeadBinder bndr -- Not uncommon; e.g. case (a,b) of c { (p,q) -> p }
= return (emptyFloats env, env) -- Here c is dead, and we avoid
-- creating the binding c = (a,b)
-- The cases would be inlined unconditionally by completeBind:
-- but it seems not uncommon, and avoids faff to do it here
-- This is safe because it's only used for auxiliary bindings, which
-- have no NOLINE pragmas, nor RULEs
| exprIsTrivial new_rhs -- Short-cut for let x = y in ...
= return ( emptyFloats env
, case new_rhs of
Coercion co -> extendCvSubst env bndr co
_ -> extendIdSubst env bndr (DoneEx new_rhs Nothing) )
| otherwise
= do { -- ANF-ise the RHS
let !occ_fs = getOccFS bndr
; (anf_floats, rhs1) <- prepareRhs env NotTopLevel occ_fs new_rhs
; unless (isEmptyLetFloats anf_floats) (tick LetFloatFromLet)
; let rhs_floats = emptyFloats env `addLetFloats` anf_floats
-- Simplify the binder and complete the binding
; (env1, new_bndr) <- simplBinder (env `setInScopeFromF` rhs_floats) bndr
; (bind_float, env2) <- completeBind env1 (BC_Let NotTopLevel NonRecursive)
bndr new_bndr rhs1
; return (rhs_floats `addFloats` bind_float, env2) }
{- *********************************************************************
* *
Cast worker/wrapper
* *
************************************************************************
Note [Cast worker/wrapper]
~~~~~~~~~~~~~~~~~~~~~~~~~~
When we have a binding
x = e |> co
we want to do something very similar to worker/wrapper:
$wx = e
x = $wx |> co
We call this making a cast worker/wrapper in tryCastWorkerWrapper.
The main motivaiton is that x can be inlined freely. There's a chance
that e will be a constructor application or function, or something
like that, so moving the coercion to the usage site may well cancel
the coercions and lead to further optimisation. Example:
data family T a :: *
data instance T Int = T Int
foo :: Int -> Int -> Int
foo m n = ...
where
t = T m
go 0 = 0
go n = case t of { T m -> go (n-m) }
-- This case should optimise
A second reason for doing cast worker/wrapper is that the worker/wrapper
pass after strictness analysis can't deal with RHSs like
f = (\ a b c. blah) |> co
Instead, it relies on cast worker/wrapper to get rid of the cast,
leaving a simpler job for demand-analysis worker/wrapper. See #19874.
Wrinkles
1. We must /not/ do cast w/w on
f = g |> co
otherwise it'll just keep repeating forever! You might think this
is avoided because the call to tryCastWorkerWrapper is guarded by
preInlineUnconditinally, but I'm worried that a loop-breaker or an
exported Id might say False to preInlineUnonditionally.
2. We need to be careful with inline/noinline pragmas:
rec { {-# NOINLINE f #-}
f = (...g...) |> co
; g = ...f... }
This is legitimate -- it tells GHC to use f as the loop breaker
rather than g. Now we do the cast thing, to get something like
rec { $wf = ...g...
; f = $wf |> co
; g = ...f... }
Where should the NOINLINE pragma go? If we leave it on f we'll get
rec { $wf = ...g...
; {-# NOINLINE f #-}
f = $wf |> co
; g = ...f... }
and that is bad: the whole point is that we want to inline that
cast! We want to transfer the pagma to $wf:
rec { {-# NOINLINE $wf #-}
$wf = ...g...
; f = $wf |> co
; g = ...f... }
c.f. Note [Worker/wrapper for NOINLINE functions] in GHC.Core.Opt.WorkWrap.
3. We should still do cast w/w even if `f` is INLINEABLE. E.g.
{- f: Stable unfolding = <stable-big> -}
f = (\xy. <big-body>) |> co
Then we want to w/w to
{- $wf: Stable unfolding = <stable-big> |> sym co -}
$wf = \xy. <big-body>
f = $wf |> co
Notice that the stable unfolding moves to the worker! Now demand analysis
will work fine on $wf, whereas it has trouble with the original f.
c.f. Note [Worker/wrapper for INLINABLE functions] in GHC.Core.Opt.WorkWrap.
This point also applies to strong loopbreakers with INLINE pragmas, see
wrinkle (4).
4. We should /not/ do cast w/w for non-loop-breaker INLINE functions (hence
hasInlineUnfolding in tryCastWorkerWrapper, which responds False to
loop-breakers) because they'll definitely be inlined anyway, cast and
all. And if we do cast w/w for an INLINE function with arity zero, we get
something really silly: we inline that "worker" right back into the wrapper!
Worse than a no-op, because we have then lost the stable unfolding.
All these wrinkles are exactly like worker/wrapper for strictness analysis:
f is the wrapper and must inline like crazy
$wf is the worker and must carry f's original pragma
See Note [Worker/wrapper for INLINABLE functions]
and Note [Worker/wrapper for NOINLINE functions] in GHC.Core.Opt.WorkWrap.
See #17673, #18093, #18078, #19890.
Note [Preserve strictness in cast w/w]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the Note [Cast worker/wrapper] transformation, keep the strictness info.
Eg
f = e `cast` co -- f has strictness SSL
When we transform to
f' = e -- f' also has strictness SSL
f = f' `cast` co -- f still has strictness SSL
Its not wrong to drop it on the floor, but better to keep it.
Note [Preserve RuntimeRep info in cast w/w]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must not do cast w/w when the presence of the coercion is needed in order
to determine the runtime representation.
Example:
Suppose we have a type family:
type F :: RuntimeRep
type family F where
F = LiftedRep
together with a type `ty :: TYPE F` and a top-level binding
a :: ty |> TYPE F[0]
The kind of `ty |> TYPE F[0]` is `LiftedRep`, so `a` is a top-level lazy binding.
However, were we to apply cast w/w, we would get:
b :: ty
b = ...
a :: ty |> TYPE F[0]
a = b `cast` GRefl (TYPE F[0])
Now we are in trouble because `ty :: TYPE F` does not have a known runtime
representation, because we need to be able to reduce the nullary type family
application `F` to find that out.
Conclusion: only do cast w/w when doing so would not lose the RuntimeRep
information. That is, when handling `Cast rhs co`, don't attempt cast w/w
unless the kind of the type of rhs is concrete, in the sense of
Note [Concrete types] in GHC.Tc.Utils.Concrete.
-}
tryCastWorkerWrapper :: SimplEnv -> BindContext
-> InId -> OccInfo
-> OutId -> OutExpr
-> SimplM (SimplFloats, SimplEnv)
-- See Note [Cast worker/wrapper]
tryCastWorkerWrapper env bind_cxt old_bndr occ_info bndr (Cast rhs co)
| BC_Let top_lvl is_rec <- bind_cxt -- Not join points
, not (isDFunId bndr) -- nor DFuns; cast w/w is no help, and we can't transform
-- a DFunUnfolding in mk_worker_unfolding
, not (exprIsTrivial rhs) -- Not x = y |> co; Wrinkle 1
, not (hasInlineUnfolding info) -- Not INLINE things: Wrinkle 4
, isConcrete (typeKind work_ty) -- Don't peel off a cast if doing so would
-- lose the underlying runtime representation.
-- See Note [Preserve RuntimeRep info in cast w/w]
, not (isOpaquePragma (idInlinePragma old_bndr)) -- Not for OPAQUE bindings
-- See Note [OPAQUE pragma]
= do { uniq <- getUniqueM
; let work_name = mkSystemVarName uniq occ_fs
work_id = mkLocalIdWithInfo work_name ManyTy work_ty work_info
is_strict = isStrictId bndr
; (rhs_floats, work_rhs) <- prepareBinding env top_lvl is_rec is_strict
work_id (emptyFloats env) rhs
; work_unf <- mk_worker_unfolding top_lvl work_id work_rhs
; let work_id_w_unf = work_id `setIdUnfolding` work_unf
floats = rhs_floats `addLetFloats`
unitLetFloat (NonRec work_id_w_unf work_rhs)
triv_rhs = Cast (Var work_id_w_unf) co
; if postInlineUnconditionally env bind_cxt bndr occ_info triv_rhs
-- Almost always True, because the RHS is trivial
-- In that case we want to eliminate the binding fast
-- We conservatively use postInlineUnconditionally so that we
-- check all the right things
then do { tick (PostInlineUnconditionally bndr)
; return ( floats
, extendIdSubst (setInScopeFromF env floats) old_bndr $
DoneEx triv_rhs Nothing ) }
else do { wrap_unf <- mkLetUnfolding uf_opts top_lvl VanillaSrc bndr triv_rhs
; let bndr' = bndr `setInlinePragma` mkCastWrapperInlinePrag (idInlinePragma bndr)
`setIdUnfolding` wrap_unf
floats' = floats `extendFloats` NonRec bndr' triv_rhs
; return ( floats', setInScopeFromF env floats' ) } }
where
-- Force the occ_fs so that the old Id is not retained in the new Id.
!occ_fs = getOccFS bndr
uf_opts = seUnfoldingOpts env
work_ty = coercionLKind co
info = idInfo bndr
work_arity = arityInfo info `min` typeArity work_ty
work_info = vanillaIdInfo `setDmdSigInfo` dmdSigInfo info
`setCprSigInfo` cprSigInfo info
`setDemandInfo` demandInfo info
`setInlinePragInfo` inlinePragInfo info
`setArityInfo` work_arity
-- We do /not/ want to transfer OccInfo, Rules
-- Note [Preserve strictness in cast w/w]
-- and Wrinkle 2 of Note [Cast worker/wrapper]
----------- Worker unfolding -----------
-- Stable case: if there is a stable unfolding we have to compose with (Sym co);
-- the next round of simplification will do the job
-- Non-stable case: use work_rhs
-- Wrinkle 3 of Note [Cast worker/wrapper]
mk_worker_unfolding top_lvl work_id work_rhs
= case realUnfoldingInfo info of -- NB: the real one, even for loop-breakers
unf@(CoreUnfolding { uf_tmpl = unf_rhs, uf_src = src })
| isStableSource src -> return (unf { uf_tmpl = mkCast unf_rhs (mkSymCo co) })
_ -> mkLetUnfolding uf_opts top_lvl VanillaSrc work_id work_rhs
tryCastWorkerWrapper env _ _ _ bndr rhs -- All other bindings
= do { traceSmpl "tcww:no" (vcat [ text "bndr:" <+> ppr bndr
, text "rhs:" <+> ppr rhs ])
; return (mkFloatBind env (NonRec bndr rhs)) }
mkCastWrapperInlinePrag :: InlinePragma -> InlinePragma
-- See Note [Cast worker/wrapper]
mkCastWrapperInlinePrag (InlinePragma { inl_inline = fn_inl, inl_act = fn_act, inl_rule = rule_info })
= InlinePragma { inl_src = SourceText "{-# INLINE"
, inl_inline = fn_inl -- See Note [Worker/wrapper for INLINABLE functions]
, inl_sat = Nothing -- in GHC.Core.Opt.WorkWrap
, inl_act = wrap_act -- See Note [Wrapper activation]
, inl_rule = rule_info } -- in GHC.Core.Opt.WorkWrap
-- RuleMatchInfo is (and must be) unaffected
where
-- See Note [Wrapper activation] in GHC.Core.Opt.WorkWrap
-- But simpler, because we don't need to disable during InitialPhase
wrap_act | isNeverActive fn_act = activateDuringFinal
| otherwise = fn_act
{- *********************************************************************
* *
prepareBinding, prepareRhs, makeTrivial
* *
********************************************************************* -}
prepareBinding :: SimplEnv -> TopLevelFlag -> RecFlag -> Bool
-> Id -- Used only for its OccName; can be InId or OutId
-> SimplFloats -> OutExpr
-> SimplM (SimplFloats, OutExpr)
-- In (prepareBinding ... bndr floats rhs), the binding is really just
-- bndr = let floats in rhs
-- Maybe we can ANF-ise this binding and float out; e.g.
-- bndr = let a = f x in K a a (g x)
-- we could float out to give
-- a = f x
-- tmp = g x
-- bndr = K a a tmp
-- That's what prepareBinding does
-- Precondition: binder is not a JoinId
-- Postcondition: the returned SimplFloats contains only let-floats
prepareBinding env top_lvl is_rec strict_bind bndr rhs_floats rhs
= do { -- Never float join-floats out of a non-join let-binding (which this is)
-- So wrap the body in the join-floats right now
-- Hence: rhs_floats1 consists only of let-floats
let (rhs_floats1, rhs1) = wrapJoinFloatsX rhs_floats rhs
-- rhs_env: add to in-scope set the binders from rhs_floats
-- so that prepareRhs knows what is in scope in rhs
; let rhs_env = env `setInScopeFromF` rhs_floats1
-- Force the occ_fs so that the old Id is not retained in the new Id.
!occ_fs = getOccFS bndr
-- Now ANF-ise the remaining rhs
; (anf_floats, rhs2) <- prepareRhs rhs_env top_lvl occ_fs rhs1
-- Finally, decide whether or not to float
; let all_floats = rhs_floats1 `addLetFloats` anf_floats
; if doFloatFromRhs (seFloatEnable env) top_lvl is_rec strict_bind all_floats rhs2
then -- Float!
do { tick LetFloatFromLet
; return (all_floats, rhs2) }
else -- Abandon floating altogether; revert to original rhs
-- Since we have already built rhs1, we just need to add
-- rhs_floats1 to it
return (emptyFloats env, wrapFloats rhs_floats1 rhs1) }
{- Note [prepareRhs]
~~~~~~~~~~~~~~~~~~~~
prepareRhs takes a putative RHS, checks whether it's a PAP or
constructor application and, if so, converts it to ANF, so that the
resulting thing can be inlined more easily. Thus
x = (f a, g b)
becomes
t1 = f a
t2 = g b
x = (t1,t2)
We also want to deal well cases like this
v = (f e1 `cast` co) e2
Here we want to make e1,e2 trivial and get
x1 = e1; x2 = e2; v = (f x1 `cast` co) v2
That's what the 'go' loop in prepareRhs does
-}
prepareRhs :: HasDebugCallStack
=> SimplEnv -> TopLevelFlag
-> FastString -- Base for any new variables
-> OutExpr
-> SimplM (LetFloats, OutExpr)
-- Transforms a RHS into a better RHS by ANF'ing args
-- for expandable RHSs: constructors and PAPs
-- e.g x = Just e
-- becomes a = e -- 'a' is fresh
-- x = Just a
-- See Note [prepareRhs]
prepareRhs env top_lvl occ rhs0
| is_expandable = anfise rhs0
| otherwise = return (emptyLetFloats, rhs0)
where
-- We can' use exprIsExpandable because the WHOLE POINT is that
-- we want to treat (K <big>) as expandable, because we are just
-- about "anfise" the <big> expression. exprIsExpandable would
-- just say no!
is_expandable = go rhs0 0
where
go (Var fun) n_val_args = isExpandableApp fun n_val_args
go (App fun arg) n_val_args
| isTypeArg arg = go fun n_val_args
| otherwise = go fun (n_val_args + 1)
go (Cast rhs _) n_val_args = go rhs n_val_args
go (Tick _ rhs) n_val_args = go rhs n_val_args
go _ _ = False
anfise :: OutExpr -> SimplM (LetFloats, OutExpr)
anfise (Cast rhs co)
= do { (floats, rhs') <- anfise rhs
; return (floats, Cast rhs' co) }
anfise (App fun (Type ty))
= do { (floats, rhs') <- anfise fun
; return (floats, App rhs' (Type ty)) }
anfise (App fun arg)
= do { (floats1, fun') <- anfise fun
; (floats2, arg') <- makeTrivial env top_lvl topDmd occ arg
; return (floats1 `addLetFlts` floats2, App fun' arg') }
anfise (Var fun)
= return (emptyLetFloats, Var fun)
anfise (Tick t rhs)
-- We want to be able to float bindings past this
-- tick. Non-scoping ticks don't care.
| tickishScoped t == NoScope
= do { (floats, rhs') <- anfise rhs
; return (floats, Tick t rhs') }
-- On the other hand, for scoping ticks we need to be able to
-- copy them on the floats, which in turn is only allowed if
-- we can obtain non-counting ticks.
| (not (tickishCounts t) || tickishCanSplit t)
= do { (floats, rhs') <- anfise rhs
; let tickIt (id, expr) = (id, mkTick (mkNoCount t) expr)
floats' = mapLetFloats floats tickIt
; return (floats', Tick t rhs') }
anfise other = return (emptyLetFloats, other)
makeTrivialArg :: HasDebugCallStack => SimplEnv -> ArgSpec -> SimplM (LetFloats, ArgSpec)
makeTrivialArg env arg@(ValArg { as_arg = e, as_dmd = dmd })
= do { (floats, e') <- makeTrivial env NotTopLevel dmd (fsLit "arg") e
; return (floats, arg { as_arg = e' }) }
makeTrivialArg _ arg
= return (emptyLetFloats, arg) -- CastBy, TyArg
makeTrivial :: HasDebugCallStack
=> SimplEnv -> TopLevelFlag -> Demand
-> FastString -- ^ A "friendly name" to build the new binder from
-> OutExpr
-> SimplM (LetFloats, OutExpr)
-- Binds the expression to a variable, if it's not trivial, returning the variable
-- For the Demand argument, see Note [Keeping demand info in StrictArg Plan A]
makeTrivial env top_lvl dmd occ_fs expr
| exprIsTrivial expr -- Already trivial
|| not (bindingOk top_lvl expr expr_ty) -- Cannot trivialise
-- See Note [Cannot trivialise]
= return (emptyLetFloats, expr)
| Cast expr' co <- expr
= do { (floats, triv_expr) <- makeTrivial env top_lvl dmd occ_fs expr'
; return (floats, Cast triv_expr co) }
| otherwise -- 'expr' is not of form (Cast e co)
= do { (floats, expr1) <- prepareRhs env top_lvl occ_fs expr
; uniq <- getUniqueM
; let name = mkSystemVarName uniq occ_fs
var = mkLocalIdWithInfo name ManyTy expr_ty id_info
-- Now something very like completeBind,
-- but without the postInlineUnconditionally part
; (arity_type, expr2) <- tryEtaExpandRhs env (BC_Let top_lvl NonRecursive) var expr1
-- Technically we should extend the in-scope set in 'env' with
-- the 'floats' from prepareRHS; but they are all fresh, so there is
-- no danger of introducing name shadowig in eta expansion
; unf <- mkLetUnfolding uf_opts top_lvl VanillaSrc var expr2
; let final_id = addLetBndrInfo var arity_type unf
bind = NonRec final_id expr2
; traceSmpl "makeTrivial" (vcat [text "final_id" <+> ppr final_id, text "rhs" <+> ppr expr2 ])
; return ( floats `addLetFlts` unitLetFloat bind, Var final_id ) }
where
id_info = vanillaIdInfo `setDemandInfo` dmd
expr_ty = exprType expr
uf_opts = seUnfoldingOpts env
bindingOk :: TopLevelFlag -> CoreExpr -> Type -> Bool
-- True iff we can have a binding of this expression at this level
-- Precondition: the type is the type of the expression
bindingOk top_lvl expr expr_ty
| isTopLevel top_lvl = exprIsTopLevelBindable expr expr_ty
| otherwise = True
{- Note [Cannot trivialise]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
f :: Int -> Addr#
foo :: Bar
foo = Bar (f 3)
Then we can't ANF-ise foo, even though we'd like to, because
we can't make a top-level binding for the Addr# (f 3). And if
so we don't want to turn it into
foo = let x = f 3 in Bar x
because we'll just end up inlining x back, and that makes the
simplifier loop. Better not to ANF-ise it at all.
Literal strings are an exception.
foo = Ptr "blob"#
We want to turn this into:
foo1 = "blob"#
foo = Ptr foo1
See Note [Core top-level string literals] in GHC.Core.
************************************************************************
* *
Completing a lazy binding
* *
************************************************************************
completeBind
* deals only with Ids, not TyVars
* takes an already-simplified binder and RHS
* is used for both recursive and non-recursive bindings
* is used for both top-level and non-top-level bindings
It does the following:
- tries discarding a dead binding
- tries PostInlineUnconditionally
- add unfolding [this is the only place we add an unfolding]
- add arity
- extend the InScopeSet of the SimplEnv
It does *not* attempt to do let-to-case. Why? Because it is used for
- top-level bindings (when let-to-case is impossible)
- many situations where the "rhs" is known to be a WHNF
(so let-to-case is inappropriate).
Nor does it do the atomic-argument thing
-}
completeBind :: SimplEnv
-> BindContext
-> InId -- Old binder
-> OutId -- New binder; can be a JoinId
-> OutExpr -- New RHS
-> SimplM (SimplFloats, SimplEnv)
-- completeBind may choose to do its work
-- * by extending the substitution (e.g. let x = y in ...)
-- * or by adding to the floats in the envt
--
-- Binder /can/ be a JoinId
-- Precondition: rhs obeys the let-can-float invariant
completeBind env bind_cxt old_bndr new_bndr new_rhs
| isCoVar old_bndr
= case new_rhs of
Coercion co -> return (emptyFloats env, extendCvSubst env old_bndr co)
_ -> return (mkFloatBind env (NonRec new_bndr new_rhs))
| otherwise
= assert (isId new_bndr) $
do { let old_info = idInfo old_bndr
old_unf = realUnfoldingInfo old_info
occ_info = occInfo old_info
-- Do eta-expansion on the RHS of the binding
-- See Note [Eta-expanding at let bindings] in GHC.Core.Opt.Simplify.Utils
; (new_arity, eta_rhs) <- tryEtaExpandRhs env bind_cxt new_bndr new_rhs
-- Simplify the unfolding
; new_unfolding <- simplLetUnfolding env bind_cxt old_bndr
eta_rhs (idType new_bndr) new_arity old_unf
; let new_bndr_w_info = addLetBndrInfo new_bndr new_arity new_unfolding
-- See Note [In-scope set as a substitution]
; if postInlineUnconditionally env bind_cxt new_bndr_w_info occ_info eta_rhs
then -- Inline and discard the binding
do { tick (PostInlineUnconditionally old_bndr)
; let unf_rhs = maybeUnfoldingTemplate new_unfolding `orElse` eta_rhs
-- See Note [Use occ-anald RHS in postInlineUnconditionally]
; simplTrace "PostInlineUnconditionally" (ppr new_bndr <+> ppr unf_rhs) $
return ( emptyFloats env
, extendIdSubst env old_bndr $
DoneEx unf_rhs (isJoinId_maybe new_bndr)) }
-- Use the substitution to make quite, quite sure that the
-- substitution will happen, since we are going to discard the binding
else -- Keep the binding; do cast worker/wrapper
-- pprTrace "Binding" (ppr new_bndr <+> ppr new_unfolding) $
tryCastWorkerWrapper env bind_cxt old_bndr occ_info new_bndr_w_info eta_rhs }
addLetBndrInfo :: OutId -> ArityType -> Unfolding -> OutId
addLetBndrInfo new_bndr new_arity_type new_unf
= new_bndr `setIdInfo` info5
where
new_arity = arityTypeArity new_arity_type
info1 = idInfo new_bndr `setArityInfo` new_arity
-- Unfolding info: Note [Setting the new unfolding]
info2 = info1 `setUnfoldingInfo` new_unf
-- Demand info: Note [Setting the demand info]
info3 | isEvaldUnfolding new_unf
= zapDemandInfo info2 `orElse` info2
| otherwise
= info2
-- Bottoming bindings: see Note [Bottoming bindings]
info4 = case arityTypeBotSigs_maybe new_arity_type of
Nothing -> info3
Just (ar, str_sig, cpr_sig) -> assert (ar == new_arity) $
info3 `setDmdSigInfo` str_sig
`setCprSigInfo` cpr_sig
-- Zap call arity info. We have used it by now (via
-- `tryEtaExpandRhs`), and the simplifier can invalidate this
-- information, leading to broken code later (e.g. #13479)
info5 = zapCallArityInfo info4
{- Note [Bottoming bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
let x = error "urk"
in ...(case x of <alts>)...
or
let f = \y. error (y ++ "urk")
in ...(case f "foo" of <alts>)...
Then we'd like to drop the dead <alts> immediately. So it's good to
propagate the info that x's (or f's) RHS is bottom to x's (or f's)
IdInfo as rapidly as possible.
We use tryEtaExpandRhs on every binding, and it turns out that the
arity computation it performs (via GHC.Core.Opt.Arity.findRhsArity) already
does a simple bottoming-expression analysis. So all we need to do
is propagate that info to the binder's IdInfo.
This showed up in #12150; see comment:16.
There is a second reason for settting the strictness signature. Consider
let -- f :: <[S]b>
f = \x. error "urk"
in ...(f a b c)...
Then, in GHC.Core.Opt.Arity.findRhsArity we'll use the demand-info on `f`
to eta-expand to
let f = \x y z. error "urk"
in ...(f a b c)...
But now f's strictness signature has too short an arity; see
GHC.Core.Opt.DmdAnal Note [idArity varies independently of dmdTypeDepth].
Fortuitously, the same strictness-signature-fixup code
gives the function a new strictness signature with the right number of
arguments. Example in stranal/should_compile/EtaExpansion.
Note [Setting the demand info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the unfolding is a value, the demand info may
go pear-shaped, so we nuke it. Example:
let x = (a,b) in
case x of (p,q) -> h p q x
Here x is certainly demanded. But after we've nuked
the case, we'll get just
let x = (a,b) in h a b x
and now x is not demanded (I'm assuming h is lazy)
This really happens. Similarly
let f = \x -> e in ...f..f...
After inlining f at some of its call sites the original binding may
(for example) be no longer strictly demanded.
The solution here is a bit ad hoc...
Note [Use occ-anald RHS in postInlineUnconditionally]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we postInlineUnconditionally 'f in
let f = \x -> x True in ...(f blah)...
then we'd like to inline the /occ-anald/ RHS for 'f'. If we
use the non-occ-anald version, we'll end up with a
...(let x = blah in x True)...
and hence an extra Simplifier iteration.
We already /have/ the occ-anald version in the Unfolding for
the Id. Well, maybe not /quite/ always. If the binder is Dead,
postInlineUnconditionally will return True, but we may not have an
unfolding because it's too big. Hence the belt-and-braces `orElse`
in the defn of unf_rhs. The Nothing case probably never happens.
************************************************************************
* *
\subsection[Simplify-simplExpr]{The main function: simplExpr}
* *
************************************************************************
The reason for this OutExprStuff stuff is that we want to float *after*
simplifying a RHS, not before. If we do so naively we get quadratic
behaviour as things float out.
To see why it's important to do it after, consider this (real) example:
let t = f x
in fst t
==>
let t = let a = e1
b = e2
in (a,b)
in fst t
==>
let a = e1
b = e2
t = (a,b)
in
a -- Can't inline a this round, cos it appears twice
==>
e1
Each of the ==> steps is a round of simplification. We'd save a
whole round if we float first. This can cascade. Consider
let f = g d
in \x -> ...f...
==>
let f = let d1 = ..d.. in \y -> e
in \x -> ...f...
==>
let d1 = ..d..
in \x -> ...(\y ->e)...
Only in this second round can the \y be applied, and it
might do the same again.
-}
simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr
simplExpr !env (Type ty) -- See Note [Bangs in the Simplifier]
= do { ty' <- simplType env ty -- See Note [Avoiding space leaks in OutType]
; return (Type ty') }
simplExpr env expr
= simplExprC env expr (mkBoringStop expr_out_ty)
where
expr_out_ty :: OutType
expr_out_ty = substTy env (exprType expr)
-- NB: Since 'expr' is term-valued, not (Type ty), this call
-- to exprType will succeed. exprType fails on (Type ty).
simplExprC :: SimplEnv
-> InExpr -- A term-valued expression, never (Type ty)
-> SimplCont
-> SimplM OutExpr
-- Simplify an expression, given a continuation
simplExprC env expr cont
= -- pprTrace "simplExprC" (ppr expr $$ ppr cont) $
do { (floats, expr') <- simplExprF env expr cont
; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $
-- pprTrace "simplExprC ret3" (ppr (seInScope env')) $
-- pprTrace "simplExprC ret4" (ppr (seLetFloats env')) $
return (wrapFloats floats expr') }
--------------------------------------------------
simplExprF :: SimplEnv
-> InExpr -- A term-valued expression, never (Type ty)
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplExprF !env e !cont -- See Note [Bangs in the Simplifier]
= {- pprTrace "simplExprF" (vcat
[ ppr e
, text "cont =" <+> ppr cont
, text "inscope =" <+> ppr (seInScope env)
, text "tvsubst =" <+> ppr (seTvSubst env)
, text "idsubst =" <+> ppr (seIdSubst env)
, text "cvsubst =" <+> ppr (seCvSubst env)
]) $ -}
simplExprF1 env e cont
simplExprF1 :: SimplEnv -> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplExprF1 _ (Type ty) cont
= pprPanic "simplExprF: type" (ppr ty <+> text"cont: " <+> ppr cont)
-- simplExprF does only with term-valued expressions
-- The (Type ty) case is handled separately by simplExpr
-- and by the other callers of simplExprF
simplExprF1 env (Var v) cont = {-#SCC "simplIdF" #-} simplIdF env v cont
simplExprF1 env (Lit lit) cont = {-#SCC "rebuild" #-} rebuild env (Lit lit) cont
simplExprF1 env (Tick t expr) cont = {-#SCC "simplTick" #-} simplTick env t expr cont
simplExprF1 env (Cast body co) cont = {-#SCC "simplCast" #-} simplCast env body co cont
simplExprF1 env (Coercion co) cont = {-#SCC "simplCoercionF" #-} simplCoercionF env co cont
simplExprF1 env (App fun arg) cont
= {-#SCC "simplExprF1-App" #-} case arg of
Type ty -> do { -- The argument type will (almost) certainly be used
-- in the output program, so just force it now.
-- See Note [Avoiding space leaks in OutType]
arg' <- simplType env ty
-- But use substTy, not simplType, to avoid forcing
-- the hole type; it will likely not be needed.
-- See Note [The hole type in ApplyToTy]
; let hole' = substTy env (exprType fun)
; simplExprF env fun $
ApplyToTy { sc_arg_ty = arg'
, sc_hole_ty = hole'
, sc_cont = cont } }
_ ->
-- Crucially, sc_hole_ty is a /lazy/ binding. It will
-- be forced only if we need to run contHoleType.
-- When these are forced, we might get quadratic behavior;
-- this quadratic blowup could be avoided by drilling down
-- to the function and getting its multiplicities all at once
-- (instead of one-at-a-time). But in practice, we have not
-- observed the quadratic behavior, so this extra entanglement
-- seems not worthwhile.
simplExprF env fun $
ApplyToVal { sc_arg = arg, sc_env = env
, sc_hole_ty = substTy env (exprType fun)
, sc_dup = NoDup, sc_cont = cont }
simplExprF1 env expr@(Lam {}) cont
= {-#SCC "simplExprF1-Lam" #-}
simplLam env (zapLambdaBndrs expr n_args) cont
-- zapLambdaBndrs: the issue here is under-saturated lambdas
-- (\x1. \x2. e) arg1
-- Here x1 might have "occurs-once" occ-info, because occ-info
-- is computed assuming that a group of lambdas is applied
-- all at once. If there are too few args, we must zap the
-- occ-info, UNLESS the remaining binders are one-shot
where
n_args = countArgs cont
-- NB: countArgs counts all the args (incl type args)
-- and likewise drop counts all binders (incl type lambdas)
simplExprF1 env (Case scrut bndr _ alts) cont
= {-#SCC "simplExprF1-Case" #-}
simplExprF env scrut (Select { sc_dup = NoDup, sc_bndr = bndr
, sc_alts = alts
, sc_env = env, sc_cont = cont })
simplExprF1 env (Let (Rec pairs) body) cont
| Just pairs' <- joinPointBindings_maybe pairs
= {-#SCC "simplRecJoinPoin" #-} simplRecJoinPoint env pairs' body cont
| otherwise
= {-#SCC "simplRecE" #-} simplRecE env pairs body cont
simplExprF1 env (Let (NonRec bndr rhs) body) cont
| Type ty <- rhs -- First deal with type lets (let a = Type ty in e)
= {-#SCC "simplExprF1-NonRecLet-Type" #-}
assert (isTyVar bndr) $
do { ty' <- simplType env ty
; simplExprF (extendTvSubst env bndr ty') body cont }
| Just env' <- preInlineUnconditionally env NotTopLevel bndr rhs env
-- Because of the let-can-float invariant, it's ok to
-- inline freely, or to drop the binding if it is dead.
= do { tick (PreInlineUnconditionally bndr)
; simplExprF env' body cont }
-- Now check for a join point. It's better to do the preInlineUnconditionally
-- test first, because joinPointBinding_maybe has to eta-expand, so a trivial
-- binding like { j = j2 |> co } would first be eta-expanded and then inlined
-- Better to test preInlineUnconditionally first.
| Just (bndr', rhs') <- joinPointBinding_maybe bndr rhs
= {-#SCC "simplNonRecJoinPoint" #-}
simplNonRecJoinPoint env bndr' rhs' body cont
| otherwise
= {-#SCC "simplNonRecE" #-}
simplNonRecE env FromLet bndr (rhs, env) body cont
{- Note [Avoiding space leaks in OutType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since the simplifier is run for multiple iterations, we need to ensure
that any thunks in the output of one simplifier iteration are forced
by the evaluation of the next simplifier iteration. Otherwise we may
retain multiple copies of the Core program and leak a terrible amount
of memory (as in #13426).
The simplifier is naturally strict in the entire "Expr part" of the
input Core program, because any expression may contain binders, which
we must find in order to extend the SimplEnv accordingly. But types
do not contain binders and so it is tempting to write things like
simplExpr env (Type ty) = return (Type (substTy env ty)) -- Bad!
This is Bad because the result includes a thunk (substTy env ty) which
retains a reference to the whole simplifier environment; and the next
simplifier iteration will not force this thunk either, because the
line above is not strict in ty.
So instead our strategy is for the simplifier to fully evaluate
OutTypes when it emits them into the output Core program, for example
simplExpr env (Type ty) = do { ty' <- simplType env ty -- Good
; return (Type ty') }
where the only difference from above is that simplType calls seqType
on the result of substTy.
However, SimplCont can also contain OutTypes and it's not necessarily
a good idea to force types on the way in to SimplCont, because they
may end up not being used and forcing them could be a lot of wasted
work. T5631 is a good example of this.
- For ApplyToTy's sc_arg_ty, we force the type on the way in because
the type will almost certainly appear as a type argument in the
output program.
- For the hole types in Stop and ApplyToTy, we force the type when we
emit it into the output program, after obtaining it from
contResultType. (The hole type in ApplyToTy is only directly used
to form the result type in a new Stop continuation.)
-}
---------------------------------
-- Simplify a join point, adding the context.
-- Context goes *inside* the lambdas. IOW, if the join point has arity n, we do:
-- \x1 .. xn -> e => \x1 .. xn -> E[e]
-- Note that we need the arity of the join point, since e may be a lambda
-- (though this is unlikely). See Note [Join points and case-of-case].
simplJoinRhs :: SimplEnv -> InId -> InExpr -> SimplCont
-> SimplM OutExpr
simplJoinRhs env bndr expr cont
| Just arity <- isJoinId_maybe bndr
= do { let (join_bndrs, join_body) = collectNBinders arity expr
mult = contHoleScaling cont
; (env', join_bndrs') <- simplLamBndrs env (map (scaleVarBy mult) join_bndrs)
; join_body' <- simplExprC env' join_body cont
; return $ mkLams join_bndrs' join_body' }
| otherwise
= pprPanic "simplJoinRhs" (ppr bndr)
---------------------------------
simplType :: SimplEnv -> InType -> SimplM OutType
-- Kept monadic just so we can do the seqType
-- See Note [Avoiding space leaks in OutType]
simplType env ty
= -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $
seqType new_ty `seq` return new_ty
where
new_ty = substTy env ty
---------------------------------
simplCoercionF :: SimplEnv -> InCoercion -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplCoercionF env co cont
= do { co' <- simplCoercion env co
; rebuild env (Coercion co') cont }
simplCoercion :: SimplEnv -> InCoercion -> SimplM OutCoercion
simplCoercion env co
= do { let opt_co = optCoercion opts (getSubst env) co
; seqCo opt_co `seq` return opt_co }
where
opts = seOptCoercionOpts env
-----------------------------------
-- | Push a TickIt context outwards past applications and cases, as
-- long as this is a non-scoping tick, to let case and application
-- optimisations apply.
simplTick :: SimplEnv -> CoreTickish -> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplTick env tickish expr cont
-- A scoped tick turns into a continuation, so that we can spot
-- (scc t (\x . e)) in simplLam and eliminate the scc. If we didn't do
-- it this way, then it would take two passes of the simplifier to
-- reduce ((scc t (\x . e)) e').
-- NB, don't do this with counting ticks, because if the expr is
-- bottom, then rebuildCall will discard the continuation.
-- XXX: we cannot do this, because the simplifier assumes that
-- the context can be pushed into a case with a single branch. e.g.
-- scc<f> case expensive of p -> e
-- becomes
-- case expensive of p -> scc<f> e
--
-- So I'm disabling this for now. It just means we will do more
-- simplifier iterations that necessary in some cases.
-- | tickishScoped tickish && not (tickishCounts tickish)
-- = simplExprF env expr (TickIt tickish cont)
-- For unscoped or soft-scoped ticks, we are allowed to float in new
-- cost, so we simply push the continuation inside the tick. This
-- has the effect of moving the tick to the outside of a case or
-- application context, allowing the normal case and application
-- optimisations to fire.
| tickish `tickishScopesLike` SoftScope
= do { (floats, expr') <- simplExprF env expr cont
; return (floats, mkTick tickish expr')
}
-- Push tick inside if the context looks like this will allow us to
-- do a case-of-case - see Note [case-of-scc-of-case]
| Select {} <- cont, Just expr' <- push_tick_inside
= simplExprF env expr' cont
-- We don't want to move the tick, but we might still want to allow
-- floats to pass through with appropriate wrapping (or not, see
-- wrap_floats below)
--- | not (tickishCounts tickish) || tickishCanSplit tickish
-- = wrap_floats
| otherwise
= no_floating_past_tick
where
-- Try to push tick inside a case, see Note [case-of-scc-of-case].
push_tick_inside =
case expr0 of
Case scrut bndr ty alts
-> Just $ Case (tickScrut scrut) bndr ty (map tickAlt alts)
_other -> Nothing
where (ticks, expr0) = stripTicksTop movable (Tick tickish expr)
movable t = not (tickishCounts t) ||
t `tickishScopesLike` NoScope ||
tickishCanSplit t
tickScrut e = foldr mkTick e ticks
-- Alternatives get annotated with all ticks that scope in some way,
-- but we don't want to count entries.
tickAlt (Alt c bs e) = Alt c bs (foldr mkTick e ts_scope)
ts_scope = map mkNoCount $
filter (not . (`tickishScopesLike` NoScope)) ticks
no_floating_past_tick =
do { let (inc,outc) = splitCont cont
; (floats, expr1) <- simplExprF env expr inc
; let expr2 = wrapFloats floats expr1
tickish' = simplTickish env tickish
; rebuild env (mkTick tickish' expr2) outc
}
-- Alternative version that wraps outgoing floats with the tick. This
-- results in ticks being duplicated, as we don't make any attempt to
-- eliminate the tick if we re-inline the binding (because the tick
-- semantics allows unrestricted inlining of HNFs), so I'm not doing
-- this any more. FloatOut will catch any real opportunities for
-- floating.
--
-- wrap_floats =
-- do { let (inc,outc) = splitCont cont
-- ; (env', expr') <- simplExprF (zapFloats env) expr inc
-- ; let tickish' = simplTickish env tickish
-- ; let wrap_float (b,rhs) = (zapIdDmdSig (setIdArity b 0),
-- mkTick (mkNoCount tickish') rhs)
-- -- when wrapping a float with mkTick, we better zap the Id's
-- -- strictness info and arity, because it might be wrong now.
-- ; let env'' = addFloats env (mapFloats env' wrap_float)
-- ; rebuild env'' expr' (TickIt tickish' outc)
-- }
simplTickish env tickish
| Breakpoint ext n ids <- tickish
= Breakpoint ext n (map (getDoneId . substId env) ids)
| otherwise = tickish
-- Push type application and coercion inside a tick
splitCont :: SimplCont -> (SimplCont, SimplCont)
splitCont cont@(ApplyToTy { sc_cont = tail }) = (cont { sc_cont = inc }, outc)
where (inc,outc) = splitCont tail
splitCont (CastIt co c) = (CastIt co inc, outc)
where (inc,outc) = splitCont c
splitCont other = (mkBoringStop (contHoleType other), other)
getDoneId (DoneId id) = id
getDoneId (DoneEx e _) = getIdFromTrivialExpr e -- Note [substTickish] in GHC.Core.Subst
getDoneId other = pprPanic "getDoneId" (ppr other)
-- Note [case-of-scc-of-case]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~
-- It's pretty important to be able to transform case-of-case when
-- there's an SCC in the way. For example, the following comes up
-- in nofib/real/compress/Encode.hs:
--
-- case scctick<code_string.r1>
-- case $wcode_string_r13s wild_XC w1_s137 w2_s138 l_aje
-- of _ { (# ww1_s13f, ww2_s13g, ww3_s13h #) ->
-- (ww1_s13f, ww2_s13g, ww3_s13h)
-- }
-- of _ { (ww_s12Y, ww1_s12Z, ww2_s130) ->
-- tick<code_string.f1>
-- (ww_s12Y,
-- ww1_s12Z,
-- PTTrees.PT
-- @ GHC.Types.Char @ GHC.Types.Int wild2_Xj ww2_s130 r_ajf)
-- }
--
-- We really want this case-of-case to fire, because then the 3-tuple
-- will go away (indeed, the CPR optimisation is relying on this
-- happening). But the scctick is in the way - we need to push it
-- inside to expose the case-of-case. So we perform this
-- transformation on the inner case:
--
-- scctick c (case e of { p1 -> e1; ...; pn -> en })
-- ==>
-- case (scctick c e) of { p1 -> scc c e1; ...; pn -> scc c en }
--
-- So we've moved a constant amount of work out of the scc to expose
-- the case. We only do this when the continuation is interesting: in
-- for now, it has to be another Case (maybe generalise this later).
{-
************************************************************************
* *
\subsection{The main rebuilder}
* *
************************************************************************
-}
rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplFloats, OutExpr)
-- At this point the substitution in the SimplEnv should be irrelevant;
-- only the in-scope set matters
rebuild env expr cont
= case cont of
Stop {} -> return (emptyFloats env, expr)
TickIt t cont -> rebuild env (mkTick t expr) cont
CastIt co cont -> rebuild env (mkCast expr co) cont
-- NB: mkCast implements the (Coercion co |> g) optimisation
Select { sc_bndr = bndr, sc_alts = alts, sc_env = se, sc_cont = cont }
-> rebuildCase (se `setInScopeFromE` env) expr bndr alts cont
StrictArg { sc_fun = fun, sc_cont = cont, sc_fun_ty = fun_ty }
-> rebuildCall env (addValArgTo fun expr fun_ty ) cont
StrictBind { sc_bndr = b, sc_body = body, sc_env = se
, sc_cont = cont, sc_from = from_what }
-> completeBindX (se `setInScopeFromE` env) from_what b expr body cont
ApplyToTy { sc_arg_ty = ty, sc_cont = cont}
-> rebuild env (App expr (Type ty)) cont
ApplyToVal { sc_arg = arg, sc_env = se, sc_dup = dup_flag
, sc_cont = cont, sc_hole_ty = fun_ty }
-- See Note [Avoid redundant simplification]
-> do { (_, _, arg') <- simplArg env dup_flag fun_ty se arg
; rebuild env (App expr arg') cont }
completeBindX :: SimplEnv
-> FromWhat
-> InId -> OutExpr -- Bind this Id to this (simplified) expression
-- (the let-can-float invariant may not be satisfied)
-> InExpr -- In this body
-> SimplCont -- Consumed by this continuation
-> SimplM (SimplFloats, OutExpr)
completeBindX env from_what bndr rhs body cont
| FromBeta arg_ty <- from_what
, needsCaseBinding arg_ty rhs -- Enforcing the let-can-float-invariant
= do { (env1, bndr1) <- simplNonRecBndr env bndr -- Lambda binders don't have rules
; (floats, expr') <- simplNonRecBody env1 from_what body cont
-- Do not float floats past the Case binder below
; let expr'' = wrapFloats floats expr'
case_expr = Case rhs bndr1 (contResultType cont) [Alt DEFAULT [] expr'']
; return (emptyFloats env, case_expr) }
| otherwise -- Make a let-binding
= do { (env1, bndr1) <- simplNonRecBndr env bndr
; (env2, bndr2) <- addBndrRules env1 bndr bndr1 (BC_Let NotTopLevel NonRecursive)
; let is_strict = isStrictId bndr2
-- isStrictId: use simplified binder because the InId bndr might not have
-- a fixed runtime representation, which isStrictId doesn't expect
-- c.f. Note [Dark corner with representation polymorphism]
; (rhs_floats, rhs1) <- prepareBinding env NotTopLevel NonRecursive is_strict
bndr2 (emptyFloats env) rhs
-- NB: it makes a surprisingly big difference (5% in compiler allocation
-- in T9630) to pass 'env' rather than 'env1'. It's fine to pass 'env',
-- because this is simplNonRecX, so bndr is not in scope in the RHS.
; (bind_float, env2) <- completeBind (env2 `setInScopeFromF` rhs_floats)
(BC_Let NotTopLevel NonRecursive)
bndr bndr2 rhs1
-- Must pass env1 to completeBind in case simplBinder had to clone,
-- and extended the substitution with [bndr :-> new_bndr]
-- Simplify the body
; (body_floats, body') <- simplNonRecBody env2 from_what body cont
; let all_floats = rhs_floats `addFloats` bind_float `addFloats` body_floats
; return ( all_floats, body' ) }
{-
************************************************************************
* *
\subsection{Lambdas}
* *
************************************************************************
-}
{- Note [Optimising reflexivity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important (for compiler performance) to get rid of reflexivity as soon
as it appears. See #11735, #14737, and #15019.
In particular, we want to behave well on
* e |> co1 |> co2
where the two happen to cancel out entirely. That is quite common;
e.g. a newtype wrapping and unwrapping cancel.
* (f |> co) @t1 @t2 ... @tn x1 .. xm
Here we will use pushCoTyArg and pushCoValArg successively, which
build up SelCo stacks. Silly to do that if co is reflexive.
However, we don't want to call isReflexiveCo too much, because it uses
type equality which is expensive on big types (#14737 comment:7).
A good compromise (determined experimentally) seems to be to call
isReflexiveCo
* when composing casts, and
* at the end
In investigating this I saw missed opportunities for on-the-fly
coercion shrinkage. See #15090.
-}
simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplCast env body co0 cont0
= do { co1 <- {-#SCC "simplCast-simplCoercion" #-} simplCoercion env co0
; cont1 <- {-#SCC "simplCast-addCoerce" #-}
if isReflCo co1
then return cont0 -- See Note [Optimising reflexivity]
else addCoerce co1 cont0
; {-#SCC "simplCast-simplExprF" #-} simplExprF env body cont1 }
where
-- If the first parameter is MRefl, then simplifying revealed a
-- reflexive coercion. Omit.
addCoerceM :: MOutCoercion -> SimplCont -> SimplM SimplCont
addCoerceM MRefl cont = return cont
addCoerceM (MCo co) cont = addCoerce co cont
addCoerce :: OutCoercion -> SimplCont -> SimplM SimplCont
addCoerce co1 (CastIt co2 cont) -- See Note [Optimising reflexivity]
| isReflexiveCo co' = return cont
| otherwise = addCoerce co' cont
where
co' = mkTransCo co1 co2
addCoerce co (ApplyToTy { sc_arg_ty = arg_ty, sc_cont = tail })
| Just (arg_ty', m_co') <- pushCoTyArg co arg_ty
= {-#SCC "addCoerce-pushCoTyArg" #-}
do { tail' <- addCoerceM m_co' tail
; return (ApplyToTy { sc_arg_ty = arg_ty'
, sc_cont = tail'
, sc_hole_ty = coercionLKind co }) }
-- NB! As the cast goes past, the
-- type of the hole changes (#16312)
-- (f |> co) e ===> (f (e |> co1)) |> co2
-- where co :: (s1->s2) ~ (t1->t2)
-- co1 :: t1 ~ s1
-- co2 :: s2 ~ t2
addCoerce co cont@(ApplyToVal { sc_arg = arg, sc_env = arg_se
, sc_dup = dup, sc_cont = tail
, sc_hole_ty = fun_ty })
| Just (m_co1, m_co2) <- pushCoValArg co
, fixed_rep m_co1
= {-#SCC "addCoerce-pushCoValArg" #-}
do { tail' <- addCoerceM m_co2 tail
; case m_co1 of {
MRefl -> return (cont { sc_cont = tail'
, sc_hole_ty = coercionLKind co }) ;
-- Avoid simplifying if possible;
-- See Note [Avoiding exponential behaviour]
MCo co1 ->
do { (dup', arg_se', arg') <- simplArg env dup fun_ty arg_se arg
-- When we build the ApplyTo we can't mix the OutCoercion
-- 'co' with the InExpr 'arg', so we simplify
-- to make it all consistent. It's a bit messy.
-- But it isn't a common case.
-- Example of use: #995
; return (ApplyToVal { sc_arg = mkCast arg' co1
, sc_env = arg_se'
, sc_dup = dup'
, sc_cont = tail'
, sc_hole_ty = coercionLKind co }) } } }
addCoerce co cont
| isReflexiveCo co = return cont -- Having this at the end makes a huge
-- difference in T12227, for some reason
-- See Note [Optimising reflexivity]
| otherwise = return (CastIt co cont)
fixed_rep :: MCoercionR -> Bool
fixed_rep MRefl = True
fixed_rep (MCo co) = typeHasFixedRuntimeRep $ coercionRKind co
-- Without this check, we can get an argument which does not
-- have a fixed runtime representation.
-- See Note [Representation polymorphism invariants] in GHC.Core
-- test: typecheck/should_run/EtaExpandLevPoly
simplArg :: SimplEnv -> DupFlag
-> OutType -- Type of the function applied to this arg
-> StaticEnv -> CoreExpr -- Expression with its static envt
-> SimplM (DupFlag, StaticEnv, OutExpr)
simplArg env dup_flag fun_ty arg_env arg
| isSimplified dup_flag
= return (dup_flag, arg_env, arg)
| otherwise
= do { let arg_env' = arg_env `setInScopeFromE` env
; arg' <- simplExprC arg_env' arg (mkBoringStop (funArgTy fun_ty))
; return (Simplified, zapSubstEnv arg_env', arg') }
-- Return a StaticEnv that includes the in-scope set from 'env',
-- because arg' may well mention those variables (#20639)
{-
************************************************************************
* *
\subsection{Lambdas}
* *
************************************************************************
-}
simplNonRecBody :: SimplEnv -> FromWhat
-> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplNonRecBody env from_what body cont
= case from_what of
FromLet -> simplExprF env body cont
FromBeta {} -> simplLam env body cont
simplLam :: SimplEnv -> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplLam env (Lam bndr body) cont = simpl_lam env bndr body cont
simplLam env expr cont = simplExprF env expr cont
simpl_lam :: SimplEnv -> InBndr -> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
-- Type beta-reduction
simpl_lam env bndr body (ApplyToTy { sc_arg_ty = arg_ty, sc_cont = cont })
= do { tick (BetaReduction bndr)
; simplLam (extendTvSubst env bndr arg_ty) body cont }
-- Value beta-reduction
simpl_lam env bndr body (ApplyToVal { sc_arg = arg, sc_env = arg_se
, sc_cont = cont, sc_dup = dup
, sc_hole_ty = fun_ty})
= do { tick (BetaReduction bndr)
; let arg_ty = funArgTy fun_ty
; if | isSimplified dup -- Don't re-simplify if we've simplified it once
-- Including don't preInlineUnconditionally
-- See Note [Avoiding exponential behaviour]
-> completeBindX env (FromBeta arg_ty) bndr arg body cont
| Just env' <- preInlineUnconditionally env NotTopLevel bndr arg arg_se
, not (needsCaseBinding arg_ty arg)
-- Ok to test arg::InExpr in needsCaseBinding because
-- exprOkForSpeculation is stable under simplification
-> do { tick (PreInlineUnconditionally bndr)
; simplLam env' body cont }
| otherwise
-> simplNonRecE env (FromBeta arg_ty) bndr (arg, arg_se) body cont }
-- Discard a non-counting tick on a lambda. This may change the
-- cost attribution slightly (moving the allocation of the
-- lambda elsewhere), but we don't care: optimisation changes
-- cost attribution all the time.
simpl_lam env bndr body (TickIt tickish cont)
| not (tickishCounts tickish)
= simpl_lam env bndr body cont
-- Not enough args, so there are real lambdas left to put in the result
simpl_lam env bndr body cont
= do { let (inner_bndrs, inner_body) = collectBinders body
; (env', bndrs') <- simplLamBndrs env (bndr:inner_bndrs)
; body' <- simplExpr env' inner_body
; new_lam <- rebuildLam env' bndrs' body' cont
; rebuild env' new_lam cont }
-------------
simplLamBndr :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr)
-- Historically this had a special case for when a lambda-binder
-- could have a stable unfolding;
-- see Historical Note [Case binders and join points]
-- But now it is much simpler! We now only remove unfoldings.
-- See Note [Never put `OtherCon` unfoldings on lambda binders]
simplLamBndr env bndr = simplBinder env (zapIdUnfolding bndr)
simplLamBndrs :: SimplEnv -> [InBndr] -> SimplM (SimplEnv, [OutBndr])
simplLamBndrs env bndrs = mapAccumLM simplLamBndr env bndrs
------------------
simplNonRecE :: SimplEnv
-> FromWhat
-> InId -- The binder, always an Id
-- Never a join point
-> (InExpr, SimplEnv) -- Rhs of binding (or arg of lambda)
-> InExpr -- Body of the let/lambda
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
-- simplNonRecE is used for
-- * from=FromLet: a non-top-level non-recursive non-join-point let-expression
-- * from=FromBeta: a binding arising from a beta reduction
--
-- simplNonRecE env b (rhs, rhs_se) body k
-- = let env in
-- cont< let b = rhs_se(rhs) in body >
--
-- It deals with strict bindings, via the StrictBind continuation,
-- which may abort the whole process.
--
-- from_what=FromLet => the RHS satisfies the let-can-float invariant
-- Otherwise it may or may not satisfy it.
simplNonRecE env from_what bndr (rhs, rhs_se) body cont
| assert (isId bndr && not (isJoinId bndr) ) $
is_strict_bind
= -- Evaluate RHS strictly
simplExprF (rhs_se `setInScopeFromE` env) rhs
(StrictBind { sc_bndr = bndr, sc_body = body, sc_from = from_what
, sc_env = env, sc_cont = cont, sc_dup = NoDup })
| otherwise -- Evaluate RHS lazily
= do { (env1, bndr1) <- simplNonRecBndr env bndr
; (env2, bndr2) <- addBndrRules env1 bndr bndr1 (BC_Let NotTopLevel NonRecursive)
; (floats1, env3) <- simplLazyBind env2 NotTopLevel NonRecursive
bndr bndr2 rhs rhs_se
; (floats2, expr') <- simplNonRecBody env3 from_what body cont
; return (floats1 `addFloats` floats2, expr') }
where
is_strict_bind = case from_what of
FromBeta arg_ty | isUnliftedType arg_ty -> True
-- If we are coming from a beta-reduction (FromBeta) we must
-- establish the let-can-float invariant, so go via StrictBind
-- If not, the invariant holds already, and it's optional.
-- Using arg_ty: see Note [Dark corner with representation polymorphism]
-- e.g (\r \(a::TYPE r) \(x::a). blah) @LiftedRep @Int arg
-- When we come to `x=arg` we myst choose lazy/strict correctly
-- It's wrong to err in either directly
_ -> seCaseCase env && isStrUsedDmd (idDemandInfo bndr)
------------------
simplRecE :: SimplEnv
-> [(InId, InExpr)]
-> InExpr
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
-- simplRecE is used for
-- * non-top-level recursive lets in expressions
-- Precondition: not a join-point binding
simplRecE env pairs body cont
= do { let bndrs = map fst pairs
; massert (all (not . isJoinId) bndrs)
; env1 <- simplRecBndrs env bndrs
-- NB: bndrs' don't have unfoldings or rules
-- We add them as we go down
; (floats1, env2) <- simplRecBind env1 (BC_Let NotTopLevel Recursive) pairs
; (floats2, expr') <- simplExprF env2 body cont
; return (floats1 `addFloats` floats2, expr') }
{- Note [Dark corner with representation polymorphism]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In `simplNonRecE`, the call to `needsCaseBinding` or to `isStrictId` will fail
if the binder does not have a fixed runtime representation, e.g. if it is of kind (TYPE r).
So we are careful to call `isStrictId` on the OutId, not the InId, in case we have
((\(r::RuntimeRep) \(x::TYPE r). blah) Lifted arg)
That will lead to `simplNonRecE env (x::TYPE r) arg`, and we can't tell
if x is lifted or unlifted from that.
We only get such redexes from the compulsory inlining of a wired-in,
representation-polymorphic function like `rightSection` (see
GHC.Types.Id.Make). Mind you, SimpleOpt should probably have inlined
such compulsory inlinings already, but belt and braces does no harm.
Plus, it turns out that GHC.Driver.Main.hscCompileCoreExpr calls the
Simplifier without first calling SimpleOpt, so anything involving
GHCi or TH and operator sections will fall over if we don't take
care here.
Note [Avoiding exponential behaviour]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
One way in which we can get exponential behaviour is if we simplify a
big expression, and then re-simplify it -- and then this happens in a
deeply-nested way. So we must be jolly careful about re-simplifying
an expression (#13379). That is why simplNonRecX does not try
preInlineUnconditionally (unlike simplNonRecE).
Example:
f BIG, where f has a RULE
Then
* We simplify BIG before trying the rule; but the rule does not fire
* We inline f = \x. x True
* So if we did preInlineUnconditionally we'd re-simplify (BIG True)
However, if BIG has /not/ already been simplified, we'd /like/ to
simplify BIG True; maybe good things happen. That is why
* simplLam has
- a case for (isSimplified dup), which goes via simplNonRecX, and
- a case for the un-simplified case, which goes via simplNonRecE
* We go to some efforts to avoid unnecessarily simplifying ApplyToVal,
in at least two places
- In simplCast/addCoerce, where we check for isReflCo
- In rebuildCall we avoid simplifying arguments before we have to
(see Note [Trying rewrite rules])
************************************************************************
* *
Join points
* *
********************************************************************* -}
{- Note [Rules and unfolding for join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
simplExpr (join j x = rhs ) cont
( {- RULE j (p:ps) = blah -} )
( {- StableUnfolding j = blah -} )
(in blah )
Then we will push 'cont' into the rhs of 'j'. But we should *also* push
'cont' into the RHS of
* Any RULEs for j, e.g. generated by SpecConstr
* Any stable unfolding for j, e.g. the result of an INLINE pragma
Simplifying rules and stable-unfoldings happens a bit after
simplifying the right-hand side, so we remember whether or not it
is a join point, and what 'cont' is, in a value of type MaybeJoinCont
#13900 was caused by forgetting to push 'cont' into the RHS
of a SpecConstr-generated RULE for a join point.
-}
simplNonRecJoinPoint :: SimplEnv -> InId -> InExpr
-> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplNonRecJoinPoint env bndr rhs body cont
= assert (isJoinId bndr ) $
wrapJoinCont env cont $ \ env cont ->
do { -- We push join_cont into the join RHS and the body;
-- and wrap wrap_cont around the whole thing
; let mult = contHoleScaling cont
res_ty = contResultType cont
; (env1, bndr1) <- simplNonRecJoinBndr env bndr mult res_ty
; (env2, bndr2) <- addBndrRules env1 bndr bndr1 (BC_Join NonRecursive cont)
; (floats1, env3) <- simplJoinBind env2 NonRecursive cont bndr bndr2 rhs env
; (floats2, body') <- simplExprF env3 body cont
; return (floats1 `addFloats` floats2, body') }
------------------
simplRecJoinPoint :: SimplEnv -> [(InId, InExpr)]
-> InExpr -> SimplCont
-> SimplM (SimplFloats, OutExpr)
simplRecJoinPoint env pairs body cont
= wrapJoinCont env cont $ \ env cont ->
do { let bndrs = map fst pairs
mult = contHoleScaling cont
res_ty = contResultType cont
; env1 <- simplRecJoinBndrs env bndrs mult res_ty
-- NB: bndrs' don't have unfoldings or rules
-- We add them as we go down
; (floats1, env2) <- simplRecBind env1 (BC_Join Recursive cont) pairs
; (floats2, body') <- simplExprF env2 body cont
; return (floats1 `addFloats` floats2, body') }
--------------------
wrapJoinCont :: SimplEnv -> SimplCont
-> (SimplEnv -> SimplCont -> SimplM (SimplFloats, OutExpr))
-> SimplM (SimplFloats, OutExpr)
-- Deal with making the continuation duplicable if necessary,
-- and with the no-case-of-case situation.
wrapJoinCont env cont thing_inside
| contIsStop cont -- Common case; no need for fancy footwork
= thing_inside env cont
| not (seCaseCase env)
-- See Note [Join points with -fno-case-of-case]
= do { (floats1, expr1) <- thing_inside env (mkBoringStop (contHoleType cont))
; let (floats2, expr2) = wrapJoinFloatsX floats1 expr1
; (floats3, expr3) <- rebuild (env `setInScopeFromF` floats2) expr2 cont
; return (floats2 `addFloats` floats3, expr3) }
| otherwise
-- Normal case; see Note [Join points and case-of-case]
= do { (floats1, cont') <- mkDupableCont env cont
; (floats2, result) <- thing_inside (env `setInScopeFromF` floats1) cont'
; return (floats1 `addFloats` floats2, result) }
--------------------
trimJoinCont :: Id -- Used only in error message
-> Maybe JoinArity
-> SimplCont -> SimplCont
-- Drop outer context from join point invocation (jump)
-- See Note [Join points and case-of-case]
trimJoinCont _ Nothing cont
= cont -- Not a jump
trimJoinCont var (Just arity) cont
= trim arity cont
where
trim 0 cont@(Stop {})
= cont
trim 0 cont
= mkBoringStop (contResultType cont)
trim n cont@(ApplyToVal { sc_cont = k })
= cont { sc_cont = trim (n-1) k }
trim n cont@(ApplyToTy { sc_cont = k })
= cont { sc_cont = trim (n-1) k } -- join arity counts types!
trim _ cont
= pprPanic "completeCall" $ ppr var $$ ppr cont
{- Note [Join points and case-of-case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we perform the case-of-case transform (or otherwise push continuations
inward), we want to treat join points specially. Since they're always
tail-called and we want to maintain this invariant, we can do this (for any
evaluation context E):
E[join j = e
in case ... of
A -> jump j 1
B -> jump j 2
C -> f 3]
-->
join j = E[e]
in case ... of
A -> jump j 1
B -> jump j 2
C -> E[f 3]
As is evident from the example, there are two components to this behavior:
1. When entering the RHS of a join point, copy the context inside.
2. When a join point is invoked, discard the outer context.
We need to be very careful here to remain consistent---neither part is
optional!
We need do make the continuation E duplicable (since we are duplicating it)
with mkDupableCont.
Note [Join points with -fno-case-of-case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Supose case-of-case is switched off, and we are simplifying
case (join j x = <j-rhs> in
case y of
A -> j 1
B -> j 2
C -> e) of <outer-alts>
Usually, we'd push the outer continuation (case . of <outer-alts>) into
both the RHS and the body of the join point j. But since we aren't doing
case-of-case we may then end up with this totally bogus result
join x = case <j-rhs> of <outer-alts> in
case (case y of
A -> j 1
B -> j 2
C -> e) of <outer-alts>
This would be OK in the language of the paper, but not in GHC: j is no longer
a join point. We can only do the "push continuation into the RHS of the
join point j" if we also push the continuation right down to the /jumps/ to
j, so that it can evaporate there. If we are doing case-of-case, we'll get to
join x = case <j-rhs> of <outer-alts> in
case y of
A -> j 1
B -> j 2
C -> case e of <outer-alts>
which is great.
Bottom line: if case-of-case is off, we must stop pushing the continuation
inwards altogether at any join point. Instead simplify the (join ... in ...)
with a Stop continuation, and wrap the original continuation around the
outside. Surprisingly tricky!
************************************************************************
* *
Variables
* *
************************************************************************
Note [zapSubstEnv]
~~~~~~~~~~~~~~~~~~
When simplifying something that has already been simplified, be sure to
zap the SubstEnv. This is VITAL. Consider
let x = e in
let y = \z -> ...x... in
\ x -> ...y...
We'll clone the inner \x, adding x->x' in the id_subst Then when we
inline y, we must *not* replace x by x' in the inlined copy!!
Note [Fast path for data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For applications of a data constructor worker, the full glory of
rebuildCall is a waste of effort;
* They never inline, obviously
* They have no rewrite rules
* They are not strict (see Note [Data-con worker strictness]
in GHC.Core.DataCon)
So it's fine to zoom straight to `rebuild` which just rebuilds the
call in a very straightforward way.
Some programs have a /lot/ of data constructors in the source program
(compiler/perf/T9961 is an example), so this fast path can be very
valuable.
-}
simplVar :: SimplEnv -> InVar -> SimplM OutExpr
-- Look up an InVar in the environment
simplVar env var
-- Why $! ? See Note [Bangs in the Simplifier]
| isTyVar var = return $! Type $! (substTyVar env var)
| isCoVar var = return $! Coercion $! (substCoVar env var)
| otherwise
= case substId env var of
ContEx tvs cvs ids e -> let env' = setSubstEnv env tvs cvs ids
in simplExpr env' e
DoneId var1 -> return (Var var1)
DoneEx e _ -> return e
simplIdF :: SimplEnv -> InId -> SimplCont -> SimplM (SimplFloats, OutExpr)
simplIdF env var cont
| isDataConWorkId var -- See Note [Fast path for data constructors]
= rebuild env (Var var) cont
| otherwise
= case substId env var of
ContEx tvs cvs ids e -> simplExprF env' e cont
-- Don't trimJoinCont; haven't already simplified e,
-- so the cont is not embodied in e
where
env' = setSubstEnv env tvs cvs ids
DoneId var1 ->
do { rule_base <- getSimplRules
; let cont' = trimJoinCont var1 (isJoinId_maybe var1) cont
info = mkArgInfo env rule_base var1 cont'
; rebuildCall env info cont' }
DoneEx e mb_join -> simplExprF env' e cont'
where
cont' = trimJoinCont var mb_join cont
env' = zapSubstEnv env -- See Note [zapSubstEnv]
---------------------------------------------------------
-- Dealing with a call site
rebuildCall :: SimplEnv -> ArgInfo -> SimplCont
-> SimplM (SimplFloats, OutExpr)
---------- Bottoming applications --------------
rebuildCall env (ArgInfo { ai_fun = fun, ai_args = rev_args, ai_dmds = [] }) cont
-- When we run out of strictness args, it means
-- that the call is definitely bottom; see GHC.Core.Opt.Simplify.Utils.mkArgInfo
-- Then we want to discard the entire strict continuation. E.g.
-- * case (error "hello") of { ... }
-- * (error "Hello") arg
-- * f (error "Hello") where f is strict
-- etc
-- Then, especially in the first of these cases, we'd like to discard
-- the continuation, leaving just the bottoming expression. But the
-- type might not be right, so we may have to add a coerce.
| not (contIsTrivial cont) -- Only do this if there is a non-trivial
-- continuation to discard, else we do it
-- again and again!
= seqType cont_ty `seq` -- See Note [Avoiding space leaks in OutType]
return (emptyFloats env, castBottomExpr res cont_ty)
where
res = argInfoExpr fun rev_args
cont_ty = contResultType cont
---------- Try inlining, if ai_rewrite = TryInlining --------
-- In the TryInlining case we try inlining immediately, before simplifying
-- any (more) arguments. Why? See Note [Rewrite rules and inlining].
--
-- If there are rewrite rules we'll skip this case until we have
-- simplified enough args to satisfy nr_wanted==0 in the TryRules case below
-- Then we'll try the rules, and if that fails, we'll do TryInlining
rebuildCall env info@(ArgInfo { ai_fun = fun, ai_args = rev_args
, ai_rewrite = TryInlining }) cont
= do { logger <- getLogger
; let full_cont = pushSimplifiedRevArgs env rev_args cont
; mb_inline <- tryInlining env logger fun full_cont
; case mb_inline of
Just expr -> do { checkedTick (UnfoldingDone fun)
; let env1 = zapSubstEnv env
; simplExprF env1 expr full_cont }
Nothing -> rebuildCall env (info { ai_rewrite = TryNothing }) cont
}
---------- Try rewrite RULES, if ai_rewrite = TryRules --------------
-- See Note [Rewrite rules and inlining]
-- See also Note [Trying rewrite rules]
rebuildCall env info@(ArgInfo { ai_fun = fun, ai_args = rev_args
, ai_rewrite = TryRules nr_wanted rules }) cont
| nr_wanted == 0 || no_more_args
= -- We've accumulated a simplified call in <fun,rev_args>
-- so try rewrite rules; see Note [RULES apply to simplified arguments]
-- See also Note [Rules for recursive functions]
do { mb_match <- tryRules env rules fun (reverse rev_args) cont
; case mb_match of
Just (env', rhs, cont') -> simplExprF env' rhs cont'
Nothing -> rebuildCall env (info { ai_rewrite = TryInlining }) cont }
where
-- If we have run out of arguments, just try the rules; there might
-- be some with lower arity. Casts get in the way -- they aren't
-- allowed on rule LHSs
no_more_args = case cont of
ApplyToTy {} -> False
ApplyToVal {} -> False
_ -> True
---------- Simplify type applications and casts --------------
rebuildCall env info (CastIt co cont)
= rebuildCall env (addCastTo info co) cont
rebuildCall env info (ApplyToTy { sc_arg_ty = arg_ty, sc_hole_ty = hole_ty, sc_cont = cont })
= rebuildCall env (addTyArgTo info arg_ty hole_ty) cont
---------- The runRW# rule. Do this after absorbing all arguments ------
-- See Note [Simplification of runRW#] in GHC.CoreToSTG.Prep.
--
-- runRW# :: forall (r :: RuntimeRep) (o :: TYPE r). (State# RealWorld -> o) -> o
-- K[ runRW# rr ty body ] --> runRW rr' ty' (\s. K[ body s ])
rebuildCall env (ArgInfo { ai_fun = fun_id, ai_args = rev_args })
(ApplyToVal { sc_arg = arg, sc_env = arg_se
, sc_cont = cont, sc_hole_ty = fun_ty })
| fun_id `hasKey` runRWKey
, [ TyArg {}, TyArg {} ] <- rev_args
-- Do this even if (contIsStop cont)
-- See Note [No eta-expansion in runRW#]
= do { let arg_env = arg_se `setInScopeFromE` env
ty' = contResultType cont
-- If the argument is a literal lambda already, take a short cut
-- This isn't just efficiency; if we don't do this we get a beta-redex
-- every time, so the simplifier keeps doing more iterations.
; arg' <- case arg of
Lam s body -> do { (env', s') <- simplBinder arg_env s
; body' <- simplExprC env' body cont
; return (Lam s' body') }
-- Important: do not try to eta-expand this lambda
-- See Note [No eta-expansion in runRW#]
_ -> do { s' <- newId (fsLit "s") ManyTy realWorldStatePrimTy
; let (m,_,_) = splitFunTy fun_ty
env' = arg_env `addNewInScopeIds` [s']
cont' = ApplyToVal { sc_dup = Simplified, sc_arg = Var s'
, sc_env = env', sc_cont = cont
, sc_hole_ty = mkVisFunTy m realWorldStatePrimTy ty' }
-- cont' applies to s', then K
; body' <- simplExprC env' arg cont'
; return (Lam s' body') }
; let rr' = getRuntimeRep ty'
call' = mkApps (Var fun_id) [mkTyArg rr', mkTyArg ty', arg']
; return (emptyFloats env, call') }
---------- Simplify value arguments --------------------
rebuildCall env fun_info
(ApplyToVal { sc_arg = arg, sc_env = arg_se
, sc_dup = dup_flag, sc_hole_ty = fun_ty
, sc_cont = cont })
-- Argument is already simplified
| isSimplified dup_flag -- See Note [Avoid redundant simplification]
= rebuildCall env (addValArgTo fun_info arg fun_ty) cont
-- Strict arguments
| isStrictArgInfo fun_info
, seCaseCase env
= -- pprTrace "Strict Arg" (ppr arg $$ ppr (seIdSubst env) $$ ppr (seInScope env)) $
simplExprF (arg_se `setInScopeFromE` env) arg
(StrictArg { sc_fun = fun_info, sc_fun_ty = fun_ty
, sc_dup = Simplified
, sc_cont = cont })
-- Note [Shadowing]
-- Lazy arguments
| otherwise
-- DO NOT float anything outside, hence simplExprC
-- There is no benefit (unlike in a let-binding), and we'd
-- have to be very careful about bogus strictness through
-- floating a demanded let.
= do { arg' <- simplExprC (arg_se `setInScopeFromE` env) arg
(mkLazyArgStop arg_ty fun_info)
; rebuildCall env (addValArgTo fun_info arg' fun_ty) cont }
where
arg_ty = funArgTy fun_ty
---------- No further useful info, revert to generic rebuild ------------
rebuildCall env (ArgInfo { ai_fun = fun, ai_args = rev_args }) cont
= rebuild env (argInfoExpr fun rev_args) cont
-----------------------------------
tryInlining :: SimplEnv -> Logger -> OutId -> SimplCont -> SimplM (Maybe OutExpr)
tryInlining env logger var cont
| Just expr <- callSiteInline logger uf_opts case_depth var active_unf
lone_variable arg_infos interesting_cont
= do { dump_inline expr cont
; return (Just expr) }
| otherwise
= return Nothing
where
uf_opts = seUnfoldingOpts env
case_depth = seCaseDepth env
(lone_variable, arg_infos, call_cont) = contArgs cont
interesting_cont = interestingCallContext env call_cont
active_unf = activeUnfolding (seMode env) var
log_inlining doc
= liftIO $ logDumpFile logger (mkDumpStyle alwaysQualify)
Opt_D_dump_inlinings
"" FormatText doc
dump_inline unfolding cont
| not (logHasDumpFlag logger Opt_D_dump_inlinings) = return ()
| not (logHasDumpFlag logger Opt_D_verbose_core2core)
= when (isExternalName (idName var)) $
log_inlining $
sep [text "Inlining done:", nest 4 (ppr var)]
| otherwise
= log_inlining $
sep [text "Inlining done: " <> ppr var,
nest 4 (vcat [text "Inlined fn: " <+> nest 2 (ppr unfolding),
text "Cont: " <+> ppr cont])]
{- Note [Trying rewrite rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider an application (f e1 e2 e3) where the e1,e2,e3 are not yet
simplified. We want to simplify enough arguments to allow the rules
to apply, but it's more efficient to avoid simplifying e2,e3 if e1 alone
is sufficient. Example: class ops
(+) dNumInt e2 e3
If we rewrite ((+) dNumInt) to plusInt, we can take advantage of the
latter's strictness when simplifying e2, e3. Moreover, suppose we have
RULE f Int = \x. x True
Then given (f Int e1) we rewrite to
(\x. x True) e1
without simplifying e1. Now we can inline x into its unique call site,
and absorb the True into it all in the same pass. If we simplified
e1 first, we couldn't do that; see Note [Avoiding exponential behaviour].
So we try to apply rules if either
(a) no_more_args: we've run out of argument that the rules can "see"
(b) nr_wanted: none of the rules wants any more arguments
Note [RULES apply to simplified arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very desirable to try RULES once the arguments have been simplified, because
doing so ensures that rule cascades work in one pass. Consider
{-# RULES g (h x) = k x
f (k x) = x #-}
...f (g (h x))...
Then we want to rewrite (g (h x)) to (k x) and only then try f's rules. If
we match f's rules against the un-simplified RHS, it won't match. This
makes a particularly big difference when superclass selectors are involved:
op ($p1 ($p2 (df d)))
We want all this to unravel in one sweep.
Note [Rewrite rules and inlining]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we try to arrange that inlining is disabled (via a pragma) if
a rewrite rule should apply, so that the rule has a decent chance to fire
before we inline the function.
But it turns out that (especially when type-class specialisation or
SpecConstr is involved) it is very helpful for the the rewrite rule to
"win" over inlining when both are active at once: see #21851, #22097.
The simplifier arranges to do this, as follows. In effect, the ai_rewrite
field of the ArgInfo record is the state of a little state-machine:
* mkArgInfo sets the ai_rewrite field to TryRules if there are any rewrite
rules avaialable for that function.
* rebuildCall simplifies arguments until enough are simplified to match the
rule with greatest arity. See Note [RULES apply to simplified arguments]
and the first field of `TryRules`.
But no more! As soon as we have simplified enough arguments to satisfy the
maximum-arity rules, we try the rules; see Note [Trying rewrite rules].
* Once we have tried rules (or immediately if there are no rules) set
ai_rewrite to TryInlining, and the Simplifier will try to inline the
function. We want to try this immediately (before simplifying any (more)
arguments). Why? Consider
f BIG where f = \x{OneOcc}. ...x...
If we inline `f` before simplifying `BIG` well use preInlineUnconditionally,
and we'll simplify BIG once, at x's occurrence, rather than twice.
* GHC.Core.Opt.Simplify.Utils. mkRewriteCall: if there are no rules, and no
unfolding, we can skip both TryRules and TryInlining, which saves work.
Note [Avoid redundant simplification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because RULES apply to simplified arguments, there's a danger of repeatedly
simplifying already-simplified arguments. An important example is that of
(>>=) d e1 e2
Here e1, e2 are simplified before the rule is applied, but don't really
participate in the rule firing. So we mark them as Simplified to avoid
re-simplifying them.
Note [Shadowing]
~~~~~~~~~~~~~~~~
This part of the simplifier may break the no-shadowing invariant
Consider
f (...(\a -> e)...) (case y of (a,b) -> e')
where f is strict in its second arg
If we simplify the innermost one first we get (...(\a -> e)...)
Simplifying the second arg makes us float the case out, so we end up with
case y of (a,b) -> f (...(\a -> e)...) e'
So the output does not have the no-shadowing invariant. However, there is
no danger of getting name-capture, because when the first arg was simplified
we used an in-scope set that at least mentioned all the variables free in its
static environment, and that is enough.
We can't just do innermost first, or we'd end up with a dual problem:
case x of (a,b) -> f e (...(\a -> e')...)
I spent hours trying to recover the no-shadowing invariant, but I just could
not think of an elegant way to do it. The simplifier is already knee-deep in
continuations. We have to keep the right in-scope set around; AND we have
to get the effect that finding (error "foo") in a strict arg position will
discard the entire application and replace it with (error "foo"). Getting
all this at once is TOO HARD!
Note [No eta-expansion in runRW#]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we see `runRW# (\s. blah)` we must not attempt to eta-expand that
lambda. Why not? Because
* `blah` can mention join points bound outside the runRW#
* eta-expansion uses arityType, and
* `arityType` cannot cope with free join Ids:
So the simplifier spots the literal lambda, and simplifies inside it.
It's a very special lambda, because it is the one the OccAnal spots and
allows join points bound /outside/ to be called /inside/.
See Note [No free join points in arityType] in GHC.Core.Opt.Arity
************************************************************************
* *
Rewrite rules
* *
************************************************************************
-}
tryRules :: SimplEnv -> [CoreRule]
-> Id
-> [ArgSpec] -- In /normal, forward/ order
-> SimplCont
-> SimplM (Maybe (SimplEnv, CoreExpr, SimplCont))
tryRules env rules fn args call_cont
| null rules
= return Nothing
{- Disabled until we fix #8326
| fn `hasKey` tagToEnumKey -- See Note [Optimising tagToEnum#]
, [_type_arg, val_arg] <- args
, Select dup bndr ((_,[],rhs1) : rest_alts) se cont <- call_cont
, isDeadBinder bndr
= do { let enum_to_tag :: CoreAlt -> CoreAlt
-- Takes K -> e into tagK# -> e
-- where tagK# is the tag of constructor K
enum_to_tag (DataAlt con, [], rhs)
= assert (isEnumerationTyCon (dataConTyCon con) )
(LitAlt tag, [], rhs)
where
tag = mkLitInt (sePlatform env) (toInteger (dataConTag con - fIRST_TAG))
enum_to_tag alt = pprPanic "tryRules: tagToEnum" (ppr alt)
new_alts = (DEFAULT, [], rhs1) : map enum_to_tag rest_alts
new_bndr = setIdType bndr intPrimTy
-- The binder is dead, but should have the right type
; return (Just (val_arg, Select dup new_bndr new_alts se cont)) }
-}
| Just (rule, rule_rhs) <- lookupRule ropts (getUnfoldingInRuleMatch env)
(activeRule (seMode env)) fn
(argInfoAppArgs args) rules
-- Fire a rule for the function
= do { logger <- getLogger
; checkedTick (RuleFired (ruleName rule))
; let cont' = pushSimplifiedArgs zapped_env
(drop (ruleArity rule) args)
call_cont
-- (ruleArity rule) says how
-- many args the rule consumed
occ_anald_rhs = occurAnalyseExpr rule_rhs
-- See Note [Occurrence-analyse after rule firing]
; dump logger rule rule_rhs
; return (Just (zapped_env, occ_anald_rhs, cont')) }
-- The occ_anald_rhs and cont' are all Out things
-- hence zapping the environment
| otherwise -- No rule fires
= do { logger <- getLogger
; nodump logger -- This ensures that an empty file is written
; return Nothing }
where
ropts = seRuleOpts env
zapped_env = zapSubstEnv env -- See Note [zapSubstEnv]
printRuleModule rule
= parens (maybe (text "BUILTIN")
(pprModuleName . moduleName)
(ruleModule rule))
dump logger rule rule_rhs
| logHasDumpFlag logger Opt_D_dump_rule_rewrites
= log_rule Opt_D_dump_rule_rewrites "Rule fired" $ vcat
[ text "Rule:" <+> ftext (ruleName rule)
, text "Module:" <+> printRuleModule rule
, text "Before:" <+> hang (ppr fn) 2 (sep (map ppr args))
, text "After: " <+> hang (pprCoreExpr rule_rhs) 2
(sep $ map ppr $ drop (ruleArity rule) args)
, text "Cont: " <+> ppr call_cont ]
| logHasDumpFlag logger Opt_D_dump_rule_firings
= log_rule Opt_D_dump_rule_firings "Rule fired:" $
ftext (ruleName rule)
<+> printRuleModule rule
| otherwise
= return ()
nodump logger
| logHasDumpFlag logger Opt_D_dump_rule_rewrites
= liftIO $
touchDumpFile logger Opt_D_dump_rule_rewrites
| logHasDumpFlag logger Opt_D_dump_rule_firings
= liftIO $
touchDumpFile logger Opt_D_dump_rule_firings
| otherwise
= return ()
log_rule flag hdr details
= do
{ logger <- getLogger
; liftIO $ logDumpFile logger (mkDumpStyle alwaysQualify) flag "" FormatText
$ sep [text hdr, nest 4 details]
}
trySeqRules :: SimplEnv
-> OutExpr -> InExpr -- Scrutinee and RHS
-> SimplCont
-> SimplM (Maybe (SimplEnv, CoreExpr, SimplCont))
-- See Note [User-defined RULES for seq]
trySeqRules in_env scrut rhs cont
= do { rule_base <- getSimplRules
; tryRules in_env (getRules rule_base seqId) seqId out_args rule_cont }
where
no_cast_scrut = drop_casts scrut
scrut_ty = exprType no_cast_scrut
seq_id_ty = idType seqId -- forall r a (b::TYPE r). a -> b -> b
res1_ty = piResultTy seq_id_ty rhs_rep -- forall a (b::TYPE rhs_rep). a -> b -> b
res2_ty = piResultTy res1_ty scrut_ty -- forall (b::TYPE rhs_rep). scrut_ty -> b -> b
res3_ty = piResultTy res2_ty rhs_ty -- scrut_ty -> rhs_ty -> rhs_ty
res4_ty = funResultTy res3_ty -- rhs_ty -> rhs_ty
rhs_ty = substTy in_env (exprType rhs)
rhs_rep = getRuntimeRep rhs_ty
out_args = [ TyArg { as_arg_ty = rhs_rep
, as_hole_ty = seq_id_ty }
, TyArg { as_arg_ty = scrut_ty
, as_hole_ty = res1_ty }
, TyArg { as_arg_ty = rhs_ty
, as_hole_ty = res2_ty }
, ValArg { as_arg = no_cast_scrut
, as_dmd = seqDmd
, as_hole_ty = res3_ty } ]
rule_cont = ApplyToVal { sc_dup = NoDup, sc_arg = rhs
, sc_env = in_env, sc_cont = cont
, sc_hole_ty = res4_ty }
-- Lazily evaluated, so we don't do most of this
drop_casts (Cast e _) = drop_casts e
drop_casts e = e
{- Note [User-defined RULES for seq]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given
case (scrut |> co) of _ -> rhs
look for rules that match the expression
seq @t1 @t2 scrut
where scrut :: t1
rhs :: t2
If you find a match, rewrite it, and apply to 'rhs'.
Notice that we can simply drop casts on the fly here, which
makes it more likely that a rule will match.
See Note [User-defined RULES for seq] in GHC.Types.Id.Make.
Note [Occurrence-analyse after rule firing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After firing a rule, we occurrence-analyse the instantiated RHS before
simplifying it. Usually this doesn't make much difference, but it can
be huge. Here's an example (simplCore/should_compile/T7785)
map f (map f (map f xs)
= -- Use build/fold form of map, twice
map f (build (\cn. foldr (mapFB c f) n
(build (\cn. foldr (mapFB c f) n xs))))
= -- Apply fold/build rule
map f (build (\cn. (\cn. foldr (mapFB c f) n xs) (mapFB c f) n))
= -- Beta-reduce
-- Alas we have no occurrence-analysed, so we don't know
-- that c is used exactly once
map f (build (\cn. let c1 = mapFB c f in
foldr (mapFB c1 f) n xs))
= -- Use mapFB rule: mapFB (mapFB c f) g = mapFB c (f.g)
-- We can do this because (mapFB c n) is a PAP and hence expandable
map f (build (\cn. let c1 = mapFB c n in
foldr (mapFB c (f.f)) n x))
This is not too bad. But now do the same with the outer map, and
we get another use of mapFB, and t can interact with /both/ remaining
mapFB calls in the above expression. This is stupid because actually
that 'c1' binding is dead. The outer map introduces another c2. If
there is a deep stack of maps we get lots of dead bindings, and lots
of redundant work as we repeatedly simplify the result of firing rules.
The easy thing to do is simply to occurrence analyse the result of
the rule firing. Note that this occ-anals not only the RHS of the
rule, but also the function arguments, which by now are OutExprs.
E.g.
RULE f (g x) = x+1
Call f (g BIG) --> (\x. x+1) BIG
The rule binders are lambda-bound and applied to the OutExpr arguments
(here BIG) which lack all internal occurrence info.
Is this inefficient? Not really: we are about to walk over the result
of the rule firing to simplify it, so occurrence analysis is at most
a constant factor.
Note, however, that the rule RHS is /already/ occ-analysed; see
Note [OccInfo in unfoldings and rules] in GHC.Core. There is something
unsatisfactory about doing it twice; but the rule RHS is usually very
small, and this is simple.
Note [Optimising tagToEnum#]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have an enumeration data type:
data Foo = A | B | C
Then we want to transform
case tagToEnum# x of ==> case x of
A -> e1 DEFAULT -> e1
B -> e2 1# -> e2
C -> e3 2# -> e3
thereby getting rid of the tagToEnum# altogether. If there was a DEFAULT
alternative we retain it (remember it comes first). If not the case must
be exhaustive, and we reflect that in the transformed version by adding
a DEFAULT. Otherwise Lint complains that the new case is not exhaustive.
See #8317.
Note [Rules for recursive functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You might think that we shouldn't apply rules for a loop breaker:
doing so might give rise to an infinite loop, because a RULE is
rather like an extra equation for the function:
RULE: f (g x) y = x+y
Eqn: f a y = a-y
But it's too drastic to disable rules for loop breakers.
Even the foldr/build rule would be disabled, because foldr
is recursive, and hence a loop breaker:
foldr k z (build g) = g k z
So it's up to the programmer: rules can cause divergence
************************************************************************
* *
Rebuilding a case expression
* *
************************************************************************
Note [Case elimination]
~~~~~~~~~~~~~~~~~~~~~~~
The case-elimination transformation discards redundant case expressions.
Start with a simple situation:
case x# of ===> let y# = x# in e
y# -> e
(when x#, y# are of primitive type, of course). We can't (in general)
do this for algebraic cases, because we might turn bottom into
non-bottom!
The code in GHC.Core.Opt.Simplify.Utils.prepareAlts has the effect of generalise
this idea to look for a case where we're scrutinising a variable, and we know
that only the default case can match. For example:
case x of
0# -> ...
DEFAULT -> ...(case x of
0# -> ...
DEFAULT -> ...) ...
Here the inner case is first trimmed to have only one alternative, the
DEFAULT, after which it's an instance of the previous case. This
really only shows up in eliminating error-checking code.
Note that GHC.Core.Opt.Simplify.Utils.mkCase combines identical RHSs. So
case e of ===> case e of DEFAULT -> r
True -> r
False -> r
Now again the case may be eliminated by the CaseElim transformation.
This includes things like (==# a# b#)::Bool so that we simplify
case ==# a# b# of { True -> x; False -> x }
to just
x
This particular example shows up in default methods for
comparison operations (e.g. in (>=) for Int.Int32)
Note [Case to let transformation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If a case over a lifted type has a single alternative, and is being
used as a strict 'let' (all isDeadBinder bndrs), we may want to do
this transformation:
case e of r ===> let r = e in ...r...
_ -> ...r...
We treat the unlifted and lifted cases separately:
* Unlifted case: 'e' satisfies exprOkForSpeculation
(ok-for-spec is needed to satisfy the let-can-float invariant).
This turns case a +# b of r -> ...r...
into let r = a +# b in ...r...
and thence .....(a +# b)....
However, if we have
case indexArray# a i of r -> ...r...
we might like to do the same, and inline the (indexArray# a i).
But indexArray# is not okForSpeculation, so we don't build a let
in rebuildCase (lest it get floated *out*), so the inlining doesn't
happen either. Annoying.
* Lifted case: we need to be sure that the expression is already
evaluated (exprIsHNF). If it's not already evaluated
- we risk losing exceptions, divergence or
user-specified thunk-forcing
- even if 'e' is guaranteed to converge, we don't want to
create a thunk (call by need) instead of evaluating it
right away (call by value)
However, we can turn the case into a /strict/ let if the 'r' is
used strictly in the body. Then we won't lose divergence; and
we won't build a thunk because the let is strict.
See also Note [Case-to-let for strictly-used binders]
Note [Case-to-let for strictly-used binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have this:
case <scrut> of r { _ -> ..r.. }
where 'r' is used strictly in (..r..), we can safely transform to
let r = <scrut> in ...r...
This is a Good Thing, because 'r' might be dead (if the body just
calls error), or might be used just once (in which case it can be
inlined); or we might be able to float the let-binding up or down.
E.g. #15631 has an example.
Note that this can change the error behaviour. For example, we might
transform
case x of { _ -> error "bad" }
--> error "bad"
which is might be puzzling if 'x' currently lambda-bound, but later gets
let-bound to (error "good").
Nevertheless, the paper "A semantics for imprecise exceptions" allows
this transformation. If you want to fix the evaluation order, use
'pseq'. See #8900 for an example where the loss of this
transformation bit us in practice.
See also Note [Empty case alternatives] in GHC.Core.
Historical notes
There have been various earlier versions of this patch:
* By Sept 18 the code looked like this:
|| scrut_is_demanded_var scrut
scrut_is_demanded_var :: CoreExpr -> Bool
scrut_is_demanded_var (Cast s _) = scrut_is_demanded_var s
scrut_is_demanded_var (Var _) = isStrUsedDmd (idDemandInfo case_bndr)
scrut_is_demanded_var _ = False
This only fired if the scrutinee was a /variable/, which seems
an unnecessary restriction. So in #15631 I relaxed it to allow
arbitrary scrutinees. Less code, less to explain -- but the change
had 0.00% effect on nofib.
* Previously, in Jan 13 the code looked like this:
|| case_bndr_evald_next rhs
case_bndr_evald_next :: CoreExpr -> Bool
-- See Note [Case binder next]
case_bndr_evald_next (Var v) = v == case_bndr
case_bndr_evald_next (Cast e _) = case_bndr_evald_next e
case_bndr_evald_next (App e _) = case_bndr_evald_next e
case_bndr_evald_next (Case e _ _ _) = case_bndr_evald_next e
case_bndr_evald_next _ = False
This patch was part of fixing #7542. See also
Note [Eta reduction soundness], criterion (E) in GHC.Core.Utils.)
Further notes about case elimination
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider: test :: Integer -> IO ()
test = print
Turns out that this compiles to:
Print.test
= \ eta :: Integer
eta1 :: Void# ->
case PrelNum.< eta PrelNum.zeroInteger of wild { __DEFAULT ->
case hPutStr stdout
(PrelNum.jtos eta ($w[] @ Char))
eta1
of wild1 { (# new_s, a4 #) -> PrelIO.lvl23 new_s }}
Notice the strange '<' which has no effect at all. This is a funny one.
It started like this:
f x y = if x < 0 then jtos x
else if y==0 then "" else jtos x
At a particular call site we have (f v 1). So we inline to get
if v < 0 then jtos x
else if 1==0 then "" else jtos x
Now simplify the 1==0 conditional:
if v<0 then jtos v else jtos v
Now common-up the two branches of the case:
case (v<0) of DEFAULT -> jtos v
Why don't we drop the case? Because it's strict in v. It's technically
wrong to drop even unnecessary evaluations, and in practice they
may be a result of 'seq' so we *definitely* don't want to drop those.
I don't really know how to improve this situation.
Note [FloatBinds from constructor wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have FloatBinds coming from the constructor wrapper
(as in Note [exprIsConApp_maybe on data constructors with wrappers]),
we cannot float past them. We'd need to float the FloatBind
together with the simplify floats, unfortunately the
simplifier doesn't have case-floats. The simplest thing we can
do is to wrap all the floats here. The next iteration of the
simplifier will take care of all these cases and lets.
Given data T = MkT !Bool, this allows us to simplify
case $WMkT b of { MkT x -> f x }
to
case b of { b' -> f b' }.
We could try and be more clever (like maybe wfloats only contain
let binders, so we could float them). But the need for the
extra complication is not clear.
Note [Do not duplicate constructor applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this (#20125)
let x = (a,b)
in ...(case x of x' -> blah)...x...x...
We want that `case` to vanish (since `x` is bound to a data con) leaving
let x = (a,b)
in ...(let x'=x in blah)...x..x...
In rebuildCase, `exprIsConApp_maybe` will succeed on the scrutinee `x`,
since is bound to (a,b). But in eliminating the case, if the scrutinee
is trivial, we want to bind the case-binder to the scrutinee, /not/ to
the constructor application. Hence the case_bndr_rhs in rebuildCase.
This applies equally to a non-DEFAULT case alternative, say
let x = (a,b) in ...(case x of x' { (p,q) -> blah })...
This variant is handled by bind_case_bndr in knownCon.
We want to bind x' to x, and not to a duplicated (a,b)).
-}
---------------------------------------------------------
-- Eliminate the case if possible
rebuildCase, reallyRebuildCase
:: SimplEnv
-> OutExpr -- Scrutinee
-> InId -- Case binder
-> [InAlt] -- Alternatives (increasing order)
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
--------------------------------------------------
-- 1. Eliminate the case if there's a known constructor
--------------------------------------------------
rebuildCase env scrut case_bndr alts cont
| Lit lit <- scrut -- No need for same treatment as constructors
-- because literals are inlined more vigorously
, not (litIsLifted lit)
= do { tick (KnownBranch case_bndr)
; case findAlt (LitAlt lit) alts of
Nothing -> missingAlt env case_bndr alts cont
Just (Alt _ bs rhs) -> simple_rhs env [] scrut bs rhs }
| Just (in_scope', wfloats, con, ty_args, other_args)
<- exprIsConApp_maybe (getUnfoldingInRuleMatch env) scrut
-- Works when the scrutinee is a variable with a known unfolding
-- as well as when it's an explicit constructor application
, let env0 = setInScopeSet env in_scope'
= do { tick (KnownBranch case_bndr)
; let scaled_wfloats = map scale_float wfloats
-- case_bndr_unf: see Note [Do not duplicate constructor applications]
case_bndr_rhs | exprIsTrivial scrut = scrut
| otherwise = con_app
con_app = Var (dataConWorkId con) `mkTyApps` ty_args
`mkApps` other_args
; case findAlt (DataAlt con) alts of
Nothing -> missingAlt env0 case_bndr alts cont
Just (Alt DEFAULT bs rhs) -> simple_rhs env0 scaled_wfloats case_bndr_rhs bs rhs
Just (Alt _ bs rhs) -> knownCon env0 scrut scaled_wfloats con ty_args
other_args case_bndr bs rhs cont
}
where
simple_rhs env wfloats case_bndr_rhs bs rhs =
assert (null bs) $
do { (floats1, env') <- simplAuxBind env case_bndr case_bndr_rhs
-- scrut is a constructor application,
-- hence satisfies let-can-float invariant
; (floats2, expr') <- simplExprF env' rhs cont
; case wfloats of
[] -> return (floats1 `addFloats` floats2, expr')
_ -> return
-- See Note [FloatBinds from constructor wrappers]
( emptyFloats env,
GHC.Core.Make.wrapFloats wfloats $
wrapFloats (floats1 `addFloats` floats2) expr' )}
-- This scales case floats by the multiplicity of the continuation hole (see
-- Note [Scaling in case-of-case]). Let floats are _not_ scaled, because
-- they are aliases anyway.
scale_float (GHC.Core.Make.FloatCase scrut case_bndr con vars) =
let
scale_id id = scaleVarBy holeScaling id
in
GHC.Core.Make.FloatCase scrut (scale_id case_bndr) con (map scale_id vars)
scale_float f = f
holeScaling = contHoleScaling cont `mkMultMul` idMult case_bndr
-- We are in the following situation
-- case[p] case[q] u of { D x -> C v } of { C x -> w }
-- And we are producing case[??] u of { D x -> w[x\v]}
--
-- What should the multiplicity `??` be? In order to preserve the usage of
-- variables in `u`, it needs to be `pq`.
--
-- As an illustration, consider the following
-- case[Many] case[1] of { C x -> C x } of { C x -> (x, x) }
-- Where C :: A %1 -> T is linear
-- If we were to produce a case[1], like the inner case, we would get
-- case[1] of { C x -> (x, x) }
-- Which is ill-typed with respect to linearity. So it needs to be a
-- case[Many].
--------------------------------------------------
-- 2. Eliminate the case if scrutinee is evaluated
--------------------------------------------------
rebuildCase env scrut case_bndr alts@[Alt _ bndrs rhs] cont
-- See if we can get rid of the case altogether
-- See Note [Case elimination]
-- mkCase made sure that if all the alternatives are equal,
-- then there is now only one (DEFAULT) rhs
-- 2a. Dropping the case altogether, if
-- a) it binds nothing (so it's really just a 'seq')
-- b) evaluating the scrutinee has no side effects
| is_plain_seq
, exprOkForSideEffects scrut
-- The entire case is dead, so we can drop it
-- if the scrutinee converges without having imperative
-- side effects or raising a Haskell exception
-- See Note [PrimOp can_fail and has_side_effects] in GHC.Builtin.PrimOps
= simplExprF env rhs cont
-- 2b. Turn the case into a let, if
-- a) it binds only the case-binder
-- b) unlifted case: the scrutinee is ok-for-speculation
-- lifted case: the scrutinee is in HNF (or will later be demanded)
-- See Note [Case to let transformation]
| all_dead_bndrs
, doCaseToLet scrut case_bndr
= do { tick (CaseElim case_bndr)
; (floats1, env') <- simplAuxBind env case_bndr scrut
; (floats2, expr') <- simplExprF env' rhs cont
; return (floats1 `addFloats` floats2, expr') }
-- 2c. Try the seq rules if
-- a) it binds only the case binder
-- b) a rule for seq applies
-- See Note [User-defined RULES for seq] in GHC.Types.Id.Make
| is_plain_seq
= do { mb_rule <- trySeqRules env scrut rhs cont
; case mb_rule of
Just (env', rule_rhs, cont') -> simplExprF env' rule_rhs cont'
Nothing -> reallyRebuildCase env scrut case_bndr alts cont }
where
all_dead_bndrs = all isDeadBinder bndrs -- bndrs are [InId]
is_plain_seq = all_dead_bndrs && isDeadBinder case_bndr -- Evaluation *only* for effect
rebuildCase env scrut case_bndr alts cont
= reallyRebuildCase env scrut case_bndr alts cont
doCaseToLet :: OutExpr -- Scrutinee
-> InId -- Case binder
-> Bool
-- The situation is case scrut of b { DEFAULT -> body }
-- Can we transform thus? let { b = scrut } in body
doCaseToLet scrut case_bndr
| isTyCoVar case_bndr -- Respect GHC.Core
= isTyCoArg scrut -- Note [Core type and coercion invariant]
| isUnliftedType (exprType scrut)
-- We can call isUnliftedType here: scrutinees always have a fixed RuntimeRep (see FRRCase).
-- Note however that we must check 'scrut' (which is an 'OutExpr') and not 'case_bndr'
-- (which is an 'InId'): see Note [Dark corner with representation polymorphism].
-- Using `exprType` is typically cheap because `scrut` is typically a variable.
-- We could instead use mightBeUnliftedType (idType case_bndr), but that hurts
-- the brain more. Consider that if this test ever turns out to be a perf
-- problem (which seems unlikely).
= exprOkForSpeculation scrut
| otherwise -- Scrut has a lifted type
= exprIsHNF scrut
|| isStrUsedDmd (idDemandInfo case_bndr)
-- See Note [Case-to-let for strictly-used binders]
--------------------------------------------------
-- 3. Catch-all case
--------------------------------------------------
reallyRebuildCase env scrut case_bndr alts cont
| not (seCaseCase env)
= do { case_expr <- simplAlts env scrut case_bndr alts
(mkBoringStop (contHoleType cont))
; rebuild env case_expr cont }
| otherwise
= do { (floats, env', cont') <- mkDupableCaseCont env alts cont
; case_expr <- simplAlts env' scrut
(scaleIdBy holeScaling case_bndr)
(scaleAltsBy holeScaling alts)
cont'
; return (floats, case_expr) }
where
holeScaling = contHoleScaling cont
-- Note [Scaling in case-of-case]
{-
simplCaseBinder checks whether the scrutinee is a variable, v. If so,
try to eliminate uses of v in the RHSs in favour of case_bndr; that
way, there's a chance that v will now only be used once, and hence
inlined.
Historical note: we use to do the "case binder swap" in the Simplifier
so there were additional complications if the scrutinee was a variable.
Now the binder-swap stuff is done in the occurrence analyser; see
"GHC.Core.Opt.OccurAnal" Note [Binder swap].
Note [knownCon occ info]
~~~~~~~~~~~~~~~~~~~~~~~~
If the case binder is not dead, then neither are the pattern bound
variables:
case <any> of x { (a,b) ->
case x of { (p,q) -> p } }
Here (a,b) both look dead, but come alive after the inner case is eliminated.
The point is that we bring into the envt a binding
let x = (a,b)
after the outer case, and that makes (a,b) alive. At least we do unless
the case binder is guaranteed dead.
Note [Case alternative occ info]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we are simply reconstructing a case (the common case), we always
zap the occurrence info on the binders in the alternatives. Even
if the case binder is dead, the scrutinee is usually a variable, and *that*
can bring the case-alternative binders back to life.
See Note [Add unfolding for scrutinee]
Note [Improving seq]
~~~~~~~~~~~~~~~~~~~
Consider
type family F :: * -> *
type instance F Int = Int
We'd like to transform
case e of (x :: F Int) { DEFAULT -> rhs }
===>
case e `cast` co of (x'::Int)
I# x# -> let x = x' `cast` sym co
in rhs
so that 'rhs' can take advantage of the form of x'. Notice that Note
[Case of cast] (in OccurAnal) may then apply to the result.
We'd also like to eliminate empty types (#13468). So if
data Void
type instance F Bool = Void
then we'd like to transform
case (x :: F Bool) of { _ -> error "urk" }
===>
case (x |> co) of (x' :: Void) of {}
Nota Bene: we used to have a built-in rule for 'seq' that dropped
casts, so that
case (x |> co) of { _ -> blah }
dropped the cast; in order to improve the chances of trySeqRules
firing. But that works in the /opposite/ direction to Note [Improving
seq] so there's a danger of flip/flopping. Better to make trySeqRules
insensitive to the cast, which is now is.
The need for [Improving seq] showed up in Roman's experiments. Example:
foo :: F Int -> Int -> Int
foo t n = t `seq` bar n
where
bar 0 = 0
bar n = bar (n - case t of TI i -> i)
Here we'd like to avoid repeated evaluating t inside the loop, by
taking advantage of the `seq`.
At one point I did transformation in LiberateCase, but it's more
robust here. (Otherwise, there's a danger that we'll simply drop the
'seq' altogether, before LiberateCase gets to see it.)
Note [Scaling in case-of-case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When two cases commute, if done naively, the multiplicities will be wrong:
case (case u of w[1] { (x[1], y[1]) } -> f x y) of w'[Many]
{ (z[Many], t[Many]) -> z
}
The multiplicities here, are correct, but if I perform a case of case:
case u of w[1]
{ (x[1], y[1]) -> case f x y of w'[Many] of { (z[Many], t[Many]) -> z }
}
This is wrong! Using `f x y` inside a `case … of w'[Many]` means that `x` and
`y` must have multiplicities `Many` not `1`! The correct solution is to make
all the `1`-s be `Many`-s instead:
case u of w[Many]
{ (x[Many], y[Many]) -> case f x y of w'[Many] of { (z[Many], t[Many]) -> z }
}
In general, when commuting two cases, the rule has to be:
case (case … of x[p] {…}) of y[q] { … }
===> case … of x[p*q] { … case … of y[q] { … } }
This is materialised, in the simplifier, by the fact that every time we simplify
case alternatives with a continuation (the surrounded case (or more!)), we must
scale the entire case we are simplifying, by a scaling factor which can be
computed in the continuation (with function `contHoleScaling`).
-}
simplAlts :: SimplEnv
-> OutExpr -- Scrutinee
-> InId -- Case binder
-> [InAlt] -- Non-empty
-> SimplCont
-> SimplM OutExpr -- Returns the complete simplified case expression
simplAlts env0 scrut case_bndr alts cont'
= do { traceSmpl "simplAlts" (vcat [ ppr case_bndr
, text "cont':" <+> ppr cont'
, text "in_scope" <+> ppr (seInScope env0) ])
; (env1, case_bndr1) <- simplBinder env0 case_bndr
; let case_bndr2 = case_bndr1 `setIdUnfolding` evaldUnfolding
env2 = modifyInScope env1 case_bndr2
-- See Note [Case binder evaluated-ness]
fam_envs = seFamEnvs env0
; (alt_env', scrut', case_bndr') <- improveSeq fam_envs env2 scrut
case_bndr case_bndr2 alts
; (imposs_deflt_cons, in_alts) <- prepareAlts scrut' case_bndr alts
-- NB: it's possible that the returned in_alts is empty: this is handled
-- by the caller (rebuildCase) in the missingAlt function
-- NB: pass case_bndr::InId, not case_bndr' :: OutId, to prepareAlts
-- See Note [Shadowing in prepareAlts] in GHC.Core.Opt.Simplify.Utils
; alts' <- mapM (simplAlt alt_env' (Just scrut') imposs_deflt_cons case_bndr' cont') in_alts
-- ; pprTrace "simplAlts" (ppr case_bndr $$ ppr alts $$ ppr cont') $ return ()
; let alts_ty' = contResultType cont'
-- See Note [Avoiding space leaks in OutType]
; seqType alts_ty' `seq`
mkCase (seMode env0) scrut' case_bndr' alts_ty' alts' }
------------------------------------
improveSeq :: (FamInstEnv, FamInstEnv) -> SimplEnv
-> OutExpr -> InId -> OutId -> [InAlt]
-> SimplM (SimplEnv, OutExpr, OutId)
-- Note [Improving seq]
improveSeq fam_envs env scrut case_bndr case_bndr1 [Alt DEFAULT _ _]
| Just (Reduction co ty2) <- topNormaliseType_maybe fam_envs (idType case_bndr1)
= do { case_bndr2 <- newId (fsLit "nt") ManyTy ty2
; let rhs = DoneEx (Var case_bndr2 `Cast` mkSymCo co) Nothing
env2 = extendIdSubst env case_bndr rhs
; return (env2, scrut `Cast` co, case_bndr2) }
improveSeq _ env scrut _ case_bndr1 _
= return (env, scrut, case_bndr1)
------------------------------------
simplAlt :: SimplEnv
-> Maybe OutExpr -- The scrutinee
-> [AltCon] -- These constructors can't be present when
-- matching the DEFAULT alternative
-> OutId -- The case binder
-> SimplCont
-> InAlt
-> SimplM OutAlt
simplAlt env _ imposs_deflt_cons case_bndr' cont' (Alt DEFAULT bndrs rhs)
= assert (null bndrs) $
do { let env' = addBinderUnfolding env case_bndr'
(mkOtherCon imposs_deflt_cons)
-- Record the constructors that the case-binder *can't* be.
; rhs' <- simplExprC env' rhs cont'
; return (Alt DEFAULT [] rhs') }
simplAlt env scrut' _ case_bndr' cont' (Alt (LitAlt lit) bndrs rhs)
= assert (null bndrs) $
do { env' <- addAltUnfoldings env scrut' case_bndr' (Lit lit)
; rhs' <- simplExprC env' rhs cont'
; return (Alt (LitAlt lit) [] rhs') }
simplAlt env scrut' _ case_bndr' cont' (Alt (DataAlt con) vs rhs)
= do { -- See Note [Adding evaluatedness info to pattern-bound variables]
let vs_with_evals = addEvals scrut' con vs
; (env', vs') <- simplBinders env vs_with_evals
-- Bind the case-binder to (con args)
; let inst_tys' = tyConAppArgs (idType case_bndr')
con_app :: OutExpr
con_app = mkConApp2 con inst_tys' vs'
; env'' <- addAltUnfoldings env' scrut' case_bndr' con_app
; rhs' <- simplExprC env'' rhs cont'
; return (Alt (DataAlt con) vs' rhs') }
{- Note [Adding evaluatedness info to pattern-bound variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
addEvals records the evaluated-ness of the bound variables of
a case pattern. This is *important*. Consider
data T = T !Int !Int
case x of { T a b -> T (a+1) b }
We really must record that b is already evaluated so that we don't
go and re-evaluate it when constructing the result.
See Note [Data-con worker strictness] in GHC.Core.DataCon
NB: simplLamBndrs preserves this eval info
In addition to handling data constructor fields with !s, addEvals
also records the fact that the result of seq# is always in WHNF.
See Note [seq# magic] in GHC.Core.Opt.ConstantFold. Example (#15226):
case seq# v s of
(# s', v' #) -> E
we want the compiler to be aware that v' is in WHNF in E.
Open problem: we don't record that v itself is in WHNF (and we can't
do it here). The right thing is to do some kind of binder-swap;
see #15226 for discussion.
-}
addEvals :: Maybe OutExpr -> DataCon -> [Id] -> [Id]
-- See Note [Adding evaluatedness info to pattern-bound variables]
addEvals scrut con vs
-- Deal with seq# applications
| Just scr <- scrut
, isUnboxedTupleDataCon con
, [s,x] <- vs
-- Use stripNArgs rather than collectArgsTicks to avoid building
-- a list of arguments only to throw it away immediately.
, Just (Var f) <- stripNArgs 4 scr
, Just SeqOp <- isPrimOpId_maybe f
, let x' = zapIdOccInfoAndSetEvald MarkedStrict x
= [s, x']
-- Deal with banged datacon fields
addEvals _scrut con vs = go vs the_strs
where
the_strs = dataConRepStrictness con
go [] [] = []
go (v:vs') strs | isTyVar v = v : go vs' strs
go (v:vs') (str:strs) = zapIdOccInfoAndSetEvald str v : go vs' strs
go _ _ = pprPanic "Simplify.addEvals"
(ppr con $$
ppr vs $$
ppr_with_length (map strdisp the_strs) $$
ppr_with_length (dataConRepArgTys con) $$
ppr_with_length (dataConRepStrictness con))
where
ppr_with_length list
= ppr list <+> parens (text "length =" <+> ppr (length list))
strdisp :: StrictnessMark -> SDoc
strdisp MarkedStrict = text "MarkedStrict"
strdisp NotMarkedStrict = text "NotMarkedStrict"
zapIdOccInfoAndSetEvald :: StrictnessMark -> Id -> Id
zapIdOccInfoAndSetEvald str v =
setCaseBndrEvald str $ -- Add eval'dness info
zapIdOccInfo v -- And kill occ info;
-- see Note [Case alternative occ info]
addAltUnfoldings :: SimplEnv -> Maybe OutExpr -> OutId -> OutExpr -> SimplM SimplEnv
addAltUnfoldings env mb_scrut case_bndr con_app
= do { let con_app_unf = mk_simple_unf con_app
env1 = addBinderUnfolding env case_bndr con_app_unf
-- See Note [Add unfolding for scrutinee]
env2 | Just scrut <- mb_scrut
, Just (v,mco) <- scrutBinderSwap_maybe scrut
= addBinderUnfolding env1 v $
if isReflMCo mco -- isReflMCo: avoid calling mk_simple_unf
then con_app_unf -- twice in the common case
else mk_simple_unf (mkCastMCo con_app mco)
| otherwise = env1
; traceSmpl "addAltUnf" (vcat [ppr case_bndr <+> ppr mb_scrut, ppr con_app])
; return env2 }
where
-- Force the opts, so that the whole SimplEnv isn't retained
!opts = seUnfoldingOpts env
mk_simple_unf = mkSimpleUnfolding opts
addBinderUnfolding :: SimplEnv -> Id -> Unfolding -> SimplEnv
addBinderUnfolding env bndr unf
| debugIsOn, Just tmpl <- maybeUnfoldingTemplate unf
= warnPprTrace (not (eqType (idType bndr) (exprType tmpl)))
"unfolding type mismatch"
(ppr bndr $$ ppr (idType bndr) $$ ppr tmpl $$ ppr (exprType tmpl)) $
modifyInScope env (bndr `setIdUnfolding` unf)
| otherwise
= modifyInScope env (bndr `setIdUnfolding` unf)
zapBndrOccInfo :: Bool -> Id -> Id
-- Consider case e of b { (a,b) -> ... }
-- Then if we bind b to (a,b) in "...", and b is not dead,
-- then we must zap the deadness info on a,b
zapBndrOccInfo keep_occ_info pat_id
| keep_occ_info = pat_id
| otherwise = zapIdOccInfo pat_id
{- Note [Case binder evaluated-ness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We pin on a (OtherCon []) unfolding to the case-binder of a Case,
even though it'll be over-ridden in every case alternative with a more
informative unfolding. Why? Because suppose a later, less clever, pass
simply replaces all occurrences of the case binder with the binder itself;
then Lint may complain about the let-can-float invariant. Example
case e of b { DEFAULT -> let v = reallyUnsafePtrEquality# b y in ....
; K -> blah }
The let-can-float invariant requires that y is evaluated in the call to
reallyUnsafePtrEquality#, which it is. But we still want that to be true if we
propagate binders to occurrences.
This showed up in #13027.
Note [Add unfolding for scrutinee]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general it's unlikely that a variable scrutinee will appear
in the case alternatives case x of { ...x unlikely to appear... }
because the binder-swap in OccurAnal has got rid of all such occurrences
See Note [Binder swap] in "GHC.Core.Opt.OccurAnal".
BUT it is still VERY IMPORTANT to add a suitable unfolding for a
variable scrutinee, in simplAlt. Here's why
case x of y
(a,b) -> case b of c
I# v -> ...(f y)...
There is no occurrence of 'b' in the (...(f y)...). But y gets
the unfolding (a,b), and *that* mentions b. If f has a RULE
RULE f (p, I# q) = ...
we want that rule to match, so we must extend the in-scope env with a
suitable unfolding for 'y'. It's *essential* for rule matching; but
it's also good for case-elimination -- suppose that 'f' was inlined
and did multi-level case analysis, then we'd solve it in one
simplifier sweep instead of two.
HOWEVER, given
case x of y { Just a -> r1; Nothing -> r2 }
we do not want to add the unfolding x -> y to 'x', which might seem cool,
since 'y' itself has different unfoldings in r1 and r2. Reason: if we
did that, we'd have to zap y's deadness info and that is a very useful
piece of information.
So instead we add the unfolding x -> Just a, and x -> Nothing in the
respective RHSs.
Since this transformation is tantamount to a binder swap, we use
GHC.Core.Opt.OccurAnal.scrutBinderSwap_maybe to do the check.
Exactly the same issue arises in GHC.Core.Opt.SpecConstr;
see Note [Add scrutinee to ValueEnv too] in GHC.Core.Opt.SpecConstr
************************************************************************
* *
\subsection{Known constructor}
* *
************************************************************************
We are a bit careful with occurrence info. Here's an example
(\x* -> case x of (a*, b) -> f a) (h v, e)
where the * means "occurs once". This effectively becomes
case (h v, e) of (a*, b) -> f a)
and then
let a* = h v; b = e in f a
and then
f (h v)
All this should happen in one sweep.
-}
knownCon :: SimplEnv
-> OutExpr -- The scrutinee
-> [FloatBind] -> DataCon -> [OutType] -> [OutExpr] -- The scrutinee (in pieces)
-> InId -> [InBndr] -> InExpr -- The alternative
-> SimplCont
-> SimplM (SimplFloats, OutExpr)
knownCon env scrut dc_floats dc dc_ty_args dc_args bndr bs rhs cont
= do { (floats1, env1) <- bind_args env bs dc_args
; (floats2, env2) <- bind_case_bndr env1
; (floats3, expr') <- simplExprF env2 rhs cont
; case dc_floats of
[] ->
return (floats1 `addFloats` floats2 `addFloats` floats3, expr')
_ ->
return ( emptyFloats env
-- See Note [FloatBinds from constructor wrappers]
, GHC.Core.Make.wrapFloats dc_floats $
wrapFloats (floats1 `addFloats` floats2 `addFloats` floats3) expr') }
where
zap_occ = zapBndrOccInfo (isDeadBinder bndr) -- bndr is an InId
-- Ugh!
bind_args env' [] _ = return (emptyFloats env', env')
bind_args env' (b:bs') (Type ty : args)
= assert (isTyVar b )
bind_args (extendTvSubst env' b ty) bs' args
bind_args env' (b:bs') (Coercion co : args)
= assert (isCoVar b )
bind_args (extendCvSubst env' b co) bs' args
bind_args env' (b:bs') (arg : args)
= assert (isId b) $
do { let b' = zap_occ b
-- zap_occ: the binder might be "dead", because it doesn't
-- occur in the RHS; and simplAuxBind may therefore discard it.
-- Nevertheless we must keep it if the case-binder is alive,
-- because it may be used in the con_app. See Note [knownCon occ info]
; (floats1, env2) <- simplAuxBind env' b' arg -- arg satisfies let-can-float invariant
; (floats2, env3) <- bind_args env2 bs' args
; return (floats1 `addFloats` floats2, env3) }
bind_args _ _ _ =
pprPanic "bind_args" $ ppr dc $$ ppr bs $$ ppr dc_args $$
text "scrut:" <+> ppr scrut
-- It's useful to bind bndr to scrut, rather than to a fresh
-- binding x = Con arg1 .. argn
-- because very often the scrut is a variable, so we avoid
-- creating, and then subsequently eliminating, a let-binding
-- BUT, if scrut is a not a variable, we must be careful
-- about duplicating the arg redexes; in that case, make
-- a new con-app from the args
bind_case_bndr env
| isDeadBinder bndr = return (emptyFloats env, env)
| exprIsTrivial scrut = return (emptyFloats env
, extendIdSubst env bndr (DoneEx scrut Nothing))
-- See Note [Do not duplicate constructor applications]
| otherwise = do { dc_args <- mapM (simplVar env) bs
-- dc_ty_args are already OutTypes,
-- but bs are InBndrs
; let con_app = Var (dataConWorkId dc)
`mkTyApps` dc_ty_args
`mkApps` dc_args
; simplAuxBind env bndr con_app }
-------------------
missingAlt :: SimplEnv -> Id -> [InAlt] -> SimplCont
-> SimplM (SimplFloats, OutExpr)
-- This isn't strictly an error, although it is unusual.
-- It's possible that the simplifier might "see" that
-- an inner case has no accessible alternatives before
-- it "sees" that the entire branch of an outer case is
-- inaccessible. So we simply put an error case here instead.
missingAlt env case_bndr _ cont
= warnPprTrace True "missingAlt" (ppr case_bndr) $
-- See Note [Avoiding space leaks in OutType]
let cont_ty = contResultType cont
in seqType cont_ty `seq`
return (emptyFloats env, mkImpossibleExpr cont_ty "Simplify.Iteration.missingAlt")
{-
************************************************************************
* *
\subsection{Duplicating continuations}
* *
************************************************************************
Consider
let x* = case e of { True -> e1; False -> e2 }
in b
where x* is a strict binding. Then mkDupableCont will be given
the continuation
case [] of { True -> e1; False -> e2 } ; let x* = [] in b ; stop
and will split it into
dupable: case [] of { True -> $j1; False -> $j2 } ; stop
join floats: $j1 = e1, $j2 = e2
non_dupable: let x* = [] in b; stop
Putting this back together would give
let x* = let { $j1 = e1; $j2 = e2 } in
case e of { True -> $j1; False -> $j2 }
in b
(Of course we only do this if 'e' wants to duplicate that continuation.)
Note how important it is that the new join points wrap around the
inner expression, and not around the whole thing.
In contrast, any let-bindings introduced by mkDupableCont can wrap
around the entire thing.
Note [Bottom alternatives]
~~~~~~~~~~~~~~~~~~~~~~~~~~
When we have
case (case x of { A -> error .. ; B -> e; C -> error ..)
of alts
then we can just duplicate those alts because the A and C cases
will disappear immediately. This is more direct than creating
join points and inlining them away. See #4930.
-}
--------------------
mkDupableCaseCont :: SimplEnv -> [InAlt] -> SimplCont
-> SimplM ( SimplFloats -- Join points (if any)
, SimplEnv -- Use this for the alts
, SimplCont)
mkDupableCaseCont env alts cont
| altsWouldDup alts = do { (floats, cont) <- mkDupableCont env cont
; let env' = bumpCaseDepth $
env `setInScopeFromF` floats
; return (floats, env', cont) }
| otherwise = return (emptyFloats env, env, cont)
altsWouldDup :: [InAlt] -> Bool -- True iff strictly > 1 non-bottom alternative
altsWouldDup [] = False -- See Note [Bottom alternatives]
altsWouldDup [_] = False
altsWouldDup (alt:alts)
| is_bot_alt alt = altsWouldDup alts
| otherwise = not (all is_bot_alt alts)
-- otherwise case: first alt is non-bot, so all the rest must be bot
where
is_bot_alt (Alt _ _ rhs) = exprIsDeadEnd rhs
-------------------------
mkDupableCont :: SimplEnv
-> SimplCont
-> SimplM ( SimplFloats -- Incoming SimplEnv augmented with
-- extra let/join-floats and in-scope variables
, SimplCont) -- dup_cont: duplicable continuation
mkDupableCont env cont
= mkDupableContWithDmds env (repeat topDmd) cont
mkDupableContWithDmds
:: SimplEnv -> [Demand] -- Demands on arguments; always infinite
-> SimplCont -> SimplM ( SimplFloats, SimplCont)
mkDupableContWithDmds env _ cont
| contIsDupable cont
= return (emptyFloats env, cont)
mkDupableContWithDmds _ _ (Stop {}) = panic "mkDupableCont" -- Handled by previous eqn
mkDupableContWithDmds env dmds (CastIt ty cont)
= do { (floats, cont') <- mkDupableContWithDmds env dmds cont
; return (floats, CastIt ty cont') }
-- Duplicating ticks for now, not sure if this is good or not
mkDupableContWithDmds env dmds (TickIt t cont)
= do { (floats, cont') <- mkDupableContWithDmds env dmds cont
; return (floats, TickIt t cont') }
mkDupableContWithDmds env _
(StrictBind { sc_bndr = bndr, sc_body = body, sc_from = from_what
, sc_env = se, sc_cont = cont})
-- See Note [Duplicating StrictBind]
-- K[ let x = <> in b ] --> join j x = K[ b ]
-- j <>
= do { let sb_env = se `setInScopeFromE` env
; (sb_env1, bndr') <- simplBinder sb_env bndr
; (floats1, join_inner) <- simplNonRecBody sb_env1 from_what body cont
-- No need to use mkDupableCont before simplNonRecBody; we
-- use cont once here, and then share the result if necessary
; let join_body = wrapFloats floats1 join_inner
res_ty = contResultType cont
; mkDupableStrictBind env bndr' join_body res_ty }
mkDupableContWithDmds env _
(StrictArg { sc_fun = fun, sc_cont = cont
, sc_fun_ty = fun_ty })
-- NB: sc_dup /= OkToDup; that is caught earlier by contIsDupable
| isNothing (isDataConId_maybe (ai_fun fun))
, thumbsUpPlanA cont -- See point (3) of Note [Duplicating join points]
= -- Use Plan A of Note [Duplicating StrictArg]
do { let (_ : dmds) = ai_dmds fun
; (floats1, cont') <- mkDupableContWithDmds env dmds cont
-- Use the demands from the function to add the right
-- demand info on any bindings we make for further args
; (floats_s, args') <- mapAndUnzipM (makeTrivialArg env)
(ai_args fun)
; return ( foldl' addLetFloats floats1 floats_s
, StrictArg { sc_fun = fun { ai_args = args' }
, sc_cont = cont'
, sc_fun_ty = fun_ty
, sc_dup = OkToDup} ) }
| otherwise
= -- Use Plan B of Note [Duplicating StrictArg]
-- K[ f a b <> ] --> join j x = K[ f a b x ]
-- j <>
do { let rhs_ty = contResultType cont
(m,arg_ty,_) = splitFunTy fun_ty
; arg_bndr <- newId (fsLit "arg") m arg_ty
; let env' = env `addNewInScopeIds` [arg_bndr]
; (floats, join_rhs) <- rebuildCall env' (addValArgTo fun (Var arg_bndr) fun_ty) cont
; mkDupableStrictBind env' arg_bndr (wrapFloats floats join_rhs) rhs_ty }
where
thumbsUpPlanA (StrictArg {}) = False
thumbsUpPlanA (CastIt _ k) = thumbsUpPlanA k
thumbsUpPlanA (TickIt _ k) = thumbsUpPlanA k
thumbsUpPlanA (ApplyToVal { sc_cont = k }) = thumbsUpPlanA k
thumbsUpPlanA (ApplyToTy { sc_cont = k }) = thumbsUpPlanA k
thumbsUpPlanA (Select {}) = True
thumbsUpPlanA (StrictBind {}) = True
thumbsUpPlanA (Stop {}) = True
mkDupableContWithDmds env dmds
(ApplyToTy { sc_cont = cont, sc_arg_ty = arg_ty, sc_hole_ty = hole_ty })
= do { (floats, cont') <- mkDupableContWithDmds env dmds cont
; return (floats, ApplyToTy { sc_cont = cont'
, sc_arg_ty = arg_ty, sc_hole_ty = hole_ty }) }
mkDupableContWithDmds env dmds
(ApplyToVal { sc_arg = arg, sc_dup = dup, sc_env = se
, sc_cont = cont, sc_hole_ty = hole_ty })
= -- e.g. [...hole...] (...arg...)
-- ==>
-- let a = ...arg...
-- in [...hole...] a
-- NB: sc_dup /= OkToDup; that is caught earlier by contIsDupable
do { let (dmd:cont_dmds) = dmds -- Never fails
; (floats1, cont') <- mkDupableContWithDmds env cont_dmds cont
; let env' = env `setInScopeFromF` floats1
; (_, se', arg') <- simplArg env' dup hole_ty se arg
; (let_floats2, arg'') <- makeTrivial env NotTopLevel dmd (fsLit "karg") arg'
; let all_floats = floats1 `addLetFloats` let_floats2
; return ( all_floats
, ApplyToVal { sc_arg = arg''
, sc_env = se' `setInScopeFromF` all_floats
-- Ensure that sc_env includes the free vars of
-- arg'' in its in-scope set, even if makeTrivial
-- has turned arg'' into a fresh variable
-- See Note [StaticEnv invariant] in GHC.Core.Opt.Simplify.Utils
, sc_dup = OkToDup, sc_cont = cont'
, sc_hole_ty = hole_ty }) }
mkDupableContWithDmds env _
(Select { sc_bndr = case_bndr, sc_alts = alts, sc_env = se, sc_cont = cont })
= -- e.g. (case [...hole...] of { pi -> ei })
-- ===>
-- let ji = \xij -> ei
-- in case [...hole...] of { pi -> ji xij }
-- NB: sc_dup /= OkToDup; that is caught earlier by contIsDupable
do { tick (CaseOfCase case_bndr)
; (floats, alt_env, alt_cont) <- mkDupableCaseCont (se `setInScopeFromE` env) alts cont
-- NB: We call mkDupableCaseCont here to make cont duplicable
-- (if necessary, depending on the number of alts)
-- And this is important: see Note [Fusing case continuations]
; let cont_scaling = contHoleScaling cont
-- See Note [Scaling in case-of-case]
; (alt_env', case_bndr') <- simplBinder alt_env (scaleIdBy cont_scaling case_bndr)
; alts' <- mapM (simplAlt alt_env' Nothing [] case_bndr' alt_cont) (scaleAltsBy cont_scaling alts)
-- Safe to say that there are no handled-cons for the DEFAULT case
-- NB: simplBinder does not zap deadness occ-info, so
-- a dead case_bndr' will still advertise its deadness
-- This is really important because in
-- case e of b { (# p,q #) -> ... }
-- b is always dead, and indeed we are not allowed to bind b to (# p,q #),
-- which might happen if e was an explicit unboxed pair and b wasn't marked dead.
-- In the new alts we build, we have the new case binder, so it must retain
-- its deadness.
-- NB: we don't use alt_env further; it has the substEnv for
-- the alternatives, and we don't want that
; let platform = sePlatform env
; (join_floats, alts'') <- mapAccumLM (mkDupableAlt platform case_bndr')
emptyJoinFloats alts'
; let all_floats = floats `addJoinFloats` join_floats
-- Note [Duplicated env]
; return (all_floats
, Select { sc_dup = OkToDup
, sc_bndr = case_bndr'
, sc_alts = alts''
, sc_env = zapSubstEnv se `setInScopeFromF` all_floats
-- See Note [StaticEnv invariant] in GHC.Core.Opt.Simplify.Utils
, sc_cont = mkBoringStop (contResultType cont) } ) }
mkDupableStrictBind :: SimplEnv -> OutId -> OutExpr -> OutType
-> SimplM (SimplFloats, SimplCont)
mkDupableStrictBind env arg_bndr join_rhs res_ty
| exprIsTrivial join_rhs -- See point (2) of Note [Duplicating join points]
= return (emptyFloats env
, StrictBind { sc_bndr = arg_bndr
, sc_body = join_rhs
, sc_env = zapSubstEnv env
, sc_from = FromLet
-- See Note [StaticEnv invariant] in GHC.Core.Opt.Simplify.Utils
, sc_dup = OkToDup
, sc_cont = mkBoringStop res_ty } )
| otherwise
= do { join_bndr <- newJoinId [arg_bndr] res_ty
; let arg_info = ArgInfo { ai_fun = join_bndr
, ai_rewrite = TryNothing, ai_args = []
, ai_encl = False, ai_dmds = repeat topDmd
, ai_discs = repeat 0 }
; return ( addJoinFloats (emptyFloats env) $
unitJoinFloat $
NonRec join_bndr $
Lam (setOneShotLambda arg_bndr) join_rhs
, StrictArg { sc_dup = OkToDup
, sc_fun = arg_info
, sc_fun_ty = idType join_bndr
, sc_cont = mkBoringStop res_ty
} ) }
mkDupableAlt :: Platform -> OutId
-> JoinFloats -> OutAlt
-> SimplM (JoinFloats, OutAlt)
mkDupableAlt _platform case_bndr jfloats (Alt con alt_bndrs alt_rhs_in)
| exprIsTrivial alt_rhs_in -- See point (2) of Note [Duplicating join points]
= return (jfloats, Alt con alt_bndrs alt_rhs_in)
| otherwise
= do { let rhs_ty' = exprType alt_rhs_in
bangs
| DataAlt c <- con
= dataConRepStrictness c
| otherwise = []
abstracted_binders = abstract_binders alt_bndrs bangs
abstract_binders :: [Var] -> [StrictnessMark] -> [(Id,StrictnessMark)]
abstract_binders [] []
-- Abstract over the case binder too if it's used.
| isDeadBinder case_bndr = []
| otherwise = [(case_bndr,MarkedStrict)]
abstract_binders (alt_bndr:alt_bndrs) marks
-- Abstract over all type variables just in case
| isTyVar alt_bndr = (alt_bndr,NotMarkedStrict) : abstract_binders alt_bndrs marks
abstract_binders (alt_bndr:alt_bndrs) (mark:marks)
-- The deadness info on the new Ids is preserved by simplBinders
-- We don't abstract over dead ids here.
| isDeadBinder alt_bndr = abstract_binders alt_bndrs marks
| otherwise = (alt_bndr,mark) : abstract_binders alt_bndrs marks
abstract_binders _ _ = pprPanic "abstrict_binders - failed to abstract" (ppr $ Alt con alt_bndrs alt_rhs_in)
filtered_binders = map fst abstracted_binders
-- We want to make any binder with an evaldUnfolding strict in the rhs.
-- See Note [Call-by-value for worker args] (which also applies to join points)
(rhs_with_seqs) = mkStrictFieldSeqs abstracted_binders alt_rhs_in
final_args = varsToCoreExprs filtered_binders
-- Note [Join point abstraction]
-- We make the lambdas into one-shot-lambdas. The
-- join point is sure to be applied at most once, and doing so
-- prevents the body of the join point being floated out by
-- the full laziness pass
final_bndrs = map one_shot filtered_binders
one_shot v | isId v = setOneShotLambda v
| otherwise = v
-- No lambda binder has an unfolding, but (currently) case binders can,
-- so we must zap them here.
join_rhs = mkLams (map zapIdUnfolding final_bndrs) rhs_with_seqs
; join_bndr <- newJoinId filtered_binders rhs_ty'
; let join_call = mkApps (Var join_bndr) final_args
alt' = Alt con alt_bndrs join_call
; return ( jfloats `addJoinFlts` unitJoinFloat (NonRec join_bndr join_rhs)
, alt') }
-- See Note [Duplicated env]
{-
Note [Fusing case continuations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important to fuse two successive case continuations when the
first has one alternative. That's why we call prepareCaseCont here.
Consider this, which arises from thunk splitting (see Note [Thunk
splitting] in GHC.Core.Opt.WorkWrap):
let
x* = case (case v of {pn -> rn}) of
I# a -> I# a
in body
The simplifier will find
(Var v) with continuation
Select (pn -> rn) (
Select [I# a -> I# a] (
StrictBind body Stop
So we'll call mkDupableCont on
Select [I# a -> I# a] (StrictBind body Stop)
There is just one alternative in the first Select, so we want to
simplify the rhs (I# a) with continuation (StrictBind body Stop)
Supposing that body is big, we end up with
let $j a = <let x = I# a in body>
in case v of { pn -> case rn of
I# a -> $j a }
This is just what we want because the rn produces a box that
the case rn cancels with.
See #4957 a fuller example.
Note [Duplicating join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
IN #19996 we discovered that we want to be really careful about
inlining join points. Consider
case (join $j x = K f x )
(in case v of )
( p1 -> $j x1 ) of
( p2 -> $j x2 )
( p3 -> $j x3 )
K g y -> blah[g,y]
Here the join-point RHS is very small, just a constructor
application (K x y). So we might inline it to get
case (case v of )
( p1 -> K f x1 ) of
( p2 -> K f x2 )
( p3 -> K f x3 )
K g y -> blah[g,y]
But now we have to make `blah` into a join point, /abstracted/
over `g` and `y`. In contrast, if we /don't/ inline $j we
don't need a join point for `blah` and we'll get
join $j x = let g=f, y=x in blah[g,y]
in case v of
p1 -> $j x1
p2 -> $j x2
p3 -> $j x3
This can make a /massive/ difference, because `blah` can see
what `f` is, instead of lambda-abstracting over it.
To achieve this:
1. Do not postInlineUnconditionally a join point, until the Final
phase. (The Final phase is still quite early, so we might consider
delaying still more.)
2. In mkDupableAlt and mkDupableStrictBind, generate an alterative for
all alternatives, except for exprIsTrival RHSs. Previously we used
exprIsDupable. This generates a lot more join points, but makes
them much more case-of-case friendly.
It is definitely worth checking for exprIsTrivial, otherwise we get
an extra Simplifier iteration, because it is inlined in the next
round.
3. By the same token we want to use Plan B in
Note [Duplicating StrictArg] when the RHS of the new join point
is a data constructor application. That same Note explains why we
want Plan A when the RHS of the new join point would be a
non-data-constructor application
4. You might worry that $j will be inlined by the call-site inliner,
but it won't because the call-site context for a join is usually
extremely boring (the arguments come from the pattern match).
And if not, then perhaps inlining it would be a good idea.
You might also wonder if we get UnfWhen, because the RHS of the
join point is no bigger than the call. But in the cases we care
about it will be a little bigger, because of that free `f` in
$j x = K f x
So for now we don't do anything special in callSiteInline
There is a bit of tension between (2) and (3). Do we want to retain
the join point only when the RHS is
* a constructor application? or
* just non-trivial?
Currently, a bit ad-hoc, but we definitely want to retain the join
point for data constructors in mkDupalbleALt (point 2); that is the
whole point of #19996 described above.
Historical Note [Case binders and join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB: this entire Note is now irrelevant. In Jun 21 we stopped
adding unfoldings to lambda binders (#17530). It was always a
hack and bit us in multiple small and not-so-small ways
Consider this
case (case .. ) of c {
I# c# -> ....c....
If we make a join point with c but not c# we get
$j = \c -> ....c....
But if later inlining scrutinises the c, thus
$j = \c -> ... case c of { I# y -> ... } ...
we won't see that 'c' has already been scrutinised. This actually
happens in the 'tabulate' function in wave4main, and makes a significant
difference to allocation.
An alternative plan is this:
$j = \c# -> let c = I# c# in ...c....
but that is bad if 'c' is *not* later scrutinised.
So instead we do both: we pass 'c' and 'c#' , and record in c's inlining
(a stable unfolding) that it's really I# c#, thus
$j = \c# -> \c[=I# c#] -> ...c....
Absence analysis may later discard 'c'.
NB: take great care when doing strictness analysis;
see Note [Lambda-bound unfoldings] in GHC.Core.Opt.DmdAnal.
Also note that we can still end up passing stuff that isn't used. Before
strictness analysis we have
let $j x y c{=(x,y)} = (h c, ...)
in ...
After strictness analysis we see that h is strict, we end up with
let $j x y c{=(x,y)} = ($wh x y, ...)
and c is unused.
Note [Duplicated env]
~~~~~~~~~~~~~~~~~~~~~
Some of the alternatives are simplified, but have not been turned into a join point
So they *must* have a zapped subst-env. So we can't use completeNonRecX to
bind the join point, because it might to do PostInlineUnconditionally, and
we'd lose that when zapping the subst-env. We could have a per-alt subst-env,
but zapping it (as we do in mkDupableCont, the Select case) is safe, and
at worst delays the join-point inlining.
Note [Funky mkLamTypes]
~~~~~~~~~~~~~~~~~~~~~~
Notice the funky mkLamTypes. If the constructor has existentials
it's possible that the join point will be abstracted over
type variables as well as term variables.
Example: Suppose we have
data T = forall t. C [t]
Then faced with
case (case e of ...) of
C t xs::[t] -> rhs
We get the join point
let j :: forall t. [t] -> ...
j = /\t \xs::[t] -> rhs
in
case (case e of ...) of
C t xs::[t] -> j t xs
Note [Duplicating StrictArg]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dealing with making a StrictArg continuation duplicable has turned out
to be one of the trickiest corners of the simplifier, giving rise
to several cases in which the simplier expanded the program's size
*exponentially*. They include
#13253 exponential inlining
#10421 ditto
#18140 strict constructors
#18282 another nested-function call case
Suppose we have a call
f e1 (case x of { True -> r1; False -> r2 }) e3
and f is strict in its second argument. Then we end up in
mkDupableCont with a StrictArg continuation for (f e1 <> e3).
There are two ways to make it duplicable.
* Plan A: move the entire call inwards, being careful not
to duplicate e1 or e3, thus:
let a1 = e1
a3 = e3
in case x of { True -> f a1 r1 a3
; False -> f a1 r2 a3 }
* Plan B: make a join point:
join $j x = f e1 x e3
in case x of { True -> jump $j r1
; False -> jump $j r2 }
Notice that Plan B is very like the way we handle strict bindings;
see Note [Duplicating StrictBind]. And Plan B is exactly what we'd
get if we turned use a case expression to evaluate the strict arg:
case (case x of { True -> r1; False -> r2 }) of
r -> f e1 r e3
So, looking at Note [Duplicating join points], we also want Plan B
when `f` is a data constructor.
Plan A is often good. Here's an example from #3116
go (n+1) (case l of
1 -> bs'
_ -> Chunk p fpc (o+1) (l-1) bs')
If we pushed the entire call for 'go' inside the case, we get
call-pattern specialisation for 'go', which is *crucial* for
this particular program.
Here is another example.
&& E (case x of { T -> F; F -> T })
Pushing the call inward (being careful not to duplicate E)
let a = E
in case x of { T -> && a F; F -> && a T }
and now the (&& a F) etc can optimise. Moreover there might
be a RULE for the function that can fire when it "sees" the
particular case alternative.
But Plan A can have terrible, terrible behaviour. Here is a classic
case:
f (f (f (f (f True))))
Suppose f is strict, and has a body that is small enough to inline.
The innermost call inlines (seeing the True) to give
f (f (f (f (case v of { True -> e1; False -> e2 }))))
Now, suppose we naively push the entire continuation into both
case branches (it doesn't look large, just f.f.f.f). We get
case v of
True -> f (f (f (f e1)))
False -> f (f (f (f e2)))
And now the process repeats, so we end up with an exponentially large
number of copies of f. No good!
CONCLUSION: we want Plan A in general, but do Plan B is there a
danger of this nested call behaviour. The function that decides
this is called thumbsUpPlanA.
Note [Keeping demand info in StrictArg Plan A]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Following on from Note [Duplicating StrictArg], another common code
pattern that can go bad is this:
f (case x1 of { T -> F; F -> T })
(case x2 of { T -> F; F -> T })
...etc...
when f is strict in all its arguments. (It might, for example, be a
strict data constructor whose wrapper has not yet been inlined.)
We use Plan A (because there is no nesting) giving
let a2 = case x2 of ...
a3 = case x3 of ...
in case x1 of { T -> f F a2 a3 ... ; F -> f T a2 a3 ... }
Now we must be careful! a2 and a3 are small, and the OneOcc code in
postInlineUnconditionally may inline them both at both sites; see Note
Note [Inline small things to avoid creating a thunk] in
Simplify.Utils. But if we do inline them, the entire process will
repeat -- back to exponential behaviour.
So we are careful to keep the demand-info on a2 and a3. Then they'll
be /strict/ let-bindings, which will be dealt with by StrictBind.
That's why contIsDupableWithDmds is careful to propagage demand
info to the auxiliary bindings it creates. See the Demand argument
to makeTrivial.
Note [Duplicating StrictBind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We make a StrictBind duplicable in a very similar way to
that for case expressions. After all,
let x* = e in b is similar to case e of x -> b
So we potentially make a join-point for the body, thus:
let x = <> in b ==> join j x = b
in j <>
Just like StrictArg in fact -- and indeed they share code.
Note [Join point abstraction] Historical note
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB: This note is now historical, describing how (in the past) we used
to add a void argument to nullary join points. But now that "join
point" is not a fuzzy concept but a formal syntactic construct (as
distinguished by the JoinId constructor of IdDetails), each of these
concerns is handled separately, with no need for a vestigial extra
argument.
Join points always have at least one value argument,
for several reasons
* If we try to lift a primitive-typed something out
for let-binding-purposes, we will *caseify* it (!),
with potentially-disastrous strictness results. So
instead we turn it into a function: \v -> e
where v::Void#. The value passed to this function is void,
which generates (almost) no code.
* CPR. We used to say "&& isUnliftedType rhs_ty'" here, but now
we make the join point into a function whenever used_bndrs'
is empty. This makes the join-point more CPR friendly.
Consider: let j = if .. then I# 3 else I# 4
in case .. of { A -> j; B -> j; C -> ... }
Now CPR doesn't w/w j because it's a thunk, so
that means that the enclosing function can't w/w either,
which is a lose. Here's the example that happened in practice:
kgmod :: Int -> Int -> Int
kgmod x y = if x > 0 && y < 0 || x < 0 && y > 0
then 78
else 5
* Let-no-escape. We want a join point to turn into a let-no-escape
so that it is implemented as a jump, and one of the conditions
for LNE is that it's not updatable. In CoreToStg, see
Note [What is a non-escaping let]
* Floating. Since a join point will be entered once, no sharing is
gained by floating out, but something might be lost by doing
so because it might be allocated.
I have seen a case alternative like this:
True -> \v -> ...
It's a bit silly to add the realWorld dummy arg in this case, making
$j = \s v -> ...
True -> $j s
(the \v alone is enough to make CPR happy) but I think it's rare
There's a slight infelicity here: we pass the overall
case_bndr to all the join points if it's used in *any* RHS,
because we don't know its usage in each RHS separately
************************************************************************
* *
Unfoldings
* *
************************************************************************
-}
simplLetUnfolding :: SimplEnv
-> BindContext
-> InId
-> OutExpr -> OutType -> ArityType
-> Unfolding -> SimplM Unfolding
simplLetUnfolding env bind_cxt id new_rhs rhs_ty arity unf
| isStableUnfolding unf
= simplStableUnfolding env bind_cxt id rhs_ty arity unf
| isExitJoinId id
= return noUnfolding -- See Note [Do not inline exit join points] in GHC.Core.Opt.Exitify
| otherwise
= -- Otherwise, we end up retaining all the SimpleEnv
let !opts = seUnfoldingOpts env
in mkLetUnfolding opts (bindContextLevel bind_cxt) VanillaSrc id new_rhs
-------------------
mkLetUnfolding :: UnfoldingOpts -> TopLevelFlag -> UnfoldingSource
-> InId -> OutExpr -> SimplM Unfolding
mkLetUnfolding !uf_opts top_lvl src id new_rhs
= return (mkUnfolding uf_opts src is_top_lvl is_bottoming new_rhs Nothing)
-- We make an unfolding *even for loop-breakers*.
-- Reason: (a) It might be useful to know that they are WHNF
-- (b) In GHC.Iface.Tidy we currently assume that, if we want to
-- expose the unfolding then indeed we *have* an unfolding
-- to expose. (We could instead use the RHS, but currently
-- we don't.) The simple thing is always to have one.
where
-- Might as well force this, profiles indicate up to 0.5MB of thunks
-- just from this site.
!is_top_lvl = isTopLevel top_lvl
-- See Note [Force bottoming field]
!is_bottoming = isDeadEndId id
-------------------
simplStableUnfolding :: SimplEnv -> BindContext
-> InId
-> OutType
-> ArityType -- Used to eta expand, but only for non-join-points
-> Unfolding
->SimplM Unfolding
-- Note [Setting the new unfolding]
simplStableUnfolding env bind_cxt id rhs_ty id_arity unf
= case unf of
NoUnfolding -> return unf
BootUnfolding -> return unf
OtherCon {} -> return unf
DFunUnfolding { df_bndrs = bndrs, df_con = con, df_args = args }
-> do { (env', bndrs') <- simplBinders unf_env bndrs
; args' <- mapM (simplExpr env') args
; return (mkDFunUnfolding bndrs' con args') }
CoreUnfolding { uf_tmpl = expr, uf_src = src, uf_guidance = guide }
| isStableSource src
-> do { expr' <- case bind_cxt of
BC_Join _ cont -> -- Binder is a join point
-- See Note [Rules and unfolding for join points]
simplJoinRhs unf_env id expr cont
BC_Let _ is_rec -> -- Binder is not a join point
do { let cont = mkRhsStop rhs_ty is_rec topDmd
-- mkRhsStop: switch off eta-expansion at the top level
; expr' <- simplExprC unf_env expr cont
; return (eta_expand expr') }
; case guide of
UnfWhen { ug_boring_ok = boring_ok }
-- Happens for INLINE things
-- Really important to force new_boring_ok since otherwise
-- `ug_boring_ok` is a thunk chain of
-- inlineBoringExprOk expr0 || inlineBoringExprOk expr1 || ...
-- See #20134
-> let !new_boring_ok = boring_ok || inlineBoringOk expr'
guide' = guide { ug_boring_ok = new_boring_ok }
-- Refresh the boring-ok flag, in case expr'
-- has got small. This happens, notably in the inlinings
-- for dfuns for single-method classes; see
-- Note [Single-method classes] in GHC.Tc.TyCl.Instance.
-- A test case is #4138
-- But retain a previous boring_ok of True; e.g. see
-- the way it is set in calcUnfoldingGuidanceWithArity
in return (mkCoreUnfolding src is_top_lvl expr' Nothing guide')
-- See Note [Top-level flag on inline rules] in GHC.Core.Unfold
_other -- Happens for INLINABLE things
-> mkLetUnfolding uf_opts top_lvl src id expr' }
-- If the guidance is UnfIfGoodArgs, this is an INLINABLE
-- unfolding, and we need to make sure the guidance is kept up
-- to date with respect to any changes in the unfolding.
| otherwise -> return noUnfolding -- Discard unstable unfoldings
where
uf_opts = seUnfoldingOpts env
-- Forcing this can save about 0.5MB of max residency and the result
-- is small and easy to compute so might as well force it.
top_lvl = bindContextLevel bind_cxt
!is_top_lvl = isTopLevel top_lvl
act = idInlineActivation id
unf_env = updMode (updModeForStableUnfoldings act) env
-- See Note [Simplifying inside stable unfoldings] in GHC.Core.Opt.Simplify.Utils
-- See Note [Eta-expand stable unfoldings]
-- Use the arity from the main Id (in id_arity), rather than computing it from rhs
-- Not used for join points
eta_expand expr | seEtaExpand env
, exprArity expr < arityTypeArity id_arity
, wantEtaExpansion expr
= etaExpandAT (getInScope env) id_arity expr
| otherwise
= expr
{- Note [Eta-expand stable unfoldings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For INLINE/INLINABLE things (which get stable unfoldings) there's a danger
of getting
f :: Int -> Int -> Int -> Blah
[ Arity = 3 -- Good arity
, Unf=Stable (\xy. blah) -- Less good arity, only 2
f = \pqr. e
This can happen because f's RHS is optimised more vigorously than
its stable unfolding. Now suppose we have a call
g = f x
Because f has arity=3, g will have arity=2. But if we inline f (using
its stable unfolding) g's arity will reduce to 1, because <blah>
hasn't been optimised yet. This happened in the 'parsec' library,
for Text.Pasec.Char.string.
Generally, if we know that 'f' has arity N, it seems sensible to
eta-expand the stable unfolding to arity N too. Simple and consistent.
Wrinkles
* See Historical-note [Eta-expansion in stable unfoldings] in
GHC.Core.Opt.Simplify.Utils
* Don't eta-expand a trivial expr, else each pass will eta-reduce it,
and then eta-expand again. See Note [Which RHSs do we eta-expand?]
in GHC.Core.Opt.Simplify.Utils.
* Don't eta-expand join points; see Note [Do not eta-expand join points]
in GHC.Core.Opt.Simplify.Utils. We uphold this because the join-point
case (bind_cxt = BC_Join {}) doesn't use eta_expand.
Note [Force bottoming field]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to force bottoming, or the new unfolding holds
on to the old unfolding (which is part of the id).
Note [Setting the new unfolding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* If there's an INLINE pragma, we simplify the RHS gently. Maybe we
should do nothing at all, but simplifying gently might get rid of
more crap.
* If not, we make an unfolding from the new RHS. But *only* for
non-loop-breakers. Making loop breakers not have an unfolding at all
means that we can avoid tests in exprIsConApp, for example. This is
important: if exprIsConApp says 'yes' for a recursive thing, then we
can get into an infinite loop
If there's a stable unfolding on a loop breaker (which happens for
INLINABLE), we hang on to the inlining. It's pretty dodgy, but the
user did say 'INLINE'. May need to revisit this choice.
************************************************************************
* *
Rules
* *
************************************************************************
Note [Rules in a letrec]
~~~~~~~~~~~~~~~~~~~~~~~~
After creating fresh binders for the binders of a letrec, we
substitute the RULES and add them back onto the binders; this is done
*before* processing any of the RHSs. This is important. Manuel found
cases where he really, really wanted a RULE for a recursive function
to apply in that function's own right-hand side.
See Note [Forming Rec groups] in "GHC.Core.Opt.OccurAnal"
-}
addBndrRules :: SimplEnv -> InBndr -> OutBndr
-> BindContext
-> SimplM (SimplEnv, OutBndr)
-- Rules are added back into the bin
addBndrRules env in_id out_id bind_cxt
| null old_rules
= return (env, out_id)
| otherwise
= do { new_rules <- simplRules env (Just out_id) old_rules bind_cxt
; let final_id = out_id `setIdSpecialisation` mkRuleInfo new_rules
; return (modifyInScope env final_id, final_id) }
where
old_rules = ruleInfoRules (idSpecialisation in_id)
simplImpRules :: SimplEnv -> [CoreRule] -> SimplM [CoreRule]
-- Simplify local rules for imported Ids
simplImpRules env rules
= simplRules env Nothing rules (BC_Let TopLevel NonRecursive)
simplRules :: SimplEnv -> Maybe OutId -> [CoreRule]
-> BindContext -> SimplM [CoreRule]
simplRules env mb_new_id rules bind_cxt
= mapM simpl_rule rules
where
simpl_rule rule@(BuiltinRule {})
= return rule
simpl_rule rule@(Rule { ru_bndrs = bndrs, ru_args = args
, ru_fn = fn_name, ru_rhs = rhs
, ru_act = act })
= do { (env', bndrs') <- simplBinders env bndrs
; let rhs_ty = substTy env' (exprType rhs)
rhs_cont = case bind_cxt of -- See Note [Rules and unfolding for join points]
BC_Let {} -> mkBoringStop rhs_ty
BC_Join _ cont -> assertPpr join_ok bad_join_msg cont
lhs_env = updMode updModeForRules env'
rhs_env = updMode (updModeForStableUnfoldings act) env'
-- See Note [Simplifying the RHS of a RULE]
-- Force this to avoid retaining reference to old Id
!fn_name' = case mb_new_id of
Just id -> idName id
Nothing -> fn_name
-- join_ok is an assertion check that the join-arity of the
-- binder matches that of the rule, so that pushing the
-- continuation into the RHS makes sense
join_ok = case mb_new_id of
Just id | Just join_arity <- isJoinId_maybe id
-> length args == join_arity
_ -> False
bad_join_msg = vcat [ ppr mb_new_id, ppr rule
, ppr (fmap isJoinId_maybe mb_new_id) ]
; args' <- mapM (simplExpr lhs_env) args
; rhs' <- simplExprC rhs_env rhs rhs_cont
; return (rule { ru_bndrs = bndrs'
, ru_fn = fn_name'
, ru_args = args'
, ru_rhs = occurAnalyseExpr rhs' }) }
-- Remember to occ-analyse, to drop dead code.
-- See Note [OccInfo in unfoldings and rules] in GHC.Core
{- Note [Simplifying the RHS of a RULE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can simplify the RHS of a RULE much as we do the RHS of a stable
unfolding. We used to use the much more conservative updModeForRules
for the RHS as well as the LHS, but that seems more conservative
than necesary. Allowing some inlining might, for example, eliminate
a binding.
-}
|