1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
|
{-
(c) The AQUA Project, Glasgow University, 1993-1998
The simplifier utilities
-}
module GHC.Core.Opt.Simplify.Utils (
-- Rebuilding
rebuildLam, mkCase, prepareAlts,
tryEtaExpandRhs, wantEtaExpansion,
-- Inlining,
preInlineUnconditionally, postInlineUnconditionally,
activeUnfolding, activeRule,
getUnfoldingInRuleMatch,
updModeForStableUnfoldings, updModeForRules,
-- The BindContext type
BindContext(..), bindContextLevel,
-- The continuation type
SimplCont(..), DupFlag(..), FromWhat(..), StaticEnv,
isSimplified, contIsStop,
contIsDupable, contResultType, contHoleType, contHoleScaling,
contIsTrivial, contArgs, contIsRhs,
countArgs,
mkBoringStop, mkRhsStop, mkLazyArgStop,
interestingCallContext,
-- ArgInfo
ArgInfo(..), ArgSpec(..), RewriteCall(..), mkArgInfo,
addValArgTo, addCastTo, addTyArgTo,
argInfoExpr, argInfoAppArgs,
pushSimplifiedArgs, pushSimplifiedRevArgs,
isStrictArgInfo, lazyArgContext,
abstractFloats,
-- Utilities
isExitJoinId
) where
import GHC.Prelude hiding (head, init, last, tail)
import GHC.Core
import GHC.Types.Literal ( isLitRubbish )
import GHC.Core.Opt.Simplify.Env
import GHC.Core.Opt.Stats ( Tick(..) )
import qualified GHC.Core.Subst
import GHC.Core.Ppr
import GHC.Core.TyCo.Ppr ( pprParendType )
import GHC.Core.FVs
import GHC.Core.Utils
import GHC.Core.Rules( RuleEnv, getRules )
import GHC.Core.Opt.Arity
import GHC.Core.Unfold
import GHC.Core.Unfold.Make
import GHC.Core.Opt.Simplify.Monad
import GHC.Core.Type hiding( substTy )
import GHC.Core.Coercion hiding( substCo )
import GHC.Core.DataCon ( dataConWorkId, isNullaryRepDataCon )
import GHC.Core.Multiplicity
import GHC.Core.Opt.ConstantFold
import GHC.Types.Name
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.Tickish
import GHC.Types.Demand
import GHC.Types.Var.Set
import GHC.Types.Basic
import GHC.Data.OrdList ( isNilOL )
import GHC.Data.FastString ( fsLit )
import GHC.Utils.Misc
import GHC.Utils.Monad
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import Control.Monad ( when )
import Data.List ( sortBy )
import qualified Data.List as Partial ( head )
{- *********************************************************************
* *
The BindContext type
* *
********************************************************************* -}
-- What sort of binding is this? A let-binding or a join-binding?
data BindContext
= BC_Let -- A regular let-binding
TopLevelFlag RecFlag
| BC_Join -- A join point with continuation k
RecFlag -- See Note [Rules and unfolding for join points]
SimplCont -- in GHC.Core.Opt.Simplify
bindContextLevel :: BindContext -> TopLevelFlag
bindContextLevel (BC_Let top_lvl _) = top_lvl
bindContextLevel (BC_Join {}) = NotTopLevel
bindContextRec :: BindContext -> RecFlag
bindContextRec (BC_Let _ rec_flag) = rec_flag
bindContextRec (BC_Join rec_flag _) = rec_flag
isJoinBC :: BindContext -> Bool
isJoinBC (BC_Let {}) = False
isJoinBC (BC_Join {}) = True
{- *********************************************************************
* *
The SimplCont and DupFlag types
* *
************************************************************************
A SimplCont allows the simplifier to traverse the expression in a
zipper-like fashion. The SimplCont represents the rest of the expression,
"above" the point of interest.
You can also think of a SimplCont as an "evaluation context", using
that term in the way it is used for operational semantics. This is the
way I usually think of it, For example you'll often see a syntax for
evaluation context looking like
C ::= [] | C e | case C of alts | C `cast` co
That's the kind of thing we are doing here, and I use that syntax in
the comments.
Key points:
* A SimplCont describes a *strict* context (just like
evaluation contexts do). E.g. Just [] is not a SimplCont
* A SimplCont describes a context that *does not* bind
any variables. E.g. \x. [] is not a SimplCont
-}
data SimplCont
= Stop -- ^ Stop[e] = e
OutType -- ^ Type of the <hole>
CallCtxt -- ^ Tells if there is something interesting about
-- the syntactic context, and hence the inliner
-- should be a bit keener (see interestingCallContext)
-- Specifically:
-- This is an argument of a function that has RULES
-- Inlining the call might allow the rule to fire
-- Never ValAppCxt (use ApplyToVal instead)
-- or CaseCtxt (use Select instead)
SubDemand -- ^ The evaluation context of e. Tells how e is evaluated.
-- This fuels eta-expansion or eta-reduction without looking
-- at lambda bodies, for example.
--
-- See Note [Eta reduction based on evaluation context]
-- The evaluation context for other SimplConts can be
-- reconstructed with 'contEvalContext'
| CastIt -- (CastIt co K)[e] = K[ e `cast` co ]
OutCoercion -- The coercion simplified
-- Invariant: never an identity coercion
SimplCont
| ApplyToVal -- (ApplyToVal arg K)[e] = K[ e arg ]
{ sc_dup :: DupFlag -- See Note [DupFlag invariants]
, sc_hole_ty :: OutType -- Type of the function, presumably (forall a. blah)
-- See Note [The hole type in ApplyToTy]
, sc_arg :: InExpr -- The argument,
, sc_env :: StaticEnv -- see Note [StaticEnv invariant]
, sc_cont :: SimplCont }
| ApplyToTy -- (ApplyToTy ty K)[e] = K[ e ty ]
{ sc_arg_ty :: OutType -- Argument type
, sc_hole_ty :: OutType -- Type of the function, presumably (forall a. blah)
-- See Note [The hole type in ApplyToTy]
, sc_cont :: SimplCont }
| Select -- (Select alts K)[e] = K[ case e of alts ]
{ sc_dup :: DupFlag -- See Note [DupFlag invariants]
, sc_bndr :: InId -- case binder
, sc_alts :: [InAlt] -- Alternatives
, sc_env :: StaticEnv -- See Note [StaticEnv invariant]
, sc_cont :: SimplCont }
-- The two strict forms have no DupFlag, because we never duplicate them
| StrictBind -- (StrictBind x b K)[e] = let x = e in K[b]
-- or, equivalently, = K[ (\x.b) e ]
{ sc_dup :: DupFlag -- See Note [DupFlag invariants]
, sc_bndr :: InId
, sc_from :: FromWhat
, sc_body :: InExpr
, sc_env :: StaticEnv -- See Note [StaticEnv invariant]
, sc_cont :: SimplCont }
| StrictArg -- (StrictArg (f e1 ..en) K)[e] = K[ f e1 .. en e ]
{ sc_dup :: DupFlag -- Always Simplified or OkToDup
, sc_fun :: ArgInfo -- Specifies f, e1..en, Whether f has rules, etc
-- plus demands and discount flags for *this* arg
-- and further args
-- So ai_dmds and ai_discs are never empty
, sc_fun_ty :: OutType -- Type of the function (f e1 .. en),
-- presumably (arg_ty -> res_ty)
-- where res_ty is expected by sc_cont
, sc_cont :: SimplCont }
| TickIt -- (TickIt t K)[e] = K[ tick t e ]
CoreTickish -- Tick tickish <hole>
SimplCont
type StaticEnv = SimplEnv -- Just the static part is relevant
data FromWhat = FromLet | FromBeta OutType
-- See Note [DupFlag invariants]
data DupFlag = NoDup -- Unsimplified, might be big
| Simplified -- Simplified
| OkToDup -- Simplified and small
isSimplified :: DupFlag -> Bool
isSimplified NoDup = False
isSimplified _ = True -- Invariant: the subst-env is empty
perhapsSubstTy :: DupFlag -> StaticEnv -> Type -> Type
perhapsSubstTy dup env ty
| isSimplified dup = ty
| otherwise = substTy env ty
{- Note [StaticEnv invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We pair up an InExpr or InAlts with a StaticEnv, which establishes the
lexical scope for that InExpr.
When we simplify that InExpr/InAlts, we use
- Its captured StaticEnv
- Overriding its InScopeSet with the larger one at the
simplification point.
Why override the InScopeSet? Example:
(let y = ey in f) ex
By the time we simplify ex, 'y' will be in scope.
However the InScopeSet in the StaticEnv is not irrelevant: it should
include all the free vars of applying the substitution to the InExpr.
Reason: contHoleType uses perhapsSubstTy to apply the substitution to
the expression, and that (rightly) gives ASSERT failures if the InScopeSet
isn't big enough.
Note [DupFlag invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~
In both ApplyToVal { se_dup = dup, se_env = env, se_cont = k}
and Select { se_dup = dup, se_env = env, se_cont = k}
the following invariants hold
(a) if dup = OkToDup, then continuation k is also ok-to-dup
(b) if dup = OkToDup or Simplified, the subst-env is empty,
or at least is always ignored; the payload is
already an OutThing
-}
instance Outputable DupFlag where
ppr OkToDup = text "ok"
ppr NoDup = text "nodup"
ppr Simplified = text "simpl"
instance Outputable SimplCont where
ppr (Stop ty interesting eval_sd)
= text "Stop" <> brackets (sep $ punctuate comma pps) <+> ppr ty
where
pps = [ppr interesting] ++ [ppr eval_sd | eval_sd /= topSubDmd]
ppr (CastIt co cont ) = (text "CastIt" <+> pprOptCo co) $$ ppr cont
ppr (TickIt t cont) = (text "TickIt" <+> ppr t) $$ ppr cont
ppr (ApplyToTy { sc_arg_ty = ty, sc_cont = cont })
= (text "ApplyToTy" <+> pprParendType ty) $$ ppr cont
ppr (ApplyToVal { sc_arg = arg, sc_dup = dup, sc_cont = cont, sc_hole_ty = hole_ty })
= (hang (text "ApplyToVal" <+> ppr dup <+> text "hole" <+> ppr hole_ty)
2 (pprParendExpr arg))
$$ ppr cont
ppr (StrictBind { sc_bndr = b, sc_cont = cont })
= (text "StrictBind" <+> ppr b) $$ ppr cont
ppr (StrictArg { sc_fun = ai, sc_cont = cont })
= (text "StrictArg" <+> ppr (ai_fun ai)) $$ ppr cont
ppr (Select { sc_dup = dup, sc_bndr = bndr, sc_alts = alts, sc_env = se, sc_cont = cont })
= (text "Select" <+> ppr dup <+> ppr bndr) $$
whenPprDebug (nest 2 $ vcat [ppr (seTvSubst se), ppr alts]) $$ ppr cont
{- Note [The hole type in ApplyToTy]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The sc_hole_ty field of ApplyToTy records the type of the "hole" in the
continuation. It is absolutely necessary to compute contHoleType, but it is
not used for anything else (and hence may not be evaluated).
Why is it necessary for contHoleType? Consider the continuation
ApplyToType Int (Stop Int)
corresponding to
(<hole> @Int) :: Int
What is the type of <hole>? It could be (forall a. Int) or (forall a. a),
and there is no way to know which, so we must record it.
In a chain of applications (f @t1 @t2 @t3) we'll lazily compute exprType
for (f @t1) and (f @t1 @t2), which is potentially non-linear; but it probably
doesn't matter because we'll never compute them all.
************************************************************************
* *
ArgInfo and ArgSpec
* *
************************************************************************
-}
data ArgInfo
= ArgInfo {
ai_fun :: OutId, -- The function
ai_args :: [ArgSpec], -- ...applied to these args (which are in *reverse* order)
ai_rewrite :: RewriteCall, -- What transformation to try next for this call
-- See Note [Rewrite rules and inlining] in GHC.Core.Opt.Simplify.Iteration
ai_encl :: Bool, -- Flag saying whether this function
-- or an enclosing one has rules (recursively)
-- True => be keener to inline in all args
ai_dmds :: [Demand], -- Demands on remaining value arguments (beyond ai_args)
-- Usually infinite, but if it is finite it guarantees
-- that the function diverges after being given
-- that number of args
ai_discs :: [Int] -- Discounts for remaining value arguments (beyond ai_args)
-- non-zero => be keener to inline
-- Always infinite
}
data RewriteCall -- What rewriting to try next for this call
-- See Note [Rewrite rules and inlining] in GHC.Core.Opt.Simplify.Iteration
= TryRules FullArgCount [CoreRule]
| TryInlining
| TryNothing
data ArgSpec
= ValArg { as_dmd :: Demand -- Demand placed on this argument
, as_arg :: OutExpr -- Apply to this (coercion or value); c.f. ApplyToVal
, as_hole_ty :: OutType } -- Type of the function (presumably t1 -> t2)
| TyArg { as_arg_ty :: OutType -- Apply to this type; c.f. ApplyToTy
, as_hole_ty :: OutType } -- Type of the function (presumably forall a. blah)
| CastBy OutCoercion -- Cast by this; c.f. CastIt
instance Outputable ArgInfo where
ppr (ArgInfo { ai_fun = fun, ai_args = args, ai_dmds = dmds })
= text "ArgInfo" <+> braces
(sep [ text "fun =" <+> ppr fun
, text "dmds(first 10) =" <+> ppr (take 10 dmds)
, text "args =" <+> ppr args ])
instance Outputable ArgSpec where
ppr (ValArg { as_arg = arg }) = text "ValArg" <+> ppr arg
ppr (TyArg { as_arg_ty = ty }) = text "TyArg" <+> ppr ty
ppr (CastBy c) = text "CastBy" <+> ppr c
addValArgTo :: ArgInfo -> OutExpr -> OutType -> ArgInfo
addValArgTo ai arg hole_ty
| ArgInfo { ai_dmds = dmd:dmds, ai_discs = _:discs, ai_rewrite = rew } <- ai
-- Pop the top demand and and discounts off
, let arg_spec = ValArg { as_arg = arg, as_hole_ty = hole_ty, as_dmd = dmd }
= ai { ai_args = arg_spec : ai_args ai
, ai_dmds = dmds
, ai_discs = discs
, ai_rewrite = decArgCount rew }
| otherwise
= pprPanic "addValArgTo" (ppr ai $$ ppr arg)
-- There should always be enough demands and discounts
addTyArgTo :: ArgInfo -> OutType -> OutType -> ArgInfo
addTyArgTo ai arg_ty hole_ty = ai { ai_args = arg_spec : ai_args ai
, ai_rewrite = decArgCount (ai_rewrite ai) }
where
arg_spec = TyArg { as_arg_ty = arg_ty, as_hole_ty = hole_ty }
addCastTo :: ArgInfo -> OutCoercion -> ArgInfo
addCastTo ai co = ai { ai_args = CastBy co : ai_args ai }
isStrictArgInfo :: ArgInfo -> Bool
-- True if the function is strict in the next argument
isStrictArgInfo (ArgInfo { ai_dmds = dmds })
| dmd:_ <- dmds = isStrUsedDmd dmd
| otherwise = False
argInfoAppArgs :: [ArgSpec] -> [OutExpr]
argInfoAppArgs [] = []
argInfoAppArgs (CastBy {} : _) = [] -- Stop at a cast
argInfoAppArgs (ValArg { as_arg = arg } : as) = arg : argInfoAppArgs as
argInfoAppArgs (TyArg { as_arg_ty = ty } : as) = Type ty : argInfoAppArgs as
pushSimplifiedArgs, pushSimplifiedRevArgs
:: SimplEnv
-> [ArgSpec] -- In normal, forward order for pushSimplifiedArgs,
-- in /reverse/ order for pushSimplifiedRevArgs
-> SimplCont -> SimplCont
pushSimplifiedArgs env args cont = foldr (pushSimplifiedArg env) cont args
pushSimplifiedRevArgs env args cont = foldl' (\k a -> pushSimplifiedArg env a k) cont args
pushSimplifiedArg :: SimplEnv -> ArgSpec -> SimplCont -> SimplCont
pushSimplifiedArg _env (TyArg { as_arg_ty = arg_ty, as_hole_ty = hole_ty }) cont
= ApplyToTy { sc_arg_ty = arg_ty, sc_hole_ty = hole_ty, sc_cont = cont }
pushSimplifiedArg env (ValArg { as_arg = arg, as_hole_ty = hole_ty }) cont
= ApplyToVal { sc_arg = arg, sc_env = env, sc_dup = Simplified
-- The SubstEnv will be ignored since sc_dup=Simplified
, sc_hole_ty = hole_ty, sc_cont = cont }
pushSimplifiedArg _ (CastBy c) cont = CastIt c cont
argInfoExpr :: OutId -> [ArgSpec] -> OutExpr
-- NB: the [ArgSpec] is reversed so that the first arg
-- in the list is the last one in the application
argInfoExpr fun rev_args
= go rev_args
where
go [] = Var fun
go (ValArg { as_arg = arg } : as) = go as `App` arg
go (TyArg { as_arg_ty = ty } : as) = go as `App` Type ty
go (CastBy co : as) = mkCast (go as) co
decArgCount :: RewriteCall -> RewriteCall
decArgCount (TryRules n rules) = TryRules (n-1) rules
decArgCount rew = rew
mkRewriteCall :: Id -> RuleEnv -> RewriteCall
-- See Note [Rewrite rules and inlining] in GHC.Core.Opt.Simplify.Iteration
-- We try to skip any unnecessary stages:
-- No rules => skip TryRules
-- No unfolding => skip TryInlining
-- This skipping is "just" for efficiency. But rebuildCall is
-- quite a heavy hammer, so skipping stages is a good plan.
-- And it's extremely simple to do.
mkRewriteCall fun rule_env
| not (null rules) = TryRules n_required rules
| canUnfold unf = TryInlining
| otherwise = TryNothing
where
n_required = maximum (map ruleArity rules)
rules = getRules rule_env fun
unf = idUnfolding fun
{-
************************************************************************
* *
Functions on SimplCont
* *
************************************************************************
-}
mkBoringStop :: OutType -> SimplCont
mkBoringStop ty = Stop ty BoringCtxt topSubDmd
mkRhsStop :: OutType -> RecFlag -> Demand -> SimplCont
-- See Note [RHS of lets] in GHC.Core.Unfold
mkRhsStop ty is_rec bndr_dmd = Stop ty (RhsCtxt is_rec) (subDemandIfEvaluated bndr_dmd)
mkLazyArgStop :: OutType -> ArgInfo -> SimplCont
mkLazyArgStop ty fun_info = Stop ty (lazyArgContext fun_info) arg_sd
where
arg_sd = subDemandIfEvaluated (Partial.head (ai_dmds fun_info))
-------------------
contIsRhs :: SimplCont -> Maybe RecFlag
contIsRhs (Stop _ (RhsCtxt is_rec) _) = Just is_rec
contIsRhs (CastIt _ k) = contIsRhs k -- For f = e |> co, treat e as Rhs context
contIsRhs _ = Nothing
-------------------
contIsStop :: SimplCont -> Bool
contIsStop (Stop {}) = True
contIsStop _ = False
contIsDupable :: SimplCont -> Bool
contIsDupable (Stop {}) = True
contIsDupable (ApplyToTy { sc_cont = k }) = contIsDupable k
contIsDupable (ApplyToVal { sc_dup = OkToDup }) = True -- See Note [DupFlag invariants]
contIsDupable (Select { sc_dup = OkToDup }) = True -- ...ditto...
contIsDupable (StrictArg { sc_dup = OkToDup }) = True -- ...ditto...
contIsDupable (CastIt _ k) = contIsDupable k
contIsDupable _ = False
-------------------
contIsTrivial :: SimplCont -> Bool
contIsTrivial (Stop {}) = True
contIsTrivial (ApplyToTy { sc_cont = k }) = contIsTrivial k
-- This one doesn't look right. A value application is not trivial
-- contIsTrivial (ApplyToVal { sc_arg = Coercion _, sc_cont = k }) = contIsTrivial k
contIsTrivial (CastIt _ k) = contIsTrivial k
contIsTrivial _ = False
-------------------
contResultType :: SimplCont -> OutType
contResultType (Stop ty _ _) = ty
contResultType (CastIt _ k) = contResultType k
contResultType (StrictBind { sc_cont = k }) = contResultType k
contResultType (StrictArg { sc_cont = k }) = contResultType k
contResultType (Select { sc_cont = k }) = contResultType k
contResultType (ApplyToTy { sc_cont = k }) = contResultType k
contResultType (ApplyToVal { sc_cont = k }) = contResultType k
contResultType (TickIt _ k) = contResultType k
contHoleType :: SimplCont -> OutType
contHoleType (Stop ty _ _) = ty
contHoleType (TickIt _ k) = contHoleType k
contHoleType (CastIt co _) = coercionLKind co
contHoleType (StrictBind { sc_bndr = b, sc_dup = dup, sc_env = se })
= perhapsSubstTy dup se (idType b)
contHoleType (StrictArg { sc_fun_ty = ty }) = funArgTy ty
contHoleType (ApplyToTy { sc_hole_ty = ty }) = ty -- See Note [The hole type in ApplyToTy]
contHoleType (ApplyToVal { sc_hole_ty = ty }) = ty -- See Note [The hole type in ApplyToTy]
contHoleType (Select { sc_dup = d, sc_bndr = b, sc_env = se })
= perhapsSubstTy d se (idType b)
-- Computes the multiplicity scaling factor at the hole. That is, in (case [] of
-- x ::(p) _ { … }) (respectively for arguments of functions), the scaling
-- factor is p. And in E[G[]], the scaling factor is the product of the scaling
-- factor of E and that of G.
--
-- The scaling factor at the hole of E[] is used to determine how a binder
-- should be scaled if it commutes with E. This appears, in particular, in the
-- case-of-case transformation.
contHoleScaling :: SimplCont -> Mult
contHoleScaling (Stop _ _ _) = OneTy
contHoleScaling (CastIt _ k) = contHoleScaling k
contHoleScaling (StrictBind { sc_bndr = id, sc_cont = k })
= idMult id `mkMultMul` contHoleScaling k
contHoleScaling (Select { sc_bndr = id, sc_cont = k })
= idMult id `mkMultMul` contHoleScaling k
contHoleScaling (StrictArg { sc_fun_ty = fun_ty, sc_cont = k })
= w `mkMultMul` contHoleScaling k
where
(w, _, _) = splitFunTy fun_ty
contHoleScaling (ApplyToTy { sc_cont = k }) = contHoleScaling k
contHoleScaling (ApplyToVal { sc_cont = k }) = contHoleScaling k
contHoleScaling (TickIt _ k) = contHoleScaling k
-------------------
countArgs :: SimplCont -> Int
-- Count all arguments, including types, coercions,
-- and other values; skipping over casts.
countArgs (ApplyToTy { sc_cont = cont }) = 1 + countArgs cont
countArgs (ApplyToVal { sc_cont = cont }) = 1 + countArgs cont
countArgs (CastIt _ cont) = countArgs cont
countArgs _ = 0
countValArgs :: SimplCont -> Int
-- Count value arguments only
countValArgs (ApplyToTy { sc_cont = cont }) = countValArgs cont
countValArgs (ApplyToVal { sc_cont = cont }) = 1 + countValArgs cont
countValArgs (CastIt _ cont) = countValArgs cont
countValArgs _ = 0
-------------------
contArgs :: SimplCont -> (Bool, [ArgSummary], SimplCont)
-- Summarises value args, discards type args and coercions
-- The returned continuation of the call is only used to
-- answer questions like "are you interesting?"
contArgs cont
| lone cont = (True, [], cont)
| otherwise = go [] cont
where
lone (ApplyToTy {}) = False -- See Note [Lone variables] in GHC.Core.Unfold
lone (ApplyToVal {}) = False -- NB: even a type application or cast
lone (CastIt {}) = False -- stops it being "lone"
lone _ = True
go args (ApplyToVal { sc_arg = arg, sc_env = se, sc_cont = k })
= go (is_interesting arg se : args) k
go args (ApplyToTy { sc_cont = k }) = go args k
go args (CastIt _ k) = go args k
go args k = (False, reverse args, k)
is_interesting arg se = interestingArg se arg
-- Do *not* use short-cutting substitution here
-- because we want to get as much IdInfo as possible
-- | Describes how the 'SimplCont' will evaluate the hole as a 'SubDemand'.
-- This can be more insightful than the limited syntactic context that
-- 'SimplCont' provides, because the 'Stop' constructor might carry a useful
-- 'SubDemand'.
-- For example, when simplifying the argument `e` in `f e` and `f` has the
-- demand signature `<MP(S,A)>`, this function will give you back `P(S,A)` when
-- simplifying `e`.
--
-- PRECONDITION: Don't call with 'ApplyToVal'. We haven't thoroughly thought
-- about what to do then and no call sites so far seem to care.
contEvalContext :: SimplCont -> SubDemand
contEvalContext k = case k of
(Stop _ _ sd) -> sd
(TickIt _ k) -> contEvalContext k
(CastIt _ k) -> contEvalContext k
ApplyToTy{sc_cont=k} -> contEvalContext k
-- ApplyToVal{sc_cont=k} -> mkCalledOnceDmd $ contEvalContext k
-- Not 100% sure that's correct, . Here's an example:
-- f (e x) and f :: <SC(S,C(1,L))>
-- then what is the evaluation context of 'e' when we simplify it? E.g.,
-- simpl e (ApplyToVal x $ Stop "C(S,C(1,L))")
-- then it *should* be "C(1,C(S,C(1,L))", so perhaps correct after all.
-- But for now we just panic:
ApplyToVal{} -> pprPanic "contEvalContext" (ppr k)
StrictArg{sc_fun=fun_info} -> subDemandIfEvaluated (Partial.head (ai_dmds fun_info))
StrictBind{sc_bndr=bndr} -> subDemandIfEvaluated (idDemandInfo bndr)
Select{} -> topSubDmd
-- Perhaps reconstruct the demand on the scrutinee by looking at field
-- and case binder dmds, see addCaseBndrDmd. No priority right now.
-------------------
mkArgInfo :: SimplEnv -> RuleEnv -> Id -> SimplCont -> ArgInfo
mkArgInfo env rule_base fun cont
| n_val_args < idArity fun -- Note [Unsaturated functions]
= ArgInfo { ai_fun = fun, ai_args = []
, ai_rewrite = fun_rewrite
, ai_encl = False
, ai_dmds = vanilla_dmds
, ai_discs = vanilla_discounts }
| otherwise
= ArgInfo { ai_fun = fun
, ai_args = []
, ai_rewrite = fun_rewrite
, ai_encl = fun_has_rules || contHasRules cont
, ai_dmds = add_type_strictness (idType fun) arg_dmds
, ai_discs = arg_discounts }
where
n_val_args = countValArgs cont
fun_rewrite = mkRewriteCall fun rule_base
fun_has_rules = case fun_rewrite of
TryRules {} -> True
_ -> False
vanilla_discounts, arg_discounts :: [Int]
vanilla_discounts = repeat 0
arg_discounts = case idUnfolding fun of
CoreUnfolding {uf_guidance = UnfIfGoodArgs {ug_args = discounts}}
-> discounts ++ vanilla_discounts
_ -> vanilla_discounts
vanilla_dmds, arg_dmds :: [Demand]
vanilla_dmds = repeat topDmd
arg_dmds
| not (seInline env)
= vanilla_dmds -- See Note [Do not expose strictness if sm_inline=False]
| otherwise
= -- add_type_str fun_ty $
case splitDmdSig (idDmdSig fun) of
(demands, result_info)
| not (demands `lengthExceeds` n_val_args)
-> -- Enough args, use the strictness given.
-- For bottoming functions we used to pretend that the arg
-- is lazy, so that we don't treat the arg as an
-- interesting context. This avoids substituting
-- top-level bindings for (say) strings into
-- calls to error. But now we are more careful about
-- inlining lone variables, so its ok
-- (see GHC.Core.Op.Simplify.Utils.analyseCont)
if isDeadEndDiv result_info then
demands -- Finite => result is bottom
else
demands ++ vanilla_dmds
| otherwise
-> warnPprTrace True "More demands than arity" (ppr fun <+> ppr (idArity fun)
<+> ppr n_val_args <+> ppr demands) $
vanilla_dmds -- Not enough args, or no strictness
add_type_strictness :: Type -> [Demand] -> [Demand]
-- If the function arg types are strict, record that in the 'strictness bits'
-- No need to instantiate because unboxed types (which dominate the strict
-- types) can't instantiate type variables.
-- add_type_strictness is done repeatedly (for each call);
-- might be better once-for-all in the function
-- But beware primops/datacons with no strictness
add_type_strictness fun_ty dmds
| null dmds = []
| Just (_, fun_ty') <- splitForAllTyCoVar_maybe fun_ty
= add_type_strictness fun_ty' dmds -- Look through foralls
| Just (_, _, arg_ty, fun_ty') <- splitFunTy_maybe fun_ty -- Add strict-type info
, dmd : rest_dmds <- dmds
, let dmd'
| Just Unlifted <- typeLevity_maybe arg_ty
= strictifyDmd dmd
| otherwise
-- Something that's not definitely unlifted.
-- If the type is representation-polymorphic, we can't know whether
-- it's strict.
= dmd
= dmd' : add_type_strictness fun_ty' rest_dmds
| otherwise
= dmds
{- Note [Unsaturated functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (test eyeball/inline4)
x = a:as
y = f x
where f has arity 2. Then we do not want to inline 'x', because
it'll just be floated out again. Even if f has lots of discounts
on its first argument -- it must be saturated for these to kick in
Note [Do not expose strictness if sm_inline=False]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#15163 showed a case in which we had
{-# INLINE [1] zip #-}
zip = undefined
{-# RULES "foo" forall as bs. stream (zip as bs) = ..blah... #-}
If we expose zip's bottoming nature when simplifying the LHS of the
RULE we get
{-# RULES "foo" forall as bs.
stream (case zip of {}) = ..blah... #-}
discarding the arguments to zip. Usually this is fine, but on the
LHS of a rule it's not, because 'as' and 'bs' are now not bound on
the LHS.
This is a pretty pathological example, so I'm not losing sleep over
it, but the simplest solution was to check sm_inline; if it is False,
which it is on the LHS of a rule (see updModeForRules), then don't
make use of the strictness info for the function.
-}
{-
************************************************************************
* *
Interesting arguments
* *
************************************************************************
Note [Interesting call context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to avoid inlining an expression where there can't possibly be
any gain, such as in an argument position. Hence, if the continuation
is interesting (eg. a case scrutinee that isn't just a seq, application etc.)
then we inline, otherwise we don't.
Previously some_benefit used to return True only if the variable was
applied to some value arguments. This didn't work:
let x = _coerce_ (T Int) Int (I# 3) in
case _coerce_ Int (T Int) x of
I# y -> ....
we want to inline x, but can't see that it's a constructor in a case
scrutinee position, and some_benefit is False.
Another example:
dMonadST = _/\_ t -> :Monad (g1 _@_ t, g2 _@_ t, g3 _@_ t)
.... case dMonadST _@_ x0 of (a,b,c) -> ....
we'd really like to inline dMonadST here, but we *don't* want to
inline if the case expression is just
case x of y { DEFAULT -> ... }
since we can just eliminate this case instead (x is in WHNF). Similar
applies when x is bound to a lambda expression. Hence
contIsInteresting looks for case expressions with just a single
default case.
Note [No case of case is boring]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see
case f x of <alts>
we'd usually treat the context as interesting, to encourage 'f' to
inline. But if case-of-case is off, it's really not so interesting
after all, because we are unlikely to be able to push the case
expression into the branches of any case in f's unfolding. So, to
reduce unnecessary code expansion, we just make the context look boring.
This made a small compile-time perf improvement in perf/compiler/T6048,
and it looks plausible to me.
Note [Seq is boring]
~~~~~~~~~~~~~~~~~~~~
Suppose
f x = case v of
True -> Just x
False -> Just (x-1)
Now consider these cases:
1. case f x of b{-dead-} { DEFAULT -> blah[no b] }
Inlining (f x) will allow us to avoid ever allocating (Just x),
since the case binder `b` is dead. We will end up with a
join point for blah, thus
join j = blah in
case v of { True -> j; False -> j }
which will turn into (case v of DEFAULT -> blah
All good
2. case f x of b { DEFAULT -> blah[b] }
Inlining (f x) will still mean we allocate (Just x). We'd get:
join j b = blah[b]
case v of { True -> j (Just x); False -> j (Just (x-1)) }
No new optimisations are revealed. Nothing is gained.
(This is the situation in T22317.)
2a. case g x of b { (x{-dead-}, x{-dead-}) -> blah[b, no x, no y] }
Instead of DEFAULT we have a single constructor alternative
with all dead binders. This is just a variant of (2); no
gain from inlining (f x)
3. case f x of b { Just y -> blah[y,b] }
Inlining (f x) will mean we still allocate (Just x),
but we also get to bind `y` without fetching it out of the Just, thus
join j y b = blah[y,b]
case v of { True -> j x (Just x)
; False -> let y = x-1 in j y (Just y) }
Inlining (f x) has a small benefit, perhaps.
(To T14955 it makes a surprisingly large difference of ~30% to inline here.)
Conclusion: if the case expression
* Has a non-dead case-binder
* Has one alternative
* All the binders in the alternative are dead
then the `case` is just a strict let-binding, and the scrutinee is
BoringCtxt (don't inline). Otherwise CaseCtxt.
-}
lazyArgContext :: ArgInfo -> CallCtxt
-- Use this for lazy arguments
lazyArgContext (ArgInfo { ai_encl = encl_rules, ai_discs = discs })
| encl_rules = RuleArgCtxt
| disc:_ <- discs, disc > 0 = DiscArgCtxt -- Be keener here
| otherwise = BoringCtxt -- Nothing interesting
strictArgContext :: ArgInfo -> CallCtxt
strictArgContext (ArgInfo { ai_encl = encl_rules, ai_discs = discs })
-- Use this for strict arguments
| encl_rules = RuleArgCtxt
| disc:_ <- discs, disc > 0 = DiscArgCtxt -- Be keener here
| otherwise = RhsCtxt NonRecursive
-- Why RhsCtxt? if we see f (g x), and f is strict, we
-- want to be a bit more eager to inline g, because it may
-- expose an eval (on x perhaps) that can be eliminated or
-- shared. I saw this in nofib 'boyer2', RewriteFuns.onewayunify1
-- It's worth an 18% improvement in allocation for this
-- particular benchmark; 5% on 'mate' and 1.3% on 'multiplier'
--
-- Why NonRecursive? Becuase it's a bit like
-- let a = g x in f a
interestingCallContext :: SimplEnv -> SimplCont -> CallCtxt
-- See Note [Interesting call context]
interestingCallContext env cont
= interesting cont
where
interesting (Select {sc_alts=alts, sc_bndr=case_bndr})
| not (seCaseCase env) = BoringCtxt -- See Note [No case of case is boring]
| [Alt _ bs _] <- alts
, all isDeadBinder bs
, not (isDeadBinder case_bndr) = BoringCtxt -- See Note [Seq is boring]
| otherwise = CaseCtxt
interesting (ApplyToVal {}) = ValAppCtxt
-- Can happen if we have (f Int |> co) y
-- If f has an INLINE prag we need to give it some
-- motivation to inline. See Note [Cast then apply]
-- in GHC.Core.Unfold
interesting (StrictArg { sc_fun = fun }) = strictArgContext fun
interesting (StrictBind {}) = BoringCtxt
interesting (Stop _ cci _) = cci
interesting (TickIt _ k) = interesting k
interesting (ApplyToTy { sc_cont = k }) = interesting k
interesting (CastIt _ k) = interesting k
-- If this call is the arg of a strict function, the context
-- is a bit interesting. If we inline here, we may get useful
-- evaluation information to avoid repeated evals: e.g.
-- x + (y * z)
-- Here the contIsInteresting makes the '*' keener to inline,
-- which in turn exposes a constructor which makes the '+' inline.
-- Assuming that +,* aren't small enough to inline regardless.
--
-- It's also very important to inline in a strict context for things
-- like
-- foldr k z (f x)
-- Here, the context of (f x) is strict, and if f's unfolding is
-- a build it's *great* to inline it here. So we must ensure that
-- the context for (f x) is not totally uninteresting.
contHasRules :: SimplCont -> Bool
-- If the argument has form (f x y), where x,y are boring,
-- and f is marked INLINE, then we don't want to inline f.
-- But if the context of the argument is
-- g (f x y)
-- where g has rules, then we *do* want to inline f, in case it
-- exposes a rule that might fire. Similarly, if the context is
-- h (g (f x x))
-- where h has rules, then we do want to inline f. So contHasRules
-- tries to see if the context of the f-call is a call to a function
-- with rules.
--
-- The ai_encl flag makes this happen; if it's
-- set, the inliner gets just enough keener to inline f
-- regardless of how boring f's arguments are, if it's marked INLINE
--
-- The alternative would be to *always* inline an INLINE function,
-- regardless of how boring its context is; but that seems overkill
-- For example, it'd mean that wrapper functions were always inlined
contHasRules cont
= go cont
where
go (ApplyToVal { sc_cont = cont }) = go cont
go (ApplyToTy { sc_cont = cont }) = go cont
go (CastIt _ cont) = go cont
go (StrictArg { sc_fun = fun }) = ai_encl fun
go (Stop _ RuleArgCtxt _) = True
go (TickIt _ c) = go c
go (Select {}) = False
go (StrictBind {}) = False -- ??
go (Stop _ _ _) = False
{- Note [Interesting arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An argument is interesting if it deserves a discount for unfoldings
with a discount in that argument position. The idea is to avoid
unfolding a function that is applied only to variables that have no
unfolding (i.e. they are probably lambda bound): f x y z There is
little point in inlining f here.
Generally, *values* (like (C a b) and (\x.e)) deserve discounts. But
we must look through lets, eg (let x = e in C a b), because the let will
float, exposing the value, if we inline. That makes it different to
exprIsHNF.
Before 2009 we said it was interesting if the argument had *any* structure
at all; i.e. (hasSomeUnfolding v). But does too much inlining; see #3016.
But we don't regard (f x y) as interesting, unless f is unsaturated.
If it's saturated and f hasn't inlined, then it's probably not going
to now!
Note [Conlike is interesting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f d = ...((*) d x y)...
... f (df d')...
where df is con-like. Then we'd really like to inline 'f' so that the
rule for (*) (df d) can fire. To do this
a) we give a discount for being an argument of a class-op (eg (*) d)
b) we say that a con-like argument (eg (df d)) is interesting
-}
interestingArg :: SimplEnv -> CoreExpr -> ArgSummary
-- See Note [Interesting arguments]
interestingArg env e = go env 0 e
where
-- n is # value args to which the expression is applied
go env n (Var v)
= case substId env v of
DoneId v' -> go_var n v'
DoneEx e _ -> go (zapSubstEnv env) n e
ContEx tvs cvs ids e -> go (setSubstEnv env tvs cvs ids) n e
go _ _ (Lit l)
| isLitRubbish l = TrivArg -- Leads to unproductive inlining in WWRec, #20035
| otherwise = ValueArg
go _ _ (Type _) = TrivArg
go _ _ (Coercion _) = TrivArg
go env n (App fn (Type _)) = go env n fn
go env n (App fn _) = go env (n+1) fn
go env n (Tick _ a) = go env n a
go env n (Cast e _) = go env n e
go env n (Lam v e)
| isTyVar v = go env n e
| n>0 = NonTrivArg -- (\x.b) e is NonTriv
| otherwise = ValueArg
go _ _ (Case {}) = NonTrivArg
go env n (Let b e) = case go env' n e of
ValueArg -> ValueArg
_ -> NonTrivArg
where
env' = env `addNewInScopeIds` bindersOf b
go_var n v
| isConLikeId v = ValueArg -- Experimenting with 'conlike' rather that
-- data constructors here
| idArity v > n = ValueArg -- Catches (eg) primops with arity but no unfolding
| n > 0 = NonTrivArg -- Saturated or unknown call
| conlike_unfolding = ValueArg -- n==0; look for an interesting unfolding
-- See Note [Conlike is interesting]
| otherwise = TrivArg -- n==0, no useful unfolding
where
conlike_unfolding = isConLikeUnfolding (idUnfolding v)
{-
************************************************************************
* *
SimplMode
* *
************************************************************************
-}
updModeForStableUnfoldings :: Activation -> SimplMode -> SimplMode
-- See Note [The environments of the Simplify pass]
updModeForStableUnfoldings unf_act current_mode
= current_mode { sm_phase = phaseFromActivation unf_act
, sm_eta_expand = False
, sm_inline = True }
-- sm_eta_expand: see Note [Eta expansion in stable unfoldings and rules]
-- sm_rules: just inherit; sm_rules might be "off"
-- because of -fno-enable-rewrite-rules
where
phaseFromActivation (ActiveAfter _ n) = Phase n
phaseFromActivation _ = InitialPhase
updModeForRules :: SimplMode -> SimplMode
-- See Note [Simplifying rules]
-- See Note [The environments of the Simplify pass]
updModeForRules current_mode
= current_mode { sm_phase = InitialPhase
, sm_inline = False
-- See Note [Do not expose strictness if sm_inline=False]
, sm_rules = False
, sm_cast_swizzle = False
-- See Note [Cast swizzling on rule LHSs]
, sm_eta_expand = False }
{- Note [Simplifying rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When simplifying a rule LHS, refrain from /any/ inlining or applying
of other RULES. Doing anything to the LHS is plain confusing, because
it means that what the rule matches is not what the user
wrote. c.f. #10595, and #10528.
* sm_inline, sm_rules: inlining (or applying rules) on rule LHSs risks
introducing Ticks into the LHS, which makes matching
trickier. #10665, #10745.
Doing this to either side confounds tools like HERMIT, which seek to reason
about and apply the RULES as originally written. See #10829.
See also Note [Do not expose strictness if sm_inline=False]
* sm_eta_expand: the template (LHS) of a rule must only mention coercion
/variables/ not arbitrary coercions. See Note [Casts in the template] in
GHC.Core.Rules. Eta expansion can create new coercions; so we switch
it off.
There is, however, one case where we are pretty much /forced/ to transform the
LHS of a rule: postInlineUnconditionally. For instance, in the case of
let f = g @Int in f
We very much want to inline f into the body of the let. However, to do so (and
be able to safely drop f's binding) we must inline into all occurrences of f,
including those in the LHS of rules.
This can cause somewhat surprising results; for instance, in #18162 we found
that a rule template contained ticks in its arguments, because
postInlineUnconditionally substituted in a trivial expression that contains
ticks. See Note [Tick annotations in RULE matching] in GHC.Core.Rules for
details.
Note [Cast swizzling on rule LHSs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the LHS of a RULE we may have
(\x. blah |> CoVar cv)
where `cv` is a coercion variable. Critically, we really only want
coercion /variables/, not general coercions, on the LHS of a RULE. So
we don't want to swizzle this to
(\x. blah) |> (Refl xty `FunCo` CoVar cv)
So we switch off cast swizzling in updModeForRules.
Note [Eta expansion in stable unfoldings and rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SPJ Jul 22: whether or not eta-expansion is switched on in a stable
unfolding, or the RHS of a RULE, seems to be a bit moot. But switching
it on adds clutter, so I'm experimenting with switching off
eta-expansion in such places.
In the olden days, we really /wanted/ to switch it off.
Old note: If we have a stable unfolding
f :: Ord a => a -> IO ()
-- Unfolding template
-- = /\a \(d:Ord a) (x:a). bla
we do not want to eta-expand to
f :: Ord a => a -> IO ()
-- Unfolding template
-- = (/\a \(d:Ord a) (x:a) (eta:State#). bla eta) |> co
because now specialisation of the overloading doesn't work properly
(see Note [Specialisation shape] in GHC.Core.Opt.Specialise), #9509.
So we disable eta-expansion in stable unfoldings.
But this old note is no longer relevant because the specialiser has
improved: see Note [Account for casts in binding] in
GHC.Core.Opt.Specialise. So we seem to have a free choice.
Note [Inlining in gentle mode]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Something is inlined if
(i) the sm_inline flag is on, AND
(ii) the thing has an INLINE pragma, AND
(iii) the thing is inlinable in the earliest phase.
Example of why (iii) is important:
{-# INLINE [~1] g #-}
g = ...
{-# INLINE f #-}
f x = g (g x)
If we were to inline g into f's inlining, then an importing module would
never be able to do
f e --> g (g e) ---> RULE fires
because the stable unfolding for f has had g inlined into it.
On the other hand, it is bad not to do ANY inlining into an
stable unfolding, because then recursive knots in instance declarations
don't get unravelled.
However, *sometimes* SimplGently must do no call-site inlining at all
(hence sm_inline = False). Before full laziness we must be careful
not to inline wrappers, because doing so inhibits floating
e.g. ...(case f x of ...)...
==> ...(case (case x of I# x# -> fw x#) of ...)...
==> ...(case x of I# x# -> case fw x# of ...)...
and now the redex (f x) isn't floatable any more.
The no-inlining thing is also important for Template Haskell. You might be
compiling in one-shot mode with -O2; but when TH compiles a splice before
running it, we don't want to use -O2. Indeed, we don't want to inline
anything, because the byte-code interpreter might get confused about
unboxed tuples and suchlike.
Note [Simplifying inside stable unfoldings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must take care with simplification inside stable unfoldings (which come from
INLINE pragmas).
First, consider the following example
let f = \pq -> BIG
in
let g = \y -> f y y
{-# INLINE g #-}
in ...g...g...g...g...g...
Now, if that's the ONLY occurrence of f, it might be inlined inside g,
and thence copied multiple times when g is inlined. HENCE we treat
any occurrence in a stable unfolding as a multiple occurrence, not a single
one; see OccurAnal.addRuleUsage.
Second, we do want *do* to some modest rules/inlining stuff in stable
unfoldings, partly to eliminate senseless crap, and partly to break
the recursive knots generated by instance declarations.
However, suppose we have
{-# INLINE <act> f #-}
f = <rhs>
meaning "inline f in phases p where activation <act>(p) holds".
Then what inlinings/rules can we apply to the copy of <rhs> captured in
f's stable unfolding? Our model is that literally <rhs> is substituted for
f when it is inlined. So our conservative plan (implemented by
updModeForStableUnfoldings) is this:
-------------------------------------------------------------
When simplifying the RHS of a stable unfolding, set the phase
to the phase in which the stable unfolding first becomes active
-------------------------------------------------------------
That ensures that
a) Rules/inlinings that *cease* being active before p will
not apply to the stable unfolding, consistent with it being
inlined in its *original* form in phase p.
b) Rules/inlinings that only become active *after* p will
not apply to the stable unfolding, again to be consistent with
inlining the *original* rhs in phase p.
For example,
{-# INLINE f #-}
f x = ...g...
{-# NOINLINE [1] g #-}
g y = ...
{-# RULE h g = ... #-}
Here we must not inline g into f's RHS, even when we get to phase 0,
because when f is later inlined into some other module we want the
rule for h to fire.
Similarly, consider
{-# INLINE f #-}
f x = ...g...
g y = ...
and suppose that there are auto-generated specialisations and a strictness
wrapper for g. The specialisations get activation AlwaysActive, and the
strictness wrapper get activation (ActiveAfter 0). So the strictness
wrepper fails the test and won't be inlined into f's stable unfolding. That
means f can inline, expose the specialised call to g, so the specialisation
rules can fire.
A note about wrappers
~~~~~~~~~~~~~~~~~~~~~
It's also important not to inline a worker back into a wrapper.
A wrapper looks like
wraper = inline_me (\x -> ...worker... )
Normally, the inline_me prevents the worker getting inlined into
the wrapper (initially, the worker's only call site!). But,
if the wrapper is sure to be called, the strictness analyser will
mark it 'demanded', so when the RHS is simplified, it'll get an ArgOf
continuation.
-}
activeUnfolding :: SimplMode -> Id -> Bool
activeUnfolding mode id
| isCompulsoryUnfolding (realIdUnfolding id)
= True -- Even sm_inline can't override compulsory unfoldings
| otherwise
= isActive (sm_phase mode) (idInlineActivation id)
&& sm_inline mode
-- `or` isStableUnfolding (realIdUnfolding id)
-- Inline things when
-- (a) they are active
-- (b) sm_inline says so, except that for stable unfoldings
-- (ie pragmas) we inline anyway
getUnfoldingInRuleMatch :: SimplEnv -> InScopeEnv
-- When matching in RULE, we want to "look through" an unfolding
-- (to see a constructor) if *rules* are on, even if *inlinings*
-- are not. A notable example is DFuns, which really we want to
-- match in rules like (op dfun) in gentle mode. Another example
-- is 'otherwise' which we want exprIsConApp_maybe to be able to
-- see very early on
getUnfoldingInRuleMatch env
= ISE in_scope id_unf
where
in_scope = seInScope env
phase = sePhase env
id_unf = whenActiveUnfoldingFun (isActive phase)
-- When sm_rules was off we used to test for a /stable/ unfolding,
-- but that seems wrong (#20941)
----------------------
activeRule :: SimplMode -> Activation -> Bool
-- Nothing => No rules at all
activeRule mode
| not (sm_rules mode) = \_ -> False -- Rewriting is off
| otherwise = isActive (sm_phase mode)
{-
************************************************************************
* *
preInlineUnconditionally
* *
************************************************************************
preInlineUnconditionally
~~~~~~~~~~~~~~~~~~~~~~~~
@preInlineUnconditionally@ examines a bndr to see if it is used just
once in a completely safe way, so that it is safe to discard the
binding inline its RHS at the (unique) usage site, REGARDLESS of how
big the RHS might be. If this is the case we don't simplify the RHS
first, but just inline it un-simplified.
This is much better than first simplifying a perhaps-huge RHS and then
inlining and re-simplifying it. Indeed, it can be at least quadratically
better. Consider
x1 = e1
x2 = e2[x1]
x3 = e3[x2]
...etc...
xN = eN[xN-1]
We may end up simplifying e1 N times, e2 N-1 times, e3 N-3 times etc.
This can happen with cascades of functions too:
f1 = \x1.e1
f2 = \xs.e2[f1]
f3 = \xs.e3[f3]
...etc...
THE MAIN INVARIANT is this:
---- preInlineUnconditionally invariant -----
IF preInlineUnconditionally chooses to inline x = <rhs>
THEN doing the inlining should not change the occurrence
info for the free vars of <rhs>
----------------------------------------------
For example, it's tempting to look at trivial binding like
x = y
and inline it unconditionally. But suppose x is used many times,
but this is the unique occurrence of y. Then inlining x would change
y's occurrence info, which breaks the invariant. It matters: y
might have a BIG rhs, which will now be dup'd at every occurrence of x.
Even RHSs labelled InlineMe aren't caught here, because there might be
no benefit from inlining at the call site.
[Sept 01] Don't unconditionally inline a top-level thing, because that
can simply make a static thing into something built dynamically. E.g.
x = (a,b)
main = \s -> h x
[Remember that we treat \s as a one-shot lambda.] No point in
inlining x unless there is something interesting about the call site.
But watch out: if you aren't careful, some useful foldr/build fusion
can be lost (most notably in spectral/hartel/parstof) because the
foldr didn't see the build. Doing the dynamic allocation isn't a big
deal, in fact, but losing the fusion can be. But the right thing here
seems to be to do a callSiteInline based on the fact that there is
something interesting about the call site (it's strict). Hmm. That
seems a bit fragile.
Conclusion: inline top level things gaily until FinalPhase (the last
phase), at which point don't.
Note [pre/postInlineUnconditionally in gentle mode]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Even in gentle mode we want to do preInlineUnconditionally. The
reason is that too little clean-up happens if you don't inline
use-once things. Also a bit of inlining is *good* for full laziness;
it can expose constant sub-expressions. Example in
spectral/mandel/Mandel.hs, where the mandelset function gets a useful
let-float if you inline windowToViewport
However, as usual for Gentle mode, do not inline things that are
inactive in the initial stages. See Note [Gentle mode].
Note [Stable unfoldings and preInlineUnconditionally]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Surprisingly, do not pre-inline-unconditionally Ids with INLINE pragmas!
Example
{-# INLINE f #-}
f :: Eq a => a -> a
f x = ...
fInt :: Int -> Int
fInt = f Int dEqInt
...fInt...fInt...fInt...
Here f occurs just once, in the RHS of fInt. But if we inline it there
it might make fInt look big, and we'll lose the opportunity to inline f
at each of fInt's call sites. The INLINE pragma will only inline when
the application is saturated for exactly this reason; and we don't
want PreInlineUnconditionally to second-guess it. A live example is #3736.
c.f. Note [Stable unfoldings and postInlineUnconditionally]
NB: this only applies for INLINE things. Do /not/ switch off
preInlineUnconditionally for
* INLINABLE. It just says to GHC "inline this if you like". If there
is a unique occurrence, we want to inline the stable unfolding, not
the RHS.
* NONLINE[n] just switches off inlining until phase n. We should
respect that, but after phase n, just behave as usual.
* NoUserInlinePrag. There is no pragma at all. This ends up on wrappers.
(See #18815.)
Note [Top-level bottoming Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Don't inline top-level Ids that are bottoming, even if they are used just
once, because FloatOut has gone to some trouble to extract them out.
Inlining them won't make the program run faster!
Note [Do not inline CoVars unconditionally]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Coercion variables appear inside coercions, and the RHS of a let-binding
is a term (not a coercion) so we can't necessarily inline the latter in
the former.
-}
preInlineUnconditionally
:: SimplEnv -> TopLevelFlag -> InId
-> InExpr -> StaticEnv -- These two go together
-> Maybe SimplEnv -- Returned env has extended substitution
-- Precondition: rhs satisfies the let-can-float invariant
-- See Note [Core let-can-float invariant] in GHC.Core
-- Reason: we don't want to inline single uses, or discard dead bindings,
-- for unlifted, side-effect-ful bindings
preInlineUnconditionally env top_lvl bndr rhs rhs_env
| not pre_inline_unconditionally = Nothing
| not active = Nothing
| isTopLevel top_lvl && isDeadEndId bndr = Nothing -- Note [Top-level bottoming Ids]
| isCoVar bndr = Nothing -- Note [Do not inline CoVars unconditionally]
| isExitJoinId bndr = Nothing -- Note [Do not inline exit join points]
-- in module Exitify
| not (one_occ (idOccInfo bndr)) = Nothing
| not (isStableUnfolding unf) = Just $! (extend_subst_with rhs)
-- See Note [Stable unfoldings and preInlineUnconditionally]
| not (isInlinePragma inline_prag)
, Just inl <- maybeUnfoldingTemplate unf = Just $! (extend_subst_with inl)
| otherwise = Nothing
where
unf = idUnfolding bndr
extend_subst_with inl_rhs = extendIdSubst env bndr $! (mkContEx rhs_env inl_rhs)
one_occ IAmDead = True -- Happens in ((\x.1) v)
one_occ OneOcc{ occ_n_br = 1
, occ_in_lam = NotInsideLam } = isNotTopLevel top_lvl || early_phase
one_occ OneOcc{ occ_n_br = 1
, occ_in_lam = IsInsideLam
, occ_int_cxt = IsInteresting } = canInlineInLam rhs
one_occ _ = False
pre_inline_unconditionally = sePreInline env
active = isActive (sePhase env) (inlinePragmaActivation inline_prag)
-- See Note [pre/postInlineUnconditionally in gentle mode]
inline_prag = idInlinePragma bndr
-- Be very careful before inlining inside a lambda, because (a) we must not
-- invalidate occurrence information, and (b) we want to avoid pushing a
-- single allocation (here) into multiple allocations (inside lambda).
-- Inlining a *function* with a single *saturated* call would be ok, mind you.
-- || (if is_cheap && not (canInlineInLam rhs) then pprTrace "preinline" (ppr bndr <+> ppr rhs) ok else ok)
-- where
-- is_cheap = exprIsCheap rhs
-- ok = is_cheap && int_cxt
-- int_cxt The context isn't totally boring
-- E.g. let f = \ab.BIG in \y. map f xs
-- Don't want to substitute for f, because then we allocate
-- its closure every time the \y is called
-- But: let f = \ab.BIG in \y. map (f y) xs
-- Now we do want to substitute for f, even though it's not
-- saturated, because we're going to allocate a closure for
-- (f y) every time round the loop anyhow.
-- canInlineInLam => free vars of rhs are (Once in_lam) or Many,
-- so substituting rhs inside a lambda doesn't change the occ info.
-- Sadly, not quite the same as exprIsHNF.
canInlineInLam (Lit _) = True
canInlineInLam (Lam b e) = isRuntimeVar b || canInlineInLam e
canInlineInLam (Tick t e) = not (tickishIsCode t) && canInlineInLam e
canInlineInLam _ = False
-- not ticks. Counting ticks cannot be duplicated, and non-counting
-- ticks around a Lam will disappear anyway.
early_phase = sePhase env /= FinalPhase
-- If we don't have this early_phase test, consider
-- x = length [1,2,3]
-- The full laziness pass carefully floats all the cons cells to
-- top level, and preInlineUnconditionally floats them all back in.
-- Result is (a) static allocation replaced by dynamic allocation
-- (b) many simplifier iterations because this tickles
-- a related problem; only one inlining per pass
--
-- On the other hand, I have seen cases where top-level fusion is
-- lost if we don't inline top level thing (e.g. string constants)
-- Hence the test for phase zero (which is the phase for all the final
-- simplifications). Until phase zero we take no special notice of
-- top level things, but then we become more leery about inlining
-- them.
{-
************************************************************************
* *
postInlineUnconditionally
* *
************************************************************************
postInlineUnconditionally
~~~~~~~~~~~~~~~~~~~~~~~~~
@postInlineUnconditionally@ decides whether to unconditionally inline
a thing based on the form of its RHS; in particular if it has a
trivial RHS. If so, we can inline and discard the binding altogether.
NB: a loop breaker has must_keep_binding = True and non-loop-breakers
only have *forward* references. Hence, it's safe to discard the binding
NOTE: This isn't our last opportunity to inline. We're at the binding
site right now, and we'll get another opportunity when we get to the
occurrence(s)
Note that we do this unconditional inlining only for trivial RHSs.
Don't inline even WHNFs inside lambdas; doing so may simply increase
allocation when the function is called. This isn't the last chance; see
NOTE above.
NB: Even inline pragmas (e.g. IMustBeINLINEd) are ignored here Why?
Because we don't even want to inline them into the RHS of constructor
arguments. See NOTE above
NB: At one time even NOINLINE was ignored here: if the rhs is trivial
it's best to inline it anyway. We often get a=E; b=a from desugaring,
with both a and b marked NOINLINE. But that seems incompatible with
our new view that inlining is like a RULE, so I'm sticking to the 'active'
story for now.
NB: unconditional inlining of this sort can introduce ticks in places that
may seem surprising; for instance, the LHS of rules. See Note [Simplifying
rules] for details.
-}
postInlineUnconditionally
:: SimplEnv -> BindContext
-> OutId -- The binder (*not* a CoVar), including its unfolding
-> OccInfo -- From the InId
-> OutExpr
-> Bool
-- Precondition: rhs satisfies the let-can-float invariant
-- See Note [Core let-can-float invariant] in GHC.Core
-- Reason: we don't want to inline single uses, or discard dead bindings,
-- for unlifted, side-effect-ful bindings
postInlineUnconditionally env bind_cxt bndr occ_info rhs
| not active = False
| isWeakLoopBreaker occ_info = False -- If it's a loop-breaker of any kind, don't inline
-- because it might be referred to "earlier"
| isStableUnfolding unfolding = False -- Note [Stable unfoldings and postInlineUnconditionally]
| isTopLevel (bindContextLevel bind_cxt)
= False -- Note [Top level and postInlineUnconditionally]
| exprIsTrivial rhs = True
| BC_Join {} <- bind_cxt -- See point (1) of Note [Duplicating join points]
, not (phase == FinalPhase) = False -- in Simplify.hs
| otherwise
= case occ_info of
OneOcc { occ_in_lam = in_lam, occ_int_cxt = int_cxt, occ_n_br = n_br }
-- See Note [Inline small things to avoid creating a thunk]
-> n_br < 100 -- See Note [Suppress exponential blowup]
&& smallEnoughToInline uf_opts unfolding -- Small enough to dup
-- ToDo: consider discount on smallEnoughToInline if int_cxt is true
--
-- NB: Do NOT inline arbitrarily big things, even if occ_n_br=1
-- Reason: doing so risks exponential behaviour. We simplify a big
-- expression, inline it, and simplify it again. But if the
-- very same thing happens in the big expression, we get
-- exponential cost!
-- PRINCIPLE: when we've already simplified an expression once,
-- make sure that we only inline it if it's reasonably small.
&& (in_lam == NotInsideLam ||
-- Outside a lambda, we want to be reasonably aggressive
-- about inlining into multiple branches of case
-- e.g. let x = <non-value>
-- in case y of { C1 -> ..x..; C2 -> ..x..; C3 -> ... }
-- Inlining can be a big win if C3 is the hot-spot, even if
-- the uses in C1, C2 are not 'interesting'
-- An example that gets worse if you add int_cxt here is 'clausify'
(isCheapUnfolding unfolding && int_cxt == IsInteresting))
-- isCheap => acceptable work duplication; in_lam may be true
-- int_cxt to prevent us inlining inside a lambda without some
-- good reason. See the notes on int_cxt in preInlineUnconditionally
IAmDead -> True -- This happens; for example, the case_bndr during case of
-- known constructor: case (a,b) of x { (p,q) -> ... }
-- Here x isn't mentioned in the RHS, so we don't want to
-- create the (dead) let-binding let x = (a,b) in ...
_ -> False
-- Here's an example that we don't handle well:
-- let f = if b then Left (\x.BIG) else Right (\y.BIG)
-- in \y. ....case f of {...} ....
-- Here f is used just once, and duplicating the case work is fine (exprIsCheap).
-- But
-- - We can't preInlineUnconditionally because that would invalidate
-- the occ info for b.
-- - We can't postInlineUnconditionally because the RHS is big, and
-- that risks exponential behaviour
-- - We can't call-site inline, because the rhs is big
-- Alas!
where
unfolding = idUnfolding bndr
uf_opts = seUnfoldingOpts env
phase = sePhase env
active = isActive phase (idInlineActivation bndr)
-- See Note [pre/postInlineUnconditionally in gentle mode]
{- Note [Inline small things to avoid creating a thunk]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The point of examining occ_info here is that for *non-values* that
occur outside a lambda, the call-site inliner won't have a chance
(because it doesn't know that the thing only occurs once). The
pre-inliner won't have gotten it either, if the thing occurs in more
than one branch So the main target is things like
let x = f y in
case v of
True -> case x of ...
False -> case x of ...
This is very important in practice; e.g. wheel-seive1 doubles
in allocation if you miss this out. And bits of GHC itself start
to allocate more. An egregious example is test perf/compiler/T14697,
where GHC.Driver.CmdLine.$wprocessArgs allocated hugely more.
Note [Suppress exponential blowup]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In #13253, and several related tickets, we got an exponential blowup
in code size from postInlineUnconditionally. The trouble comes when
we have
let j1a = case f y of { True -> p; False -> q }
j1b = case f y of { True -> q; False -> p }
j2a = case f (y+1) of { True -> j1a; False -> j1b }
j2b = case f (y+1) of { True -> j1b; False -> j1a }
...
in case f (y+10) of { True -> j10a; False -> j10b }
when there are many branches. In pass 1, postInlineUnconditionally
inlines j10a and j10b (they are both small). Now we have two calls
to j9a and two to j9b. In pass 2, postInlineUnconditionally inlines
all four of these calls, leaving four calls to j8a and j8b. Etc.
Yikes! This is exponential!
A possible plan: stop doing postInlineUnconditionally
for some fixed, smallish number of branches, say 4. But that turned
out to be bad: see Note [Inline small things to avoid creating a thunk].
And, as it happened, the problem with #13253 was solved in a
different way (Note [Duplicating StrictArg] in Simplify).
So I just set an arbitrary, high limit of 100, to stop any
totally exponential behaviour.
This still leaves the nasty possibility that /ordinary/ inlining (not
postInlineUnconditionally) might inline these join points, each of
which is individually quiet small. I'm still not sure what to do
about this (e.g. see #15488).
Note [Top level and postInlineUnconditionally]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don't do postInlineUnconditionally for top-level things (even for
ones that are trivial):
* Doing so will inline top-level error expressions that have been
carefully floated out by FloatOut. More generally, it might
replace static allocation with dynamic.
* Even for trivial expressions there's a problem. Consider
{-# RULE "foo" forall (xs::[T]). reverse xs = ruggle xs #-}
blah xs = reverse xs
ruggle = sort
In one simplifier pass we might fire the rule, getting
blah xs = ruggle xs
but in *that* simplifier pass we must not do postInlineUnconditionally
on 'ruggle' because then we'll have an unbound occurrence of 'ruggle'
If the rhs is trivial it'll be inlined by callSiteInline, and then
the binding will be dead and discarded by the next use of OccurAnal
* There is less point, because the main goal is to get rid of local
bindings used in multiple case branches.
* The inliner should inline trivial things at call sites anyway.
* The Id might be exported. We could check for that separately,
but since we aren't going to postInlineUnconditionally /any/
top-level bindings, we don't need to test.
Note [Stable unfoldings and postInlineUnconditionally]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Do not do postInlineUnconditionally if the Id has a stable unfolding,
otherwise we lose the unfolding. Example
-- f has stable unfolding with rhs (e |> co)
-- where 'e' is big
f = e |> co
Then there's a danger we'll optimise to
f' = e
f = f' |> co
and now postInlineUnconditionally, losing the stable unfolding on f. Now f'
won't inline because 'e' is too big.
c.f. Note [Stable unfoldings and preInlineUnconditionally]
************************************************************************
* *
Rebuilding a lambda
* *
************************************************************************
-}
rebuildLam :: SimplEnv
-> [OutBndr] -> OutExpr
-> SimplCont
-> SimplM OutExpr
-- (rebuildLam env bndrs body cont)
-- returns expr which means the same as \bndrs. body
--
-- But it tries
-- a) eta reduction, if that gives a trivial expression
-- b) eta expansion [only if there are some value lambdas]
--
-- NB: the SimplEnv already includes the [OutBndr] in its in-scope set
rebuildLam _env [] body _cont
= return body
rebuildLam env bndrs@(bndr:_) body cont
= {-# SCC "rebuildLam" #-} try_eta bndrs body
where
rec_ids = seRecIds env
in_scope = getInScope env -- Includes 'bndrs'
mb_rhs = contIsRhs cont
-- See Note [Eta reduction based on evaluation context]
eval_sd = contEvalContext cont
-- NB: cont is never ApplyToVal, because beta-reduction would
-- have happened. So contEvalContext can panic on ApplyToVal.
try_eta :: [OutBndr] -> OutExpr -> SimplM OutExpr
try_eta bndrs body
| -- Try eta reduction
seDoEtaReduction env
, Just etad_lam <- tryEtaReduce rec_ids bndrs body eval_sd
= do { tick (EtaReduction bndr)
; return etad_lam }
| -- Try eta expansion
Nothing <- mb_rhs -- See Note [Eta expanding lambdas]
, seEtaExpand env
, any isRuntimeVar bndrs -- Only when there is at least one value lambda already
, Just body_arity <- exprEtaExpandArity (seArityOpts env) body
= do { tick (EtaExpansion bndr)
; let body' = etaExpandAT in_scope body_arity body
; traceSmpl "eta expand" (vcat [text "before" <+> ppr body
, text "after" <+> ppr body'])
-- NB: body' might have an outer Cast, but if so
-- mk_lams will pull it further out, past 'bndrs' to the top
; return (mk_lams bndrs body') }
| otherwise
= return (mk_lams bndrs body)
mk_lams :: [OutBndr] -> OutExpr -> OutExpr
-- mk_lams pulls casts and ticks to the top
mk_lams bndrs body@(Lam {})
= mk_lams (bndrs ++ bndrs1) body1
where
(bndrs1, body1) = collectBinders body
mk_lams bndrs (Tick t expr)
| tickishFloatable t
= mkTick t (mk_lams bndrs expr)
mk_lams bndrs (Cast body co)
| -- Note [Casts and lambdas]
seCastSwizzle env
, not (any bad bndrs)
= mkCast (mk_lams bndrs body) (mkPiCos Representational bndrs co)
where
co_vars = tyCoVarsOfCo co
bad bndr = isCoVar bndr && bndr `elemVarSet` co_vars
mk_lams bndrs body
= mkLams bndrs body
{-
Note [Eta expanding lambdas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general we *do* want to eta-expand lambdas. Consider
f (\x -> case x of (a,b) -> \s -> blah)
where 's' is a state token, and hence can be eta expanded. This
showed up in the code for GHc.IO.Handle.Text.hPutChar, a rather
important function!
The eta-expansion will never happen unless we do it now. (Well, it's
possible that CorePrep will do it, but CorePrep only has a half-baked
eta-expander that can't deal with casts. So it's much better to do it
here.)
However, when the lambda is let-bound, as the RHS of a let, we have a
better eta-expander (in the form of tryEtaExpandRhs), so we don't
bother to try expansion in mkLam in that case; hence the contIsRhs
guard.
Note [Casts and lambdas]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider
(\(x:tx). (\(y:ty). e) `cast` co)
We float the cast out, thus
(\(x:tx) (y:ty). e) `cast` (tx -> co)
We do this for at least three reasons:
1. There is a danger here that the two lambdas look separated, and the
full laziness pass might float an expression to between the two.
2. The occurrence analyser will mark x as InsideLam if the Lam nodes
are separated (see the Lam case of occAnal). By floating the cast
out we put the two Lams together, so x can get a vanilla Once
annotation. If this lambda is the RHS of a let, which we inline,
we can do preInlineUnconditionally on that x=arg binding. With the
InsideLam OccInfo, we can't do that, which results in an extra
iteration of the Simplifier.
3. It may cancel with another cast. E.g
(\x. e |> co1) |> co2
If we float out co1 it might cancel with co2. Similarly
let f = (\x. e |> co1) in ...
If we float out co1, and then do cast worker/wrapper, we get
let f1 = \x.e; f = f1 |> co1 in ...
and now we can inline f, hoping that co1 may cancel at a call site.
TL;DR: put the lambdas together if at all possible.
In general, here's the transformation:
\x. e `cast` co ===> (\x. e) `cast` (tx -> co)
/\a. e `cast` co ===> (/\a. e) `cast` (/\a. co)
/\g. e `cast` co ===> (/\g. e) `cast` (/\g. co)
(if not (g `in` co))
We call this "cast swizzling". It is controlled by sm_cast_swizzle.
See also Note [Cast swizzling on rule LHSs]
Wrinkles
* Notice that it works regardless of 'e'. Originally it worked only
if 'e' was itself a lambda, but in some cases that resulted in
fruitless iteration in the simplifier. A good example was when
compiling Text.ParserCombinators.ReadPrec, where we had a definition
like (\x. Get `cast` g)
where Get is a constructor with nonzero arity. Then mkLam eta-expanded
the Get, and the next iteration eta-reduced it, and then eta-expanded
it again.
* Note also the side condition for the case of coercion binders, namely
not (any bad bndrs). It does not make sense to transform
/\g. e `cast` g ==> (/\g.e) `cast` (/\g.g)
because the latter is not well-kinded.
************************************************************************
* *
Eta expansion
* *
************************************************************************
-}
tryEtaExpandRhs :: SimplEnv -> BindContext -> OutId -> OutExpr
-> SimplM (ArityType, OutExpr)
-- See Note [Eta-expanding at let bindings]
tryEtaExpandRhs env bind_cxt bndr rhs
| do_eta_expand -- If the current manifest arity isn't enough
-- (never true for join points)
, seEtaExpand env -- and eta-expansion is on
, wantEtaExpansion rhs
= -- Do eta-expansion.
assertPpr( not (isJoinBC bind_cxt) ) (ppr bndr) $
-- assert: this never happens for join points; see GHC.Core.Opt.Arity
-- Note [Do not eta-expand join points]
do { tick (EtaExpansion bndr)
; return (arity_type, etaExpandAT in_scope arity_type rhs) }
| otherwise
= return (arity_type, rhs)
where
in_scope = getInScope env
arity_opts = seArityOpts env
is_rec = bindContextRec bind_cxt
(do_eta_expand, arity_type) = findRhsArity arity_opts is_rec bndr rhs
wantEtaExpansion :: CoreExpr -> Bool
-- Mostly True; but False of PAPs which will immediately eta-reduce again
-- See Note [Which RHSs do we eta-expand?]
wantEtaExpansion (Cast e _) = wantEtaExpansion e
wantEtaExpansion (Tick _ e) = wantEtaExpansion e
wantEtaExpansion (Lam b e) | isTyVar b = wantEtaExpansion e
wantEtaExpansion (App e _) = wantEtaExpansion e
wantEtaExpansion (Var {}) = False
wantEtaExpansion (Lit {}) = False
wantEtaExpansion _ = True
{-
Note [Eta-expanding at let bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We now eta expand at let-bindings, which is where the payoff comes.
The most significant thing is that we can do a simple arity analysis
(in GHC.Core.Opt.Arity.findRhsArity), which we can't do for free-floating lambdas
One useful consequence of not eta-expanding lambdas is this example:
genMap :: C a => ...
{-# INLINE genMap #-}
genMap f xs = ...
myMap :: D a => ...
{-# INLINE myMap #-}
myMap = genMap
Notice that 'genMap' should only inline if applied to two arguments.
In the stable unfolding for myMap we'll have the unfolding
(\d -> genMap Int (..d..))
We do not want to eta-expand to
(\d f xs -> genMap Int (..d..) f xs)
because then 'genMap' will inline, and it really shouldn't: at least
as far as the programmer is concerned, it's not applied to two
arguments!
Note [Which RHSs do we eta-expand?]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We don't eta-expand:
* Trivial RHSs, e.g. f = g
If we eta expand do
f = \x. g x
we'll just eta-reduce again, and so on; so the
simplifier never terminates.
* PAPs: see Note [Do not eta-expand PAPs]
What about things like this?
f = case y of p -> \x -> blah
Here we do eta-expand. This is a change (Jun 20), but if we have
really decided that f has arity 1, then putting that lambda at the top
seems like a Good idea.
Note [Do not eta-expand PAPs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to have old_arity = manifestArity rhs, which meant that we
would eta-expand even PAPs. But this gives no particular advantage,
and can lead to a massive blow-up in code size, exhibited by #9020.
Suppose we have a PAP
foo :: IO ()
foo = returnIO ()
Then we can eta-expand to
foo = (\eta. (returnIO () |> sym g) eta) |> g
where
g :: IO () ~ State# RealWorld -> (# State# RealWorld, () #)
But there is really no point in doing this, and it generates masses of
coercions and whatnot that eventually disappear again. For T9020, GHC
allocated 6.6G before, and 0.8G afterwards; and residency dropped from
1.8G to 45M.
Moreover, if we eta expand
f = g d ==> f = \x. g d x
that might in turn make g inline (if it has an inline pragma), which
we might not want. After all, INLINE pragmas say "inline only when
saturated" so we don't want to be too gung-ho about saturating!
But note that this won't eta-expand, say
f = \g -> map g
Does it matter not eta-expanding such functions? I'm not sure. Perhaps
strictness analysis will have less to bite on?
************************************************************************
* *
\subsection{Floating lets out of big lambdas}
* *
************************************************************************
Note [Floating and type abstraction]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this:
x = /\a. C e1 e2
We'd like to float this to
y1 = /\a. e1
y2 = /\a. e2
x = /\a. C (y1 a) (y2 a)
for the usual reasons: we want to inline x rather vigorously.
You may think that this kind of thing is rare. But in some programs it is
common. For example, if you do closure conversion you might get:
data a :-> b = forall e. (e -> a -> b) :$ e
f_cc :: forall a. a :-> a
f_cc = /\a. (\e. id a) :$ ()
Now we really want to inline that f_cc thing so that the
construction of the closure goes away.
So I have elaborated simplLazyBind to understand right-hand sides that look
like
/\ a1..an. body
and treat them specially. The real work is done in
GHC.Core.Opt.Simplify.Utils.abstractFloats, but there is quite a bit of plumbing
in simplLazyBind as well.
The same transformation is good when there are lets in the body:
/\abc -> let(rec) x = e in b
==>
let(rec) x' = /\abc -> let x = x' a b c in e
in
/\abc -> let x = x' a b c in b
This is good because it can turn things like:
let f = /\a -> letrec g = ... g ... in g
into
letrec g' = /\a -> ... g' a ...
in
let f = /\ a -> g' a
which is better. In effect, it means that big lambdas don't impede
let-floating.
This optimisation is CRUCIAL in eliminating the junk introduced by
desugaring mutually recursive definitions. Don't eliminate it lightly!
[May 1999] If we do this transformation *regardless* then we can
end up with some pretty silly stuff. For example,
let
st = /\ s -> let { x1=r1 ; x2=r2 } in ...
in ..
becomes
let y1 = /\s -> r1
y2 = /\s -> r2
st = /\s -> ...[y1 s/x1, y2 s/x2]
in ..
Unless the "..." is a WHNF there is really no point in doing this.
Indeed it can make things worse. Suppose x1 is used strictly,
and is of the form
x1* = case f y of { (a,b) -> e }
If we abstract this wrt the tyvar we then can't do the case inline
as we would normally do.
That's why the whole transformation is part of the same process that
floats let-bindings and constructor arguments out of RHSs. In particular,
it is guarded by the doFloatFromRhs call in simplLazyBind.
Note [Which type variables to abstract over]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Abstract only over the type variables free in the rhs wrt which the
new binding is abstracted. Several points worth noting
(AB1) The naive approach of abstracting wrt the
tyvars free in the Id's /type/ fails. Consider:
/\ a b -> let t :: (a,b) = (e1, e2)
x :: a = fst t
in ...
Here, b isn't free in x's type, but we must nevertheless
abstract wrt b as well, because t's type mentions b.
Since t is floated too, we'd end up with the bogus:
poly_t = /\ a b -> (e1, e2)
poly_x = /\ a -> fst (poly_t a *b*)
(AB2) We must do closeOverKinds. Example (#10934):
f = /\k (f:k->*) (a:k). let t = AccFailure @ (f a) in ...
Here we want to float 't', but we must remember to abstract over
'k' as well, even though it is not explicitly mentioned in the RHS,
otherwise we get
t = /\ (f:k->*) (a:k). AccFailure @ (f a)
which is obviously bogus.
(AB3) We get the variables to abstract over by filtering down the
the main_tvs for the original function, picking only ones
mentioned in the abstracted body. This means:
- they are automatically in dependency order, because main_tvs is
- there is no issue about non-determinism
- we don't gratuitously change order, which may help (in a tiny
way) with CSE and/or the compiler-debugging experience
(AB4) For a recursive group, it's a bit of a pain to work out the minimal
set of tyvars over which to abstract:
/\ a b c. let x = ...a... in
letrec { p = ...x...q...
q = .....p...b... } in
...
Since 'x' is abstracted over 'a', the {p,q} group must be abstracted
over 'a' (because x is replaced by (poly_x a)) as well as 'b'.
Remember this bizarre case too:
x::a = x
Here, we must abstract 'x' over 'a'.
Why is it worth doing this? Partly tidiness; and partly #22459
which showed that it's harder to do polymorphic specialisation well
if there are dictionaries abstracted over unnecessary type variables.
See Note [Weird special case for SpecDict] in GHC.Core.Opt.Specialise
-}
abstractFloats :: UnfoldingOpts -> TopLevelFlag -> [OutTyVar] -> SimplFloats
-> OutExpr -> SimplM ([OutBind], OutExpr)
abstractFloats uf_opts top_lvl main_tvs floats body
= assert (notNull body_floats) $
assert (isNilOL (sfJoinFloats floats)) $
do { (subst, float_binds) <- mapAccumLM abstract empty_subst body_floats
; return (float_binds, GHC.Core.Subst.substExpr subst body) }
where
is_top_lvl = isTopLevel top_lvl
body_floats = letFloatBinds (sfLetFloats floats)
empty_subst = GHC.Core.Subst.mkEmptySubst (sfInScope floats)
abstract :: GHC.Core.Subst.Subst -> OutBind -> SimplM (GHC.Core.Subst.Subst, OutBind)
abstract subst (NonRec id rhs)
= do { (poly_id1, poly_app) <- mk_poly1 tvs_here id
; let (poly_id2, poly_rhs) = mk_poly2 poly_id1 tvs_here rhs'
!subst' = GHC.Core.Subst.extendIdSubst subst id poly_app
; return (subst', NonRec poly_id2 poly_rhs) }
where
rhs' = GHC.Core.Subst.substExpr subst rhs
-- tvs_here: see Note [Which type variables to abstract over]
tvs_here = choose_tvs (exprSomeFreeVars isTyVar rhs')
abstract subst (Rec prs)
= do { (poly_ids, poly_apps) <- mapAndUnzipM (mk_poly1 tvs_here) ids
; let subst' = GHC.Core.Subst.extendSubstList subst (ids `zip` poly_apps)
poly_pairs = [ mk_poly2 poly_id tvs_here rhs'
| (poly_id, rhs) <- poly_ids `zip` rhss
, let rhs' = GHC.Core.Subst.substExpr subst' rhs ]
; return (subst', Rec poly_pairs) }
where
(ids,rhss) = unzip prs
-- tvs_here: see Note [Which type variables to abstract over]
tvs_here = choose_tvs (mapUnionVarSet get_bind_fvs prs)
-- See wrinkle (AB4) in Note [Which type variables to abstract over]
get_bind_fvs (id,rhs) = tyCoVarsOfType (idType id) `unionVarSet` get_rec_rhs_tvs rhs
get_rec_rhs_tvs rhs = nonDetStrictFoldVarSet get_tvs emptyVarSet (exprFreeVars rhs)
get_tvs :: Var -> VarSet -> VarSet
get_tvs var free_tvs
| isTyVar var -- CoVars have been substituted away
= extendVarSet free_tvs var
| Just poly_app <- GHC.Core.Subst.lookupIdSubst_maybe subst var
= -- 'var' is like 'x' in (AB4)
exprSomeFreeVars isTyVar poly_app `unionVarSet` free_tvs
| otherwise
= free_tvs
choose_tvs free_tvs
= filter (`elemVarSet` all_free_tvs) main_tvs -- (AB3)
where
all_free_tvs = closeOverKinds free_tvs -- (AB2)
mk_poly1 :: [TyVar] -> Id -> SimplM (Id, CoreExpr)
mk_poly1 tvs_here var
= do { uniq <- getUniqueM
; let poly_name = setNameUnique (idName var) uniq -- Keep same name
poly_ty = mkInfForAllTys tvs_here (idType var) -- But new type of course
poly_id = transferPolyIdInfo var tvs_here $ -- Note [transferPolyIdInfo] in GHC.Types.Id
mkLocalId poly_name (idMult var) poly_ty
; return (poly_id, mkTyApps (Var poly_id) (mkTyVarTys tvs_here)) }
-- In the olden days, it was crucial to copy the occInfo of the original var,
-- because we were looking at occurrence-analysed but as yet unsimplified code!
-- In particular, we mustn't lose the loop breakers. BUT NOW we are looking
-- at already simplified code, so it doesn't matter
--
-- It's even right to retain single-occurrence or dead-var info:
-- Suppose we started with /\a -> let x = E in B
-- where x occurs once in B. Then we transform to:
-- let x' = /\a -> E in /\a -> let x* = x' a in B
-- where x* has an INLINE prag on it. Now, once x* is inlined,
-- the occurrences of x' will be just the occurrences originally
-- pinned on x.
mk_poly2 :: Id -> [TyVar] -> CoreExpr -> (Id, CoreExpr)
mk_poly2 poly_id tvs_here rhs
= (poly_id `setIdUnfolding` unf, poly_rhs)
where
poly_rhs = mkLams tvs_here rhs
unf = mkUnfolding uf_opts VanillaSrc is_top_lvl False poly_rhs Nothing
-- We want the unfolding. Consider
-- let
-- x = /\a. let y = ... in Just y
-- in body
-- Then we float the y-binding out (via abstractFloats and addPolyBind)
-- but 'x' may well then be inlined in 'body' in which case we'd like the
-- opportunity to inline 'y' too.
{-
Note [Abstract over coercions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If a coercion variable (g :: a ~ Int) is free in the RHS, then so is the
type variable a. Rather than sort this mess out, we simply bale out and abstract
wrt all the type variables if any of them are coercion variables.
Historical note: if you use let-bindings instead of a substitution, beware of this:
-- Suppose we start with:
--
-- x = /\ a -> let g = G in E
--
-- Then we'll float to get
--
-- x = let poly_g = /\ a -> G
-- in /\ a -> let g = poly_g a in E
--
-- But now the occurrence analyser will see just one occurrence
-- of poly_g, not inside a lambda, so the simplifier will
-- PreInlineUnconditionally poly_g back into g! Badk to square 1!
-- (I used to think that the "don't inline lone occurrences" stuff
-- would stop this happening, but since it's the *only* occurrence,
-- PreInlineUnconditionally kicks in first!)
--
-- Solution: put an INLINE note on g's RHS, so that poly_g seems
-- to appear many times. (NB: mkInlineMe eliminates
-- such notes on trivial RHSs, so do it manually.)
************************************************************************
* *
prepareAlts
* *
************************************************************************
prepareAlts tries these things:
1. filterAlts: eliminate alternatives that cannot match, including
the DEFAULT alternative. Here "cannot match" includes knowledge
from GADTs
2. refineDefaultAlt: if the DEFAULT alternative can match only one
possible constructor, then make that constructor explicit.
e.g.
case e of x { DEFAULT -> rhs }
===>
case e of x { (a,b) -> rhs }
where the type is a single constructor type. This gives better code
when rhs also scrutinises x or e.
See GHC.Core.Utils Note [Refine DEFAULT case alternatives]
3. combineIdenticalAlts: combine identical alternatives into a DEFAULT.
See CoreUtils Note [Combine identical alternatives], which also
says why we do this on InAlts not on OutAlts
4. Returns a list of the constructors that cannot holds in the
DEFAULT alternative (if there is one)
It's a good idea to do this stuff before simplifying the alternatives, to
avoid simplifying alternatives we know can't happen, and to come up with
the list of constructors that are handled, to put into the IdInfo of the
case binder, for use when simplifying the alternatives.
Eliminating the default alternative in (1) isn't so obvious, but it can
happen:
data Colour = Red | Green | Blue
f x = case x of
Red -> ..
Green -> ..
DEFAULT -> h x
h y = case y of
Blue -> ..
DEFAULT -> [ case y of ... ]
If we inline h into f, the default case of the inlined h can't happen.
If we don't notice this, we may end up filtering out *all* the cases
of the inner case y, which give us nowhere to go!
Note [Shadowing in prepareAlts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that we pass case_bndr::InId to prepareAlts; an /InId/, not an
/OutId/. This is vital, because `refineDefaultAlt` uses `tys` to build
a new /InAlt/. If you pass an OutId, we'll end up appling the
substitution twice: disaster (#23012).
However this does mean that filling in the default alt might be
delayed by a simplifier cycle, because an InId has less info than an
OutId. Test simplCore/should_compile/simpl013 apparently shows this
up, although I'm not sure exactly how..
-}
prepareAlts :: OutExpr -> InId -> [InAlt] -> SimplM ([AltCon], [InAlt])
-- The returned alternatives can be empty, none are possible
--
-- Note that case_bndr is an InId; see Note [Shadowing in prepareAlts]
prepareAlts scrut case_bndr alts
| Just (tc, tys) <- splitTyConApp_maybe (idType case_bndr)
= do { us <- getUniquesM
; let (idcs1, alts1) = filterAlts tc tys imposs_cons alts
(yes2, alts2) = refineDefaultAlt us (idMult case_bndr) tc tys idcs1 alts1
-- The multiplicity on case_bndr's is the multiplicity of the
-- case expression The newly introduced patterns in
-- refineDefaultAlt must be scaled by this multiplicity
(yes3, idcs3, alts3) = combineIdenticalAlts idcs1 alts2
-- "idcs" stands for "impossible default data constructors"
-- i.e. the constructors that can't match the default case
; when yes2 $ tick (FillInCaseDefault case_bndr)
; when yes3 $ tick (AltMerge case_bndr)
; return (idcs3, alts3) }
| otherwise -- Not a data type, so nothing interesting happens
= return ([], alts)
where
imposs_cons = case scrut of
Var v -> otherCons (idUnfolding v)
_ -> []
{-
************************************************************************
* *
mkCase
* *
************************************************************************
mkCase tries these things
* Note [Merge Nested Cases]
* Note [Eliminate Identity Case]
* Note [Scrutinee Constant Folding]
Note [Merge Nested Cases]
~~~~~~~~~~~~~~~~~~~~~~~~~
case e of b { ==> case e of b {
p1 -> rhs1 p1 -> rhs1
... ...
pm -> rhsm pm -> rhsm
_ -> case b of b' { pn -> let b'=b in rhsn
pn -> rhsn ...
... po -> let b'=b in rhso
po -> rhso _ -> let b'=b in rhsd
_ -> rhsd
}
which merges two cases in one case when -- the default alternative of
the outer case scrutinises the same variable as the outer case. This
transformation is called Case Merging. It avoids that the same
variable is scrutinised multiple times.
Note [Eliminate Identity Case]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
case e of ===> e
True -> True;
False -> False
and similar friends.
Note [Scrutinee Constant Folding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
case x op# k# of _ { ===> case x of _ {
a1# -> e1 (a1# inv_op# k#) -> e1
a2# -> e2 (a2# inv_op# k#) -> e2
... ...
DEFAULT -> ed DEFAULT -> ed
where (x op# k#) inv_op# k# == x
And similarly for commuted arguments and for some unary operations.
The purpose of this transformation is not only to avoid an arithmetic
operation at runtime but to allow other transformations to apply in cascade.
Example with the "Merge Nested Cases" optimization (from #12877):
main = case t of t0
0## -> ...
DEFAULT -> case t0 `minusWord#` 1## of t1
0## -> ...
DEFAULT -> case t1 `minusWord#` 1## of t2
0## -> ...
DEFAULT -> case t2 `minusWord#` 1## of _
0## -> ...
DEFAULT -> ...
becomes:
main = case t of _
0## -> ...
1## -> ...
2## -> ...
3## -> ...
DEFAULT -> ...
There are some wrinkles.
Wrinkle 1:
Do not apply caseRules if there is just a single DEFAULT alternative,
unless the case-binder is dead. Example:
case e +# 3# of b { DEFAULT -> rhs }
If we applied the transformation here we would (stupidly) get
case e of b' { DEFAULT -> let b = b' +# 3# in rhs }
and now the process may repeat, because that let will really
be a case. But if the original case binder b is dead, we instead get
case e of b' { DEFAULT -> rhs }
and there is no such problem.
See Note [Example of case-merging and caseRules] for a compelling
example of why this dead-binder business can be really important.
Wrinkle 2:
The type of the scrutinee might change. E.g.
case tagToEnum (x :: Int#) of (b::Bool)
False -> e1
True -> e2
==>
case x of (b'::Int#)
DEFAULT -> e1
1# -> e2
Wrinkle 3:
The case binder may be used in the right hand sides, so we need
to make a local binding for it, if it is alive. e.g.
case e +# 10# of b
DEFAULT -> blah...b...
44# -> blah2...b...
===>
case e of b'
DEFAULT -> let b = b' +# 10# in blah...b...
34# -> let b = 44# in blah2...b...
Note that in the non-DEFAULT cases we know what to bind 'b' to,
whereas in the DEFAULT case we must reconstruct the original value.
But NB: we use b'; we do not duplicate 'e'.
Wrinkle 4:
In dataToTag we might need to make up some fake binders;
see Note [caseRules for dataToTag] in GHC.Core.Opt.ConstantFold
Note [Example of case-merging and caseRules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The case-transformation rules are quite powerful. Here's a
subtle example from #22375. We start with
data T = A | B | ...
deriving Eq
f :: T -> String
f x = if | x==A -> "one"
| x==B -> "two"
| ...
In Core after a bit of simplification we get:
f x = case dataToTag# x of a# { _DEFAULT ->
case a# of
_DEFAULT -> case dataToTag# x of b# { _DEFAULT ->
case b# of
_DEFAULT -> ...
1# -> "two"
}
0# -> "one"
}
Now consider what mkCase does to these case expressions.
The case-merge transformation Note [Merge Nested Cases]
does this (affecting both pairs of cases):
f x = case dataToTag# x of a# {
_DEFAULT -> case dataToTag# x of b# {
_DEFAULT -> ...
1# -> "two"
}
0# -> "one"
}
Now Note [caseRules for dataToTag] does its work, again
on both dataToTag# cases:
f x = case x of x1 {
_DEFAULT -> case dataToTag# x1 of a# { _DEFAULT ->
case x of x2 {
_DEFAULT -> case dataToTag# x2 of b# { _DEFAULT -> ... }
B -> "two"
}}
A -> "one"
}
The new dataToTag# calls come from the "reconstruct scrutinee" part of
caseRules (note that a# and b# were not dead in the original program
before all this merging). However, since a# and b# /are/ in fact dead
in the resulting program, we are left with redundant dataToTag# calls.
But they are easily eliminated by doing caseRules again, in
the next Simplifier iteration, this time noticing that a# and b# are
dead. Hence the "dead-binder" sub-case of Wrinkle 1 of Note
[Scrutinee Constant Folding] above. Once we do this we get
f x = case x of x1 {
_DEFAULT -> case x1 of x2 { _DEFAULT ->
case x1 of x2 {
_DEFAULT -> case x2 of x3 { _DEFAULT -> ... }
B -> "two"
}}
A -> "one"
}
and now we can do case-merge again, getting the desired
f x = case x of
A -> "one"
B -> "two"
...
-}
mkCase, mkCase1, mkCase2, mkCase3
:: SimplMode
-> OutExpr -> OutId
-> OutType -> [OutAlt] -- Alternatives in standard (increasing) order
-> SimplM OutExpr
--------------------------------------------------
-- 1. Merge Nested Cases
--------------------------------------------------
mkCase mode scrut outer_bndr alts_ty (Alt DEFAULT _ deflt_rhs : outer_alts)
| sm_case_merge mode
, (ticks, Case (Var inner_scrut_var) inner_bndr _ inner_alts)
<- stripTicksTop tickishFloatable deflt_rhs
, inner_scrut_var == outer_bndr
= do { tick (CaseMerge outer_bndr)
; let wrap_alt (Alt con args rhs) = assert (outer_bndr `notElem` args)
(Alt con args (wrap_rhs rhs))
-- Simplifier's no-shadowing invariant should ensure
-- that outer_bndr is not shadowed by the inner patterns
wrap_rhs rhs = Let (NonRec inner_bndr (Var outer_bndr)) rhs
-- The let is OK even for unboxed binders,
wrapped_alts | isDeadBinder inner_bndr = inner_alts
| otherwise = map wrap_alt inner_alts
merged_alts = mergeAlts outer_alts wrapped_alts
-- NB: mergeAlts gives priority to the left
-- case x of
-- A -> e1
-- DEFAULT -> case x of
-- A -> e2
-- B -> e3
-- When we merge, we must ensure that e1 takes
-- precedence over e2 as the value for A!
; fmap (mkTicks ticks) $
mkCase1 mode scrut outer_bndr alts_ty merged_alts
}
-- Warning: don't call mkCase recursively!
-- Firstly, there's no point, because inner alts have already had
-- mkCase applied to them, so they won't have a case in their default
-- Secondly, if you do, you get an infinite loop, because the bindCaseBndr
-- in munge_rhs may put a case into the DEFAULT branch!
mkCase mode scrut bndr alts_ty alts = mkCase1 mode scrut bndr alts_ty alts
--------------------------------------------------
-- 2. Eliminate Identity Case
--------------------------------------------------
mkCase1 _mode scrut case_bndr _ alts@(Alt _ _ rhs1 : alts') -- Identity case
| all identity_alt alts
= do { tick (CaseIdentity case_bndr)
; return (mkTicks ticks $ re_cast scrut rhs1) }
where
ticks = concatMap (\(Alt _ _ rhs) -> stripTicksT tickishFloatable rhs) alts'
identity_alt (Alt con args rhs) = check_eq rhs con args
check_eq (Cast rhs co) con args -- See Note [RHS casts]
= not (any (`elemVarSet` tyCoVarsOfCo co) args) && check_eq rhs con args
check_eq (Tick t e) alt args
= tickishFloatable t && check_eq e alt args
check_eq (Lit lit) (LitAlt lit') _ = lit == lit'
check_eq (Var v) _ _ | v == case_bndr = True
check_eq (Var v) (DataAlt con) args
| null arg_tys, null args = v == dataConWorkId con
-- Optimisation only
check_eq rhs (DataAlt con) args = cheapEqExpr' tickishFloatable rhs $
mkConApp2 con arg_tys args
check_eq _ _ _ = False
arg_tys = tyConAppArgs (idType case_bndr)
-- Note [RHS casts]
-- ~~~~~~~~~~~~~~~~
-- We've seen this:
-- case e of x { _ -> x `cast` c }
-- And we definitely want to eliminate this case, to give
-- e `cast` c
-- So we throw away the cast from the RHS, and reconstruct
-- it at the other end. All the RHS casts must be the same
-- if (all identity_alt alts) holds.
--
-- Don't worry about nested casts, because the simplifier combines them
re_cast scrut (Cast rhs co) = Cast (re_cast scrut rhs) co
re_cast scrut _ = scrut
mkCase1 mode scrut bndr alts_ty alts = mkCase2 mode scrut bndr alts_ty alts
--------------------------------------------------
-- 2. Scrutinee Constant Folding
--------------------------------------------------
mkCase2 mode scrut bndr alts_ty alts
| -- See Note [Scrutinee Constant Folding]
case alts of
[Alt DEFAULT _ _] -> isDeadBinder bndr -- see wrinkle 1
_ -> True
, sm_case_folding mode
, Just (scrut', tx_con, mk_orig) <- caseRules (smPlatform mode) scrut
= do { bndr' <- newId (fsLit "lwild") ManyTy (exprType scrut')
; alts' <- mapMaybeM (tx_alt tx_con mk_orig bndr') alts
-- mapMaybeM: discard unreachable alternatives
-- See Note [Unreachable caseRules alternatives]
-- in GHC.Core.Opt.ConstantFold
; mkCase3 mode scrut' bndr' alts_ty $
add_default (re_sort alts')
}
| otherwise
= mkCase3 mode scrut bndr alts_ty alts
where
-- We need to keep the correct association between the scrutinee and its
-- binder if the latter isn't dead. Hence we wrap rhs of alternatives with
-- "let bndr = ... in":
--
-- case v + 10 of y =====> case v of y'
-- 20 -> e1 10 -> let y = 20 in e1
-- DEFAULT -> e2 DEFAULT -> let y = y' + 10 in e2
--
-- This wrapping is done in tx_alt; we use mk_orig, returned by caseRules,
-- to construct an expression equivalent to the original one, for use
-- in the DEFAULT case
tx_alt :: (AltCon -> Maybe AltCon) -> (Id -> CoreExpr) -> Id
-> CoreAlt -> SimplM (Maybe CoreAlt)
tx_alt tx_con mk_orig new_bndr (Alt con bs rhs)
= case tx_con con of
Nothing -> return Nothing
Just con' -> do { bs' <- mk_new_bndrs new_bndr con'
; return (Just (Alt con' bs' rhs')) }
where
rhs' | isDeadBinder bndr = rhs
| otherwise = bindNonRec bndr orig_val rhs
orig_val = case con of
DEFAULT -> mk_orig new_bndr
LitAlt l -> Lit l
DataAlt dc -> mkConApp2 dc (tyConAppArgs (idType bndr)) bs
mk_new_bndrs new_bndr (DataAlt dc)
| not (isNullaryRepDataCon dc)
= -- For non-nullary data cons we must invent some fake binders
-- See Note [caseRules for dataToTag] in GHC.Core.Opt.ConstantFold
do { us <- getUniquesM
; let (ex_tvs, arg_ids) = dataConRepInstPat us (idMult new_bndr) dc
(tyConAppArgs (idType new_bndr))
; return (ex_tvs ++ arg_ids) }
mk_new_bndrs _ _ = return []
re_sort :: [CoreAlt] -> [CoreAlt]
-- Sort the alternatives to re-establish
-- GHC.Core Note [Case expression invariants]
re_sort alts = sortBy cmpAlt alts
add_default :: [CoreAlt] -> [CoreAlt]
-- See Note [Literal cases]
add_default (Alt (LitAlt {}) bs rhs : alts) = Alt DEFAULT bs rhs : alts
add_default alts = alts
{- Note [Literal cases]
~~~~~~~~~~~~~~~~~~~~~~~
If we have
case tagToEnum (a ># b) of
False -> e1
True -> e2
then caseRules for TagToEnum will turn it into
case tagToEnum (a ># b) of
0# -> e1
1# -> e2
Since the case is exhaustive (all cases are) we can convert it to
case tagToEnum (a ># b) of
DEFAULT -> e1
1# -> e2
This may generate slightly better code (although it should not, since
all cases are exhaustive) and/or optimise better. I'm not certain that
it's necessary, but currently we do make this change. We do it here,
NOT in the TagToEnum rules (see "Beware" in Note [caseRules for tagToEnum]
in GHC.Core.Opt.ConstantFold)
-}
--------------------------------------------------
-- Catch-all
--------------------------------------------------
mkCase3 _mode scrut bndr alts_ty alts
= return (Case scrut bndr alts_ty alts)
-- See Note [Exitification] and Note [Do not inline exit join points] in
-- GHC.Core.Opt.Exitify
-- This lives here (and not in Id) because occurrence info is only valid on
-- InIds, so it's crucial that isExitJoinId is only called on freshly
-- occ-analysed code. It's not a generic function you can call anywhere.
isExitJoinId :: Var -> Bool
isExitJoinId id
= isJoinId id
&& isOneOcc (idOccInfo id)
&& occ_in_lam (idOccInfo id) == IsInsideLam
{-
Note [Dead binders]
~~~~~~~~~~~~~~~~~~~~
Note that dead-ness is maintained by the simplifier, so that it is
accurate after simplification as well as before.
Note [Cascading case merge]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Case merging should cascade in one sweep, because it
happens bottom-up
case e of a {
DEFAULT -> case a of b
DEFAULT -> case b of c {
DEFAULT -> e
A -> ea
B -> eb
C -> ec
==>
case e of a {
DEFAULT -> case a of b
DEFAULT -> let c = b in e
A -> let c = b in ea
B -> eb
C -> ec
==>
case e of a {
DEFAULT -> let b = a in let c = b in e
A -> let b = a in let c = b in ea
B -> let b = a in eb
C -> ec
However here's a tricky case that we still don't catch, and I don't
see how to catch it in one pass:
case x of c1 { I# a1 ->
case a1 of c2 ->
0 -> ...
DEFAULT -> case x of c3 { I# a2 ->
case a2 of ...
After occurrence analysis (and its binder-swap) we get this
case x of c1 { I# a1 ->
let x = c1 in -- Binder-swap addition
case a1 of c2 ->
0 -> ...
DEFAULT -> case x of c3 { I# a2 ->
case a2 of ...
When we simplify the inner case x, we'll see that
x=c1=I# a1. So we'll bind a2 to a1, and get
case x of c1 { I# a1 ->
case a1 of c2 ->
0 -> ...
DEFAULT -> case a1 of ...
This is correct, but we can't do a case merge in this sweep
because c2 /= a1. Reason: the binding c1=I# a1 went inwards
without getting changed to c1=I# c2.
I don't think this is worth fixing, even if I knew how. It'll
all come out in the next pass anyway.
-}
|