1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
{-# LANGUAGE Strict #-} -- See Note [Avoiding space leaks in toIface*]
-- | Functions for converting Core things to interface file things.
module GHC.CoreToIface
( -- * Binders
toIfaceTvBndr
, toIfaceTvBndrs
, toIfaceIdBndr
, toIfaceBndr
, toIfaceTopBndr
, toIfaceForAllBndr
, toIfaceForAllBndrs
, toIfaceTyVar
-- * Types
, toIfaceType, toIfaceTypeX
, toIfaceKind
, toIfaceTcArgs
, toIfaceTyCon
, toIfaceTyCon_name
, toIfaceTyLit
-- * Tidying types
, tidyToIfaceType
, tidyToIfaceContext
, tidyToIfaceTcArgs
-- * Coercions
, toIfaceCoercion, toIfaceCoercionX
-- * Pattern synonyms
, patSynToIfaceDecl
-- * Expressions
, toIfaceExpr
, toIfaceBang
, toIfaceSrcBang
, toIfaceLetBndr
, toIfaceIdDetails
, toIfaceIdInfo
, toIfUnfolding
, toIfaceTickish
, toIfaceBind
, toIfaceTopBind
, toIfaceAlt
, toIfaceCon
, toIfaceApp
, toIfaceVar
-- * Other stuff
, toIfaceLFInfo
-- * CgBreakInfo
, dehydrateCgBreakInfo
) where
import GHC.Prelude
import Data.Word
import GHC.StgToCmm.Types
import GHC.ByteCode.Types
import GHC.Core
import GHC.Core.TyCon hiding ( pprPromotionQuote )
import GHC.Core.Coercion.Axiom
import GHC.Core.DataCon
import GHC.Core.Type
import GHC.Core.Multiplicity
import GHC.Core.PatSyn
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Compare( eqType )
import GHC.Core.TyCo.Tidy ( tidyCo )
import GHC.Builtin.Types.Prim ( eqPrimTyCon, eqReprPrimTyCon )
import GHC.Builtin.Types ( heqTyCon )
import GHC.Iface.Syntax
import GHC.Data.FastString
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.Id.Make ( noinlineIdName, noinlineConstraintIdName )
import GHC.Types.Literal
import GHC.Types.Name
import GHC.Types.Basic
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Tickish
import GHC.Types.Demand ( isNopSig )
import GHC.Types.Cpr ( topCprSig )
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Misc
import Data.Maybe ( isNothing, catMaybes )
{- Note [Avoiding space leaks in toIface*]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Building a interface file depends on the output of the simplifier.
If we build these lazily this would mean keeping the Core AST alive
much longer than necessary causing a space "leak".
This happens for example when we only write the interface file to disk
after code gen has run, in which case we might carry megabytes of core
AST in the heap which is no longer needed.
We avoid this in two ways.
* First we use -XStrict in GHC.CoreToIface which avoids many thunks
to begin with.
* Second we define NFData instance for Iface syntax and use them to
force any remaining thunks.
-XStrict is not sufficient as patterns of the form `f (g x)` would still
result in a thunk being allocated for `g x`.
NFData is sufficient for the space leak, but using -XStrict reduces allocation
by ~0.1% when compiling with -O. (nofib/spectral/simple, T10370).
It's essentially free performance hence we use -XStrict on top of NFData.
MR !1633 on gitlab, has more discussion on the topic.
-}
----------------
toIfaceTvBndr :: TyVar -> IfaceTvBndr
toIfaceTvBndr = toIfaceTvBndrX emptyVarSet
toIfaceTvBndrX :: VarSet -> TyVar -> IfaceTvBndr
toIfaceTvBndrX fr tyvar = ( occNameFS (getOccName tyvar)
, toIfaceTypeX fr (tyVarKind tyvar)
)
toIfaceTvBndrs :: [TyVar] -> [IfaceTvBndr]
toIfaceTvBndrs = map toIfaceTvBndr
toIfaceIdBndr :: Id -> IfaceIdBndr
toIfaceIdBndr = toIfaceIdBndrX emptyVarSet
toIfaceIdBndrX :: VarSet -> CoVar -> IfaceIdBndr
toIfaceIdBndrX fr covar = ( toIfaceType (idMult covar)
, occNameFS (getOccName covar)
, toIfaceTypeX fr (varType covar)
)
toIfaceBndr :: Var -> IfaceBndr
toIfaceBndr var
| isId var = IfaceIdBndr (toIfaceIdBndr var)
| otherwise = IfaceTvBndr (toIfaceTvBndr var)
toIfaceBndrX :: VarSet -> Var -> IfaceBndr
toIfaceBndrX fr var
| isId var = IfaceIdBndr (toIfaceIdBndrX fr var)
| otherwise = IfaceTvBndr (toIfaceTvBndrX fr var)
toIfaceForAllBndrs :: [VarBndr TyCoVar vis] -> [VarBndr IfaceBndr vis]
toIfaceForAllBndrs = map toIfaceForAllBndr
toIfaceForAllBndr :: VarBndr TyCoVar flag -> VarBndr IfaceBndr flag
toIfaceForAllBndr = toIfaceForAllBndrX emptyVarSet
toIfaceForAllBndrX :: VarSet -> (VarBndr TyCoVar flag) -> (VarBndr IfaceBndr flag)
toIfaceForAllBndrX fr (Bndr v vis) = Bndr (toIfaceBndrX fr v) vis
{-
************************************************************************
* *
Conversion from Type to IfaceType
* *
************************************************************************
-}
toIfaceKind :: Type -> IfaceType
toIfaceKind = toIfaceType
---------------------
toIfaceType :: Type -> IfaceType
toIfaceType = toIfaceTypeX emptyVarSet
toIfaceTypeX :: VarSet -> Type -> IfaceType
-- (toIfaceTypeX free ty)
-- translates the tyvars in 'free' as IfaceFreeTyVars
--
-- Synonyms are retained in the interface type
toIfaceTypeX fr (TyVarTy tv) -- See Note [Free tyvars in IfaceType] in GHC.Iface.Type
| tv `elemVarSet` fr = IfaceFreeTyVar tv
| otherwise = IfaceTyVar (toIfaceTyVar tv)
toIfaceTypeX fr ty@(AppTy {}) =
-- Flatten as many argument AppTys as possible, then turn them into an
-- IfaceAppArgs list.
-- See Note [Suppressing invisible arguments] in GHC.Iface.Type.
let (head, args) = splitAppTys ty
in IfaceAppTy (toIfaceTypeX fr head) (toIfaceAppTyArgsX fr head args)
toIfaceTypeX _ (LitTy n) = IfaceLitTy (toIfaceTyLit n)
toIfaceTypeX fr (ForAllTy b t) = IfaceForAllTy (toIfaceForAllBndrX fr b)
(toIfaceTypeX (fr `delVarSet` binderVar b) t)
toIfaceTypeX fr (FunTy { ft_arg = t1, ft_mult = w, ft_res = t2, ft_af = af })
= IfaceFunTy af (toIfaceTypeX fr w) (toIfaceTypeX fr t1) (toIfaceTypeX fr t2)
toIfaceTypeX fr (CastTy ty co) = IfaceCastTy (toIfaceTypeX fr ty) (toIfaceCoercionX fr co)
toIfaceTypeX fr (CoercionTy co) = IfaceCoercionTy (toIfaceCoercionX fr co)
toIfaceTypeX fr (TyConApp tc tys)
-- tuples
| Just sort <- tyConTuple_maybe tc
, n_tys == arity
= IfaceTupleTy sort NotPromoted (toIfaceTcArgsX fr tc tys)
| Just dc <- isPromotedDataCon_maybe tc
, isBoxedTupleDataCon dc
, n_tys == 2*arity
= IfaceTupleTy BoxedTuple IsPromoted (toIfaceTcArgsX fr tc (drop arity tys))
| tc `elem` [ eqPrimTyCon, eqReprPrimTyCon, heqTyCon ]
, (k1:k2:_) <- tys
= let info = mkIfaceTyConInfo NotPromoted sort
sort | k1 `eqType` k2 = IfaceEqualityTyCon
| otherwise = IfaceNormalTyCon
in IfaceTyConApp (IfaceTyCon (tyConName tc) info) (toIfaceTcArgsX fr tc tys)
-- other applications
| otherwise
= IfaceTyConApp (toIfaceTyCon tc) (toIfaceTcArgsX fr tc tys)
where
arity = tyConArity tc
n_tys = length tys
toIfaceTyVar :: TyVar -> FastString
toIfaceTyVar = occNameFS . getOccName
toIfaceCoVar :: CoVar -> FastString
toIfaceCoVar = occNameFS . getOccName
----------------
toIfaceTyCon :: TyCon -> IfaceTyCon
toIfaceTyCon tc
= IfaceTyCon tc_name info
where
tc_name = tyConName tc
info = mkIfaceTyConInfo promoted sort
promoted | isDataKindsPromotedDataCon tc = IsPromoted
| otherwise = NotPromoted
tupleSort :: TyCon -> Maybe IfaceTyConSort
tupleSort tc' =
case tyConTuple_maybe tc' of
Just UnboxedTuple -> let arity = tyConArity tc' `div` 2
in Just $ IfaceTupleTyCon arity UnboxedTuple
Just sort -> let arity = tyConArity tc'
in Just $ IfaceTupleTyCon arity sort
Nothing -> Nothing
sort
| Just tsort <- tupleSort tc = tsort
| Just dcon <- isPromotedDataCon_maybe tc
, let tc' = dataConTyCon dcon
, Just tsort <- tupleSort tc' = tsort
| isUnboxedSumTyCon tc
, Just cons <- tyConDataCons_maybe tc = IfaceSumTyCon (length cons)
| otherwise = IfaceNormalTyCon
toIfaceTyCon_name :: Name -> IfaceTyCon
toIfaceTyCon_name n = IfaceTyCon n info
where info = mkIfaceTyConInfo NotPromoted IfaceNormalTyCon
-- Used for the "rough-match" tycon stuff,
-- where pretty-printing is not an issue
toIfaceTyLit :: TyLit -> IfaceTyLit
toIfaceTyLit (NumTyLit x) = IfaceNumTyLit x
toIfaceTyLit (StrTyLit x) = IfaceStrTyLit x
toIfaceTyLit (CharTyLit x) = IfaceCharTyLit x
----------------
toIfaceCoercion :: Coercion -> IfaceCoercion
toIfaceCoercion = toIfaceCoercionX emptyVarSet
toIfaceCoercionX :: VarSet -> Coercion -> IfaceCoercion
-- (toIfaceCoercionX free ty)
-- translates the tyvars in 'free' as IfaceFreeTyVars
toIfaceCoercionX fr co
= go co
where
go_mco MRefl = IfaceMRefl
go_mco (MCo co) = IfaceMCo $ go co
go (Refl ty) = IfaceReflCo (toIfaceTypeX fr ty)
go (GRefl r ty mco) = IfaceGReflCo r (toIfaceTypeX fr ty) (go_mco mco)
go (CoVarCo cv)
-- See Note [Free tyvars in IfaceType] in GHC.Iface.Type
| cv `elemVarSet` fr = IfaceFreeCoVar cv
| otherwise = IfaceCoVarCo (toIfaceCoVar cv)
go (HoleCo h) = IfaceHoleCo (coHoleCoVar h)
go (AppCo co1 co2) = IfaceAppCo (go co1) (go co2)
go (SymCo co) = IfaceSymCo (go co)
go (TransCo co1 co2) = IfaceTransCo (go co1) (go co2)
go (SelCo d co) = IfaceSelCo d (go co)
go (LRCo lr co) = IfaceLRCo lr (go co)
go (InstCo co arg) = IfaceInstCo (go co) (go arg)
go (KindCo c) = IfaceKindCo (go c)
go (SubCo co) = IfaceSubCo (go co)
go (AxiomRuleCo co cs) = IfaceAxiomRuleCo (coaxrName co) (map go cs)
go (AxiomInstCo c i cs) = IfaceAxiomInstCo (coAxiomName c) i (map go cs)
go (UnivCo p r t1 t2) = IfaceUnivCo (go_prov p) r
(toIfaceTypeX fr t1)
(toIfaceTypeX fr t2)
go co@(TyConAppCo r tc cos)
= assertPpr (isNothing (tyConAppFunCo_maybe r tc cos)) (ppr co) $
IfaceTyConAppCo r (toIfaceTyCon tc) (map go cos)
go (FunCo { fco_role = r, fco_mult = w, fco_arg = co1, fco_res = co2 })
= IfaceFunCo r (go w) (go co1) (go co2)
go (ForAllCo tv k co) = IfaceForAllCo (toIfaceBndr tv)
(toIfaceCoercionX fr' k)
(toIfaceCoercionX fr' co)
where
fr' = fr `delVarSet` tv
go_prov :: UnivCoProvenance -> IfaceUnivCoProv
go_prov (PhantomProv co) = IfacePhantomProv (go co)
go_prov (ProofIrrelProv co) = IfaceProofIrrelProv (go co)
go_prov (PluginProv str) = IfacePluginProv str
go_prov (CorePrepProv b) = IfaceCorePrepProv b
toIfaceTcArgs :: TyCon -> [Type] -> IfaceAppArgs
toIfaceTcArgs = toIfaceTcArgsX emptyVarSet
toIfaceTcArgsX :: VarSet -> TyCon -> [Type] -> IfaceAppArgs
toIfaceTcArgsX fr tc ty_args = toIfaceAppArgsX fr (tyConKind tc) ty_args
toIfaceAppTyArgsX :: VarSet -> Type -> [Type] -> IfaceAppArgs
toIfaceAppTyArgsX fr ty ty_args = toIfaceAppArgsX fr (typeKind ty) ty_args
toIfaceAppArgsX :: VarSet -> Kind -> [Type] -> IfaceAppArgs
-- See Note [Suppressing invisible arguments] in GHC.Iface.Type
-- We produce a result list of args describing visibility
-- The awkward case is
-- T :: forall k. * -> k
-- And consider
-- T (forall j. blah) * blib
-- Is 'blib' visible? It depends on the visibility flag on j,
-- so we have to substitute for k. Annoying!
toIfaceAppArgsX fr kind ty_args
| null ty_args
= IA_Nil
| otherwise
= go (mkEmptySubst in_scope) kind ty_args
where
in_scope = mkInScopeSet (tyCoVarsOfTypes ty_args)
go _ _ [] = IA_Nil
go env ty ts
| Just ty' <- coreView ty
= go env ty' ts
go env (ForAllTy (Bndr tv vis) res) (t:ts)
= IA_Arg t' vis ts'
where
t' = toIfaceTypeX fr t
ts' = go (extendTCvSubst env tv t) res ts
go env (FunTy { ft_af = af, ft_res = res }) (t:ts)
= IA_Arg (toIfaceTypeX fr t) argf (go env res ts)
where
argf | isVisibleFunArg af = Required
| otherwise = Inferred
-- It's rare for a kind to have a constraint argument, but it
-- can happen. See Note [AnonTCB with constraint arg] in GHC.Core.TyCon.
go env ty ts@(t1:ts1)
| not (isEmptyTCvSubst env)
= go (zapSubst env) (substTy env ty) ts
-- See Note [Care with kind instantiation] in GHC.Core.Type
| otherwise
= -- There's a kind error in the type we are trying to print
-- e.g. kind = k, ty_args = [Int]
-- This is probably a compiler bug, so we print a trace and
-- carry on as if it were FunTy. Without the test for
-- isEmptyTCvSubst we'd get an infinite loop (#15473)
warnPprTrace True "toIfaceAppArgsX" (ppr kind $$ ppr ty_args) $
IA_Arg (toIfaceTypeX fr t1) Required (go env ty ts1)
tidyToIfaceType :: TidyEnv -> Type -> IfaceType
tidyToIfaceType env ty = toIfaceType (tidyType env ty)
tidyToIfaceTcArgs :: TidyEnv -> TyCon -> [Type] -> IfaceAppArgs
tidyToIfaceTcArgs env tc tys = toIfaceTcArgs tc (tidyTypes env tys)
tidyToIfaceContext :: TidyEnv -> ThetaType -> IfaceContext
tidyToIfaceContext env theta = map (tidyToIfaceType env) theta
{-
************************************************************************
* *
Conversion of pattern synonyms
* *
************************************************************************
-}
patSynToIfaceDecl :: PatSyn -> IfaceDecl
patSynToIfaceDecl ps
= IfacePatSyn { ifName = getName $ ps
, ifPatMatcher = to_if_pr (patSynMatcher ps)
, ifPatBuilder = fmap to_if_pr (patSynBuilder ps)
, ifPatIsInfix = patSynIsInfix ps
, ifPatUnivBndrs = map toIfaceForAllBndr univ_bndrs'
, ifPatExBndrs = map toIfaceForAllBndr ex_bndrs'
, ifPatProvCtxt = tidyToIfaceContext env2 prov_theta
, ifPatReqCtxt = tidyToIfaceContext env2 req_theta
, ifPatArgs = map (tidyToIfaceType env2 . scaledThing) args
, ifPatTy = tidyToIfaceType env2 rhs_ty
, ifFieldLabels = (patSynFieldLabels ps)
}
where
(_univ_tvs, req_theta, _ex_tvs, prov_theta, args, rhs_ty) = patSynSig ps
univ_bndrs = patSynUnivTyVarBinders ps
ex_bndrs = patSynExTyVarBinders ps
(env1, univ_bndrs') = tidyForAllTyBinders emptyTidyEnv univ_bndrs
(env2, ex_bndrs') = tidyForAllTyBinders env1 ex_bndrs
to_if_pr (name, _type, needs_dummy) = (name, needs_dummy)
{-
************************************************************************
* *
Conversion of other things
* *
************************************************************************
-}
toIfaceBang :: TidyEnv -> HsImplBang -> IfaceBang
toIfaceBang _ HsLazy = IfNoBang
toIfaceBang _ (HsUnpack Nothing) = IfUnpack
toIfaceBang env (HsUnpack (Just co)) = IfUnpackCo (toIfaceCoercion (tidyCo env co))
toIfaceBang _ (HsStrict _) = IfStrict
toIfaceSrcBang :: HsSrcBang -> IfaceSrcBang
toIfaceSrcBang (HsSrcBang _ unpk bang) = IfSrcBang unpk bang
toIfaceLetBndr :: Id -> IfaceLetBndr
toIfaceLetBndr id = IfLetBndr (occNameFS (getOccName id))
(toIfaceType (idType id))
(toIfaceIdInfo (idInfo id))
(toIfaceJoinInfo (isJoinId_maybe id))
-- Put into the interface file any IdInfo that GHC.Core.Tidy.tidyLetBndr
-- has left on the Id. See Note [IdInfo on nested let-bindings] in GHC.Iface.Syntax
toIfaceTopBndr :: Id -> IfaceTopBndrInfo
toIfaceTopBndr id
= if isExternalName name
then IfGblTopBndr name
else IfLclTopBndr (occNameFS (getOccName id)) (toIfaceType (idType id))
(toIfaceIdInfo (idInfo id)) (toIfaceIdDetails (idDetails id))
where
name = getName id
toIfaceIdDetails :: IdDetails -> IfaceIdDetails
toIfaceIdDetails VanillaId = IfVanillaId
toIfaceIdDetails (WorkerLikeId dmds) = IfWorkerLikeId dmds
toIfaceIdDetails (DFunId {}) = IfDFunId
toIfaceIdDetails (RecSelId { sel_naughty = n
, sel_tycon = tc }) =
let iface = case tc of
RecSelData ty_con -> Left (toIfaceTyCon ty_con)
RecSelPatSyn pat_syn -> Right (patSynToIfaceDecl pat_syn)
in IfRecSelId iface n
-- The remaining cases are all "implicit Ids" which don't
-- appear in interface files at all
toIfaceIdDetails other = pprTrace "toIfaceIdDetails" (ppr other)
IfVanillaId -- Unexpected; the other
toIfaceIdInfo :: IdInfo -> IfaceIdInfo
toIfaceIdInfo id_info
= catMaybes [arity_hsinfo, caf_hsinfo, strict_hsinfo, cpr_hsinfo,
inline_hsinfo, unfold_hsinfo]
-- NB: strictness and arity must appear in the list before unfolding
-- See GHC.IfaceToCore.tcUnfolding
where
------------ Arity --------------
arity_info = arityInfo id_info
arity_hsinfo | arity_info == 0 = Nothing
| otherwise = Just (HsArity arity_info)
------------ Caf Info --------------
caf_info = cafInfo id_info
caf_hsinfo = case caf_info of
NoCafRefs -> Just HsNoCafRefs
_other -> Nothing
------------ Strictness --------------
-- No point in explicitly exporting TopSig
sig_info = dmdSigInfo id_info
strict_hsinfo | not (isNopSig sig_info) = Just (HsDmdSig sig_info)
| otherwise = Nothing
------------ CPR --------------
cpr_info = cprSigInfo id_info
cpr_hsinfo | cpr_info /= topCprSig = Just (HsCprSig cpr_info)
| otherwise = Nothing
------------ Unfolding --------------
unfold_hsinfo = toIfUnfolding loop_breaker (realUnfoldingInfo id_info)
loop_breaker = isStrongLoopBreaker (occInfo id_info)
------------ Inline prag --------------
inline_prag = inlinePragInfo id_info
inline_hsinfo | isDefaultInlinePragma inline_prag = Nothing
| otherwise = Just (HsInline inline_prag)
toIfaceJoinInfo :: Maybe JoinArity -> IfaceJoinInfo
toIfaceJoinInfo (Just ar) = IfaceJoinPoint ar
toIfaceJoinInfo Nothing = IfaceNotJoinPoint
--------------------------
toIfUnfolding :: Bool -> Unfolding -> Maybe IfaceInfoItem
toIfUnfolding lb (CoreUnfolding { uf_tmpl = rhs
, uf_src = src
, uf_cache = cache
, uf_guidance = guidance })
= Just $ HsUnfold lb $
IfCoreUnfold src cache (toIfGuidance src guidance) (toIfaceExpr rhs)
-- Yes, even if guidance is UnfNever, expose the unfolding
-- If we didn't want to expose the unfolding, GHC.Iface.Tidy would
-- have stuck in NoUnfolding. For supercompilation we want
-- to see that unfolding!
toIfUnfolding lb (DFunUnfolding { df_bndrs = bndrs, df_args = args })
= Just (HsUnfold lb (IfDFunUnfold (map toIfaceBndr bndrs) (map toIfaceExpr args)))
-- No need to serialise the data constructor;
-- we can recover it from the type of the dfun
toIfUnfolding _ (OtherCon {}) = Nothing
-- The binding site of an Id doesn't have OtherCon, except perhaps
-- where we have called trimUnfolding; and that evald'ness info is
-- not needed by importing modules
toIfUnfolding _ BootUnfolding = Nothing
-- Can't happen; we only have BootUnfolding for imported binders
toIfUnfolding _ NoUnfolding = Nothing
toIfGuidance :: UnfoldingSource -> UnfoldingGuidance -> IfGuidance
toIfGuidance src guidance
| UnfWhen arity unsat_ok boring_ok <- guidance
, isStableSource src = IfWhen arity unsat_ok boring_ok
| otherwise = IfNoGuidance
{-
************************************************************************
* *
Conversion of expressions
* *
************************************************************************
-}
toIfaceExpr :: CoreExpr -> IfaceExpr
toIfaceExpr (Var v) = toIfaceVar v
toIfaceExpr (Lit (LitRubbish tc r)) = IfaceLitRubbish tc (toIfaceType r)
toIfaceExpr (Lit l) = IfaceLit l
toIfaceExpr (Type ty) = IfaceType (toIfaceType ty)
toIfaceExpr (Coercion co) = IfaceCo (toIfaceCoercion co)
toIfaceExpr (Lam x b) = IfaceLam (toIfaceBndr x, toIfaceOneShot x) (toIfaceExpr b)
toIfaceExpr (App f a) = toIfaceApp f [a]
toIfaceExpr (Case s x ty as)
| null as = IfaceECase (toIfaceExpr s) (toIfaceType ty)
| otherwise = IfaceCase (toIfaceExpr s) (getOccFS x) (map toIfaceAlt as)
toIfaceExpr (Let b e) = IfaceLet (toIfaceBind b) (toIfaceExpr e)
toIfaceExpr (Cast e co) = IfaceCast (toIfaceExpr e) (toIfaceCoercion co)
toIfaceExpr (Tick t e)
| Just t' <- toIfaceTickish t = IfaceTick t' (toIfaceExpr e)
| otherwise = toIfaceExpr e
toIfaceOneShot :: Id -> IfaceOneShot
toIfaceOneShot id | isId id
, OneShotLam <- oneShotInfo (idInfo id)
= IfaceOneShot
| otherwise
= IfaceNoOneShot
---------------------
toIfaceTickish :: CoreTickish -> Maybe IfaceTickish
toIfaceTickish (ProfNote cc tick push) = Just (IfaceSCC cc tick push)
toIfaceTickish (HpcTick modl ix) = Just (IfaceHpcTick modl ix)
toIfaceTickish (SourceNote src names) = Just (IfaceSource src names)
toIfaceTickish (Breakpoint {}) = Nothing
-- Ignore breakpoints, since they are relevant only to GHCi, and
-- should not be serialised (#8333)
---------------------
toIfaceBind :: Bind Id -> IfaceBinding IfaceLetBndr
toIfaceBind (NonRec b r) = IfaceNonRec (toIfaceLetBndr b) (toIfaceExpr r)
toIfaceBind (Rec prs) = IfaceRec [(toIfaceLetBndr b, toIfaceExpr r) | (b,r) <- prs]
toIfaceTopBind :: Bind Id -> IfaceBindingX IfaceMaybeRhs IfaceTopBndrInfo
toIfaceTopBind b =
case b of
NonRec b r -> uncurry IfaceNonRec (do_one (b, r))
Rec prs -> IfaceRec (map do_one prs)
where
do_one (b, rhs) =
let top_bndr = toIfaceTopBndr b
rhs' = case top_bndr of
-- Use the existing unfolding for a global binder if we store that anyway.
-- See Note [Interface File with Core: Sharing RHSs]
IfGblTopBndr {} -> if already_has_unfolding b then IfUseUnfoldingRhs else IfRhs (toIfaceExpr rhs)
-- Local binders will have had unfoldings trimmed so have
-- to serialise the whole RHS.
IfLclTopBndr {} -> IfRhs (toIfaceExpr rhs)
in (top_bndr, rhs')
-- The sharing behaviour is currently disabled due to #22807, and relies on
-- finished #220056 to be re-enabled.
disabledDueTo22807 = True
already_has_unfolding b = not disabledDueTo22807
&& -- The identifier has an unfolding, which we are going to serialise anyway
hasCoreUnfolding (realIdUnfolding b)
-- But not a stable unfolding, we want the optimised unfoldings.
&& not (isStableUnfolding (realIdUnfolding b))
---------------------
toIfaceAlt :: CoreAlt -> IfaceAlt
toIfaceAlt (Alt c bs r) = IfaceAlt (toIfaceCon c) (map getOccFS bs) (toIfaceExpr r)
---------------------
toIfaceCon :: AltCon -> IfaceConAlt
toIfaceCon (DataAlt dc) = IfaceDataAlt (getName dc)
toIfaceCon (LitAlt l) = assertPpr (not (isLitRubbish l)) (ppr l) $
-- assert: see Note [Rubbish literals] wrinkle (b)
IfaceLitAlt l
toIfaceCon DEFAULT = IfaceDefault
---------------------
toIfaceApp :: Expr CoreBndr -> [Arg CoreBndr] -> IfaceExpr
toIfaceApp (App f a) as = toIfaceApp f (a:as)
toIfaceApp (Var v) as
= case isDataConWorkId_maybe v of
-- We convert the *worker* for tuples into IfaceTuples
Just dc | saturated
, Just tup_sort <- tyConTuple_maybe tc
-> IfaceTuple tup_sort tup_args
where
val_args = dropWhile isTypeArg as
saturated = val_args `lengthIs` idArity v
tup_args = map toIfaceExpr val_args
tc = dataConTyCon dc
_ -> mkIfaceApps (toIfaceVar v) as
toIfaceApp e as = mkIfaceApps (toIfaceExpr e) as
mkIfaceApps :: IfaceExpr -> [CoreExpr] -> IfaceExpr
mkIfaceApps f as = foldl' (\f a -> IfaceApp f (toIfaceExpr a)) f as
---------------------
toIfaceVar :: Id -> IfaceExpr
toIfaceVar v
| isBootUnfolding (idUnfolding v)
= -- See Note [Inlining and hs-boot files]
IfaceApp (IfaceApp (IfaceExt noinline_id)
(IfaceType (toIfaceType ty)))
(IfaceExt name) -- don't use mkIfaceApps, or infinite loop
| Just fcall <- isFCallId_maybe v = IfaceFCall fcall (toIfaceType (idType v))
-- Foreign calls have special syntax
| isExternalName name = IfaceExt name
| otherwise = IfaceLcl (getOccFS name)
where
name = idName v
ty = idType v
noinline_id | isConstraintKind (typeKind ty) = noinlineConstraintIdName
| otherwise = noinlineIdName
---------------------
toIfaceLFInfo :: Name -> LambdaFormInfo -> IfaceLFInfo
toIfaceLFInfo nm lfi = case lfi of
LFReEntrant top_lvl arity no_fvs _arg_descr ->
-- Exported LFReEntrant closures are top level, and top-level closures
-- don't have free variables
assertPpr (isTopLevel top_lvl) (ppr nm) $
assertPpr no_fvs (ppr nm) $
IfLFReEntrant arity
LFThunk top_lvl no_fvs updatable sfi mb_fun ->
-- Exported LFThunk closures are top level (which don't have free
-- variables) and non-standard (see cgTopRhsClosure)
assertPpr (isTopLevel top_lvl) (ppr nm) $
assertPpr no_fvs (ppr nm) $
assertPpr (sfi == NonStandardThunk) (ppr nm) $
IfLFThunk updatable mb_fun
LFCon dc ->
IfLFCon (dataConName dc)
LFUnknown mb_fun ->
IfLFUnknown mb_fun
LFUnlifted ->
IfLFUnlifted
LFLetNoEscape ->
panic "toIfaceLFInfo: LFLetNoEscape"
-- Dehydrating CgBreakInfo
dehydrateCgBreakInfo :: [TyVar] -> [Maybe (Id, Word16)] -> Type -> CgBreakInfo
dehydrateCgBreakInfo ty_vars idOffSets tick_ty =
CgBreakInfo
{ cgb_tyvars = map toIfaceTvBndr ty_vars
, cgb_vars = map (fmap (\(i, offset) -> (toIfaceIdBndr i, offset))) idOffSets
, cgb_resty = toIfaceType tick_ty
}
{- Note [Inlining and hs-boot files]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this example (#10083, #12789):
---------- RSR.hs-boot ------------
module RSR where
data RSR
eqRSR :: RSR -> RSR -> Bool
---------- SR.hs ------------
module SR where
import {-# SOURCE #-} RSR
data SR = MkSR RSR
eqSR (MkSR r1) (MkSR r2) = eqRSR r1 r2
---------- RSR.hs ------------
module RSR where
import SR
data RSR = MkRSR SR -- deriving( Eq )
eqRSR (MkRSR s1) (MkRSR s2) = (eqSR s1 s2)
foo x y = not (eqRSR x y)
When compiling RSR we get this code
RSR.eqRSR :: RSR -> RSR -> Bool
RSR.eqRSR = \ (ds1 :: RSR.RSR) (ds2 :: RSR.RSR) ->
case ds1 of _ { RSR.MkRSR s1 ->
case ds2 of _ { RSR.MkRSR s2 ->
SR.eqSR s1 s2 }}
RSR.foo :: RSR -> RSR -> Bool
RSR.foo = \ (x :: RSR) (y :: RSR) -> not (RSR.eqRSR x y)
Now, when optimising foo:
Inline eqRSR (small, non-rec)
Inline eqSR (small, non-rec)
but the result of inlining eqSR from SR is another call to eqRSR, so
everything repeats. Neither eqSR nor eqRSR are (apparently) loop
breakers.
Solution: in the unfolding of eqSR in SR.hi, replace `eqRSR` in SR
with `noinline eqRSR`, so that eqRSR doesn't get inlined. This means
that when GHC inlines `eqSR`, it will not also inline `eqRSR`, exactly
as would have been the case if `foo` had been defined in SR.hs (and
marked as a loop-breaker).
But how do we arrange for this to happen? There are two ingredients:
1. When we serialize out unfoldings to IfaceExprs (toIfaceVar),
for every variable reference we see if we are referring to an
'Id' that came from an hs-boot file. If so, we add a `noinline`
to the reference. See Note [noinlineId magic]
in GHC.Types.Id.Make
2. But how do we know if a reference came from an hs-boot file
or not? We could record this directly in the 'IdInfo', but
actually we deduce this by looking at the unfolding: 'Id's
that come from boot files are given a special unfolding
(upon typechecking) 'BootUnfolding' which say that there is
no unfolding, and the reason is because the 'Id' came from
a boot file.
Here is a solution that doesn't work: when compiling RSR,
add a NOINLINE pragma to every function exported by the boot-file
for RSR (if it exists). Doing so makes the bootstrapped GHC itself
slower by 8% overall (on #9872a-d, and T1969: the reason
is that these NOINLINE'd functions now can't be profitably inlined
outside of the hs-boot loop.
Note [Interface File with Core: Sharing RHSs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
IMPORTANT: This optimisation is currently disabled due to #22027, it can be
re-enabled once #220056 is implemented.
In order to avoid duplicating definitions for bindings which already have unfoldings
we do some minor headstands to avoid serialising the RHS of a definition if it has
*any* unfolding.
* Only global things have unfoldings, because local things have had their unfoldings stripped.
* For any global thing which has an unstable unfolding, we just use that.
In order to implement this sharing:
* When creating the interface, check the criteria above and don't serialise the RHS
if such a case.
See
* When reading an interface, look at the realIdUnfolding, and then the unfoldingTemplate.
See `tc_iface_binding` for where this happens.
There are two main reasons why the mi_extra_decls field exists rather than shoe-horning
all the core bindings
1. mi_extra_decls retains the recursive group structure of the original program which
is very convenient as otherwise we would have to do the analysis again when loading
the program.
2. There are additional local top-level bindings which don't make it into mi_decls. It's
best to keep these separate from mi_decls as mi_decls is used to compute the ABI hash.
-}
|