1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE UnliftedFFITypes #-}
{-# OPTIONS_GHC -O2 -funbox-strict-fields #-}
-- We always optimise this, otherwise performance of a non-optimised
-- compiler is severely affected
-- |
-- There are two principal string types used internally by GHC:
--
-- ['FastString']
--
-- * A compact, hash-consed, representation of character strings.
-- * Generated by 'fsLit'.
-- * You can get a 'GHC.Types.Unique.Unique' from them.
-- * Equality test is O(1) (it uses the Unique).
-- * Comparison is O(1) or O(n):
-- * O(n) but deterministic with lexical comparison (`lexicalCompareFS`)
-- * O(1) but non-deterministic with Unique comparison (`uniqCompareFS`)
-- * Turn into 'GHC.Utils.Outputable.SDoc' with 'GHC.Utils.Outputable.ftext'.
--
-- ['PtrString']
--
-- * Pointer and size of a Latin-1 encoded string.
-- * Practically no operations.
-- * Outputting them is fast.
-- * Generated by 'mkPtrString#'.
-- * Length of string literals (mkPtrString# "abc"#) is computed statically
-- * Turn into 'GHC.Utils.Outputable.SDoc' with 'GHC.Utils.Outputable.ptext'
-- * Requires manual memory management.
-- Improper use may lead to memory leaks or dangling pointers.
-- * It assumes Latin-1 as the encoding, therefore it cannot represent
-- arbitrary Unicode strings.
--
-- Use 'PtrString' unless you want the facilities of 'FastString'.
module GHC.Data.FastString
(
-- * ByteString
bytesFS,
fastStringToByteString,
mkFastStringByteString,
fastZStringToByteString,
unsafeMkByteString,
-- * ShortByteString
fastStringToShortByteString,
mkFastStringShortByteString,
-- * FastZString
FastZString,
hPutFZS,
zString,
zStringTakeN,
lengthFZS,
-- * FastStrings
FastString(..), -- not abstract, for now.
NonDetFastString (..),
LexicalFastString (..),
-- ** Construction
fsLit,
mkFastString,
mkFastStringBytes,
mkFastStringByteList,
mkFastString#,
-- ** Deconstruction
unpackFS, -- :: FastString -> String
unconsFS, -- :: FastString -> Maybe (Char, FastString)
-- ** Encoding
zEncodeFS,
-- ** Operations
uniqueOfFS,
lengthFS,
nullFS,
appendFS,
concatFS,
consFS,
nilFS,
lexicalCompareFS,
uniqCompareFS,
-- ** Outputting
hPutFS,
-- ** Internal
getFastStringTable,
getFastStringZEncCounter,
-- * PtrStrings
PtrString (..),
-- ** Construction
mkPtrString#,
-- ** Deconstruction
unpackPtrString,
unpackPtrStringTakeN,
-- ** Operations
lengthPS
) where
import GHC.Prelude.Basic as Prelude
import GHC.Utils.Encoding
import GHC.Utils.IO.Unsafe
import GHC.Utils.Panic.Plain
import GHC.Utils.Misc
import GHC.Data.FastMutInt
import Control.Concurrent.MVar
import Control.DeepSeq
import Control.Monad
import Data.ByteString (ByteString)
import Data.ByteString.Short (ShortByteString)
import qualified Data.ByteString as BS
import qualified Data.ByteString.Char8 as BSC
import qualified Data.ByteString.Unsafe as BS
import qualified Data.ByteString.Short as SBS
#if !MIN_VERSION_bytestring(0,11,0)
import qualified Data.ByteString.Short.Internal as SBS
#endif
import Foreign.C
import System.IO
import Data.Data
import Data.IORef
import Data.Semigroup as Semi
import Foreign
#if MIN_VERSION_GLASGOW_HASKELL(9,3,0,0)
import GHC.Conc.Sync (sharedCAF)
#endif
#if __GLASGOW_HASKELL__ < 811
import GHC.Base (unpackCString#,unpackNBytes#)
#endif
import GHC.Exts
import GHC.IO
-- | Gives the Modified UTF-8 encoded bytes corresponding to a 'FastString'
bytesFS, fastStringToByteString :: FastString -> ByteString
{-# INLINE[1] bytesFS #-}
bytesFS f = SBS.fromShort $ fs_sbs f
{-# DEPRECATED fastStringToByteString "Use `bytesFS` instead" #-}
fastStringToByteString = bytesFS
fastStringToShortByteString :: FastString -> ShortByteString
fastStringToShortByteString = fs_sbs
fastZStringToByteString :: FastZString -> ByteString
fastZStringToByteString (FastZString bs) = bs
-- This will drop information if any character > '\xFF'
unsafeMkByteString :: String -> ByteString
unsafeMkByteString = BSC.pack
hashFastString :: FastString -> Int
hashFastString fs = hashStr $ fs_sbs fs
-- -----------------------------------------------------------------------------
newtype FastZString = FastZString ByteString
deriving NFData
hPutFZS :: Handle -> FastZString -> IO ()
hPutFZS handle (FastZString bs) = BS.hPut handle bs
zString :: FastZString -> String
zString (FastZString bs) =
inlinePerformIO $ BS.unsafeUseAsCStringLen bs peekCAStringLen
-- | @zStringTakeN n = 'take' n . 'zString'@
-- but is performed in \(O(\min(n,l))\) rather than \(O(l)\),
-- where \(l\) is the length of the 'FastZString'.
zStringTakeN :: Int -> FastZString -> String
zStringTakeN n (FastZString bs) =
inlinePerformIO $ BS.unsafeUseAsCStringLen bs $ \(cp, len) ->
peekCAStringLen (cp, min n len)
lengthFZS :: FastZString -> Int
lengthFZS (FastZString bs) = BS.length bs
mkFastZStringString :: String -> FastZString
mkFastZStringString str = FastZString (BSC.pack str)
-- -----------------------------------------------------------------------------
{-| A 'FastString' is a UTF-8 encoded string together with a unique ID. All
'FastString's are stored in a global hashtable to support fast O(1)
comparison.
It is also associated with a lazy reference to the Z-encoding
of this string which is used by the compiler internally.
-}
data FastString = FastString {
uniq :: {-# UNPACK #-} !Int, -- unique id
n_chars :: {-# UNPACK #-} !Int, -- number of chars
fs_sbs :: {-# UNPACK #-} !ShortByteString,
fs_zenc :: FastZString
-- ^ Lazily computed Z-encoding of this string. See Note [Z-Encoding] in
-- GHC.Utils.Encoding.
--
-- Since 'FastString's are globally memoized this is computed at most
-- once for any given string.
}
instance Eq FastString where
f1 == f2 = uniq f1 == uniq f2
-- We don't provide any "Ord FastString" instance to force you to think about
-- which ordering you want:
-- * lexical: deterministic, O(n). Cf lexicalCompareFS and LexicalFastString.
-- * by unique: non-deterministic, O(1). Cf uniqCompareFS and NonDetFastString.
instance IsString FastString where
fromString = fsLit
instance Semi.Semigroup FastString where
(<>) = appendFS
instance Monoid FastString where
mempty = nilFS
mappend = (Semi.<>)
mconcat = concatFS
instance Show FastString where
show fs = show (unpackFS fs)
instance Data FastString where
-- don't traverse?
toConstr _ = abstractConstr "FastString"
gunfold _ _ = error "gunfold"
dataTypeOf _ = mkNoRepType "FastString"
instance NFData FastString where
rnf fs = seq fs ()
-- | Compare FastString lexically
--
-- If you don't care about the lexical ordering, use `uniqCompareFS` instead.
lexicalCompareFS :: FastString -> FastString -> Ordering
lexicalCompareFS fs1 fs2 =
if uniq fs1 == uniq fs2 then EQ else
utf8CompareShortByteString (fs_sbs fs1) (fs_sbs fs2)
-- perform a lexical comparison taking into account the Modified UTF-8
-- encoding we use (cf #18562)
-- | Compare FastString by their Unique (not lexically).
--
-- Much cheaper than `lexicalCompareFS` but non-deterministic!
uniqCompareFS :: FastString -> FastString -> Ordering
uniqCompareFS fs1 fs2 = compare (uniq fs1) (uniq fs2)
-- | Non-deterministic FastString
--
-- This is a simple FastString wrapper with an Ord instance using
-- `uniqCompareFS` (i.e. which compares FastStrings on their Uniques). Hence it
-- is not deterministic from one run to the other.
newtype NonDetFastString
= NonDetFastString FastString
deriving newtype (Eq, Show)
deriving stock Data
instance Ord NonDetFastString where
compare (NonDetFastString fs1) (NonDetFastString fs2) = uniqCompareFS fs1 fs2
-- | Lexical FastString
--
-- This is a simple FastString wrapper with an Ord instance using
-- `lexicalCompareFS` (i.e. which compares FastStrings on their String
-- representation). Hence it is deterministic from one run to the other.
newtype LexicalFastString
= LexicalFastString FastString
deriving newtype (Eq, Show)
deriving stock Data
instance Ord LexicalFastString where
compare (LexicalFastString fs1) (LexicalFastString fs2) = lexicalCompareFS fs1 fs2
-- -----------------------------------------------------------------------------
-- Construction
{-
Internally, the compiler will maintain a fast string symbol table, providing
sharing and fast comparison. Creation of new @FastString@s then covertly does a
lookup, re-using the @FastString@ if there was a hit.
The design of the FastString hash table allows for lockless concurrent reads
and updates to multiple buckets with low synchronization overhead.
See Note [Updating the FastString table] on how it's updated.
-}
data FastStringTable = FastStringTable
{-# UNPACK #-} !FastMutInt -- the unique ID counter shared with all buckets
{-# UNPACK #-} !FastMutInt -- number of computed z-encodings for all buckets
(Array# (IORef FastStringTableSegment)) -- concurrent segments
data FastStringTableSegment = FastStringTableSegment
{-# UNPACK #-} !(MVar ()) -- the lock for write in each segment
{-# UNPACK #-} !FastMutInt -- the number of elements
(MutableArray# RealWorld [FastString]) -- buckets in this segment
{-
Following parameters are determined based on:
* Benchmark based on testsuite/tests/utils/should_run/T14854.hs
* Stats of @echo :browse | ghc --interactive -dfaststring-stats >/dev/null@:
on 2018-10-24, we have 13920 entries.
-}
segmentBits, numSegments, segmentMask, initialNumBuckets :: Int
segmentBits = 8
numSegments = 256 -- bit segmentBits
segmentMask = 0xff -- bit segmentBits - 1
initialNumBuckets = 64
hashToSegment# :: Int# -> Int#
hashToSegment# hash# = hash# `andI#` segmentMask#
where
!(I# segmentMask#) = segmentMask
hashToIndex# :: MutableArray# RealWorld [FastString] -> Int# -> Int#
hashToIndex# buckets# hash# =
(hash# `uncheckedIShiftRL#` segmentBits#) `remInt#` size#
where
!(I# segmentBits#) = segmentBits
size# = sizeofMutableArray# buckets#
maybeResizeSegment :: IORef FastStringTableSegment -> IO FastStringTableSegment
maybeResizeSegment segmentRef = do
segment@(FastStringTableSegment lock counter old#) <- readIORef segmentRef
let oldSize# = sizeofMutableArray# old#
newSize# = oldSize# *# 2#
(I# n#) <- readFastMutInt counter
if isTrue# (n# <# newSize#) -- maximum load of 1
then return segment
else do
resizedSegment@(FastStringTableSegment _ _ new#) <- IO $ \s1# ->
case newArray# newSize# [] s1# of
(# s2#, arr# #) -> (# s2#, FastStringTableSegment lock counter arr# #)
forM_ [0 .. (I# oldSize#) - 1] $ \(I# i#) -> do
fsList <- IO $ readArray# old# i#
forM_ fsList $ \fs -> do
let -- Shall we store in hash value in FastString instead?
!(I# hash#) = hashFastString fs
idx# = hashToIndex# new# hash#
IO $ \s1# ->
case readArray# new# idx# s1# of
(# s2#, bucket #) -> case writeArray# new# idx# (fs: bucket) s2# of
s3# -> (# s3#, () #)
writeIORef segmentRef resizedSegment
return resizedSegment
{-# NOINLINE stringTable #-}
stringTable :: FastStringTable
stringTable = unsafePerformIO $ do
let !(I# numSegments#) = numSegments
!(I# initialNumBuckets#) = initialNumBuckets
loop a# i# s1#
| isTrue# (i# ==# numSegments#) = s1#
| otherwise = case newMVar () `unIO` s1# of
(# s2#, lock #) -> case newFastMutInt 0 `unIO` s2# of
(# s3#, counter #) -> case newArray# initialNumBuckets# [] s3# of
(# s4#, buckets# #) -> case newIORef
(FastStringTableSegment lock counter buckets#) `unIO` s4# of
(# s5#, segment #) -> case writeArray# a# i# segment s5# of
s6# -> loop a# (i# +# 1#) s6#
uid <- newFastMutInt 603979776 -- ord '$' * 0x01000000
n_zencs <- newFastMutInt 0
tab <- IO $ \s1# ->
case newArray# numSegments# (panic "string_table") s1# of
(# s2#, arr# #) -> case loop arr# 0# s2# of
s3# -> case unsafeFreezeArray# arr# s3# of
(# s4#, segments# #) ->
(# s4#, FastStringTable uid n_zencs segments# #)
-- use the support wired into the RTS to share this CAF among all images of
-- libHSghc
#if !MIN_VERSION_GLASGOW_HASKELL(9,3,0,0)
return tab
#else
sharedCAF tab getOrSetLibHSghcFastStringTable
-- from the 9.3 RTS; the previouss RTS before might not have this symbol. The
-- right way to do this however would be to define some HAVE_FAST_STRING_TABLE
-- or similar rather than use (odd parity) development versions.
foreign import ccall unsafe "getOrSetLibHSghcFastStringTable"
getOrSetLibHSghcFastStringTable :: Ptr a -> IO (Ptr a)
#endif
{-
We include the FastString table in the `sharedCAF` mechanism because we'd like
FastStrings created by a Core plugin to have the same uniques as corresponding
strings created by the host compiler itself. For example, this allows plugins
to lookup known names (eg `mkTcOcc "MySpecialType"`) in the GlobalRdrEnv or
even re-invoke the parser.
In particular, the following little sanity test was failing in a plugin
prototyping safe newtype-coercions: GHC.NT.Type.NT was imported, but could not
be looked up /by the plugin/.
let rdrName = mkModuleName "GHC.NT.Type" `mkRdrQual` mkTcOcc "NT"
putMsgS $ showSDoc dflags $ ppr $ lookupGRE_RdrName rdrName $ mg_rdr_env guts
`mkTcOcc` involves the lookup (or creation) of a FastString. Since the
plugin's FastString.string_table is empty, constructing the RdrName also
allocates new uniques for the FastStrings "GHC.NT.Type" and "NT". These
uniques are almost certainly unequal to the ones that the host compiler
originally assigned to those FastStrings. Thus the lookup fails since the
domain of the GlobalRdrEnv is affected by the RdrName's OccName's FastString's
unique.
Maintaining synchronization of the two instances of this global is rather
difficult because of the uses of `unsafePerformIO` in this module. Not
synchronizing them risks breaking the rather major invariant that two
FastStrings with the same unique have the same string. Thus we use the
lower-level `sharedCAF` mechanism that relies on Globals.c.
-}
mkFastString# :: Addr# -> FastString
{-# INLINE mkFastString# #-}
mkFastString# a# = mkFastStringBytes ptr (ptrStrLength ptr)
where ptr = Ptr a#
{- Note [Updating the FastString table]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use a concurrent hashtable which contains multiple segments, each hash value
always maps to the same segment. Read is lock-free, write to the a segment
should acquire a lock for that segment to avoid race condition, writes to
different segments are independent.
The procedure goes like this:
1. Find out which segment to operate on based on the hash value
2. Read the relevant bucket and perform a look up of the string.
3. If it exists, return it.
4. Otherwise grab a unique ID, create a new FastString and atomically attempt
to update the relevant segment with this FastString:
* Resize the segment by doubling the number of buckets when the number of
FastStrings in this segment grows beyond the threshold.
* Double check that the string is not in the bucket. Another thread may have
inserted it while we were creating our string.
* Return the existing FastString if it exists. The one we preemptively
created will get GCed.
* Otherwise, insert and return the string we created.
-}
mkFastStringWith
:: (Int -> FastMutInt-> IO FastString) -> ShortByteString -> IO FastString
mkFastStringWith mk_fs sbs = do
FastStringTableSegment lock _ buckets# <- readIORef segmentRef
let idx# = hashToIndex# buckets# hash#
bucket <- IO $ readArray# buckets# idx#
case bucket_match bucket sbs of
Just found -> return found
Nothing -> do
-- The withMVar below is not dupable. It can lead to deadlock if it is
-- only run partially and putMVar is not called after takeMVar.
noDuplicate
n <- get_uid
new_fs <- mk_fs n n_zencs
withMVar lock $ \_ -> insert new_fs
where
!(FastStringTable uid n_zencs segments#) = stringTable
get_uid = atomicFetchAddFastMut uid 1
!(I# hash#) = hashStr sbs
(# segmentRef #) = indexArray# segments# (hashToSegment# hash#)
insert fs = do
FastStringTableSegment _ counter buckets# <- maybeResizeSegment segmentRef
let idx# = hashToIndex# buckets# hash#
bucket <- IO $ readArray# buckets# idx#
case bucket_match bucket sbs of
-- The FastString was added by another thread after previous read and
-- before we acquired the write lock.
Just found -> return found
Nothing -> do
IO $ \s1# ->
case writeArray# buckets# idx# (fs : bucket) s1# of
s2# -> (# s2#, () #)
_ <- atomicFetchAddFastMut counter 1
return fs
bucket_match :: [FastString] -> ShortByteString -> Maybe FastString
bucket_match fs sbs = go fs
where go [] = Nothing
go (fs@(FastString {fs_sbs=fs_sbs}) : ls)
| fs_sbs == sbs = Just fs
| otherwise = go ls
mkFastStringBytes :: Ptr Word8 -> Int -> FastString
mkFastStringBytes !ptr !len =
-- NB: Might as well use unsafeDupablePerformIO, since mkFastStringWith is
-- idempotent.
unsafeDupablePerformIO $ do
sbs <- newSBSFromPtr ptr len
mkFastStringWith (mkNewFastStringShortByteString sbs) sbs
newSBSFromPtr :: Ptr a -> Int -> IO ShortByteString
newSBSFromPtr (Ptr src#) (I# len#) =
IO $ \s ->
case newByteArray# len# s of { (# s, dst# #) ->
case copyAddrToByteArray# src# dst# 0# len# s of { s ->
case unsafeFreezeByteArray# dst# s of { (# s, ba# #) ->
(# s, SBS.SBS ba# #) }}}
-- | Create a 'FastString' by copying an existing 'ByteString'
mkFastStringByteString :: ByteString -> FastString
mkFastStringByteString bs =
let sbs = SBS.toShort bs in
inlinePerformIO $
mkFastStringWith (mkNewFastStringShortByteString sbs) sbs
-- | Create a 'FastString' from an existing 'ShortByteString' without
-- copying.
mkFastStringShortByteString :: ShortByteString -> FastString
mkFastStringShortByteString sbs =
inlinePerformIO $ mkFastStringWith (mkNewFastStringShortByteString sbs) sbs
-- | Creates a UTF-8 encoded 'FastString' from a 'String'
mkFastString :: String -> FastString
{-# NOINLINE[1] mkFastString #-}
mkFastString str =
inlinePerformIO $ do
let !sbs = utf8EncodeShortByteString str
mkFastStringWith (mkNewFastStringShortByteString sbs) sbs
-- The following rule is used to avoid polluting the non-reclaimable FastString
-- table with transient strings when we only want their encoding.
{-# RULES
"bytesFS/mkFastString" forall x. bytesFS (mkFastString x) = utf8EncodeByteString x #-}
-- | Creates a 'FastString' from a UTF-8 encoded @[Word8]@
mkFastStringByteList :: [Word8] -> FastString
mkFastStringByteList str = mkFastStringShortByteString (SBS.pack str)
-- | Creates a (lazy) Z-encoded 'FastString' from a 'ShortByteString' and
-- account the number of forced z-strings into the passed 'FastMutInt'.
mkZFastString :: FastMutInt -> ShortByteString -> FastZString
mkZFastString n_zencs sbs = unsafePerformIO $ do
_ <- atomicFetchAddFastMut n_zencs 1
return $ mkFastZStringString (zEncodeString (utf8DecodeShortByteString sbs))
mkNewFastStringShortByteString :: ShortByteString -> Int
-> FastMutInt -> IO FastString
mkNewFastStringShortByteString sbs uid n_zencs = do
let zstr = mkZFastString n_zencs sbs
chars = utf8CountCharsShortByteString sbs
return (FastString uid chars sbs zstr)
hashStr :: ShortByteString -> Int
-- produce a hash value between 0 & m (inclusive)
hashStr sbs@(SBS.SBS ba#) = loop 0# 0#
where
!(I# len#) = SBS.length sbs
loop h n =
if isTrue# (n ==# len#) then
I# h
else
let
-- DO NOT move this let binding! indexCharOffAddr# reads from the
-- pointer so we need to evaluate this based on the length check
-- above. Not doing this right caused #17909.
#if __GLASGOW_HASKELL__ >= 901
!c = int8ToInt# (indexInt8Array# ba# n)
#else
!c = indexInt8Array# ba# n
#endif
!h2 = (h *# 16777619#) `xorI#` c
in
loop h2 (n +# 1#)
-- -----------------------------------------------------------------------------
-- Operations
-- | Returns the length of the 'FastString' in characters
lengthFS :: FastString -> Int
lengthFS fs = n_chars fs
-- | Returns @True@ if the 'FastString' is empty
nullFS :: FastString -> Bool
nullFS fs = SBS.null $ fs_sbs fs
-- | Lazily unpacks and decodes the FastString
unpackFS :: FastString -> String
unpackFS fs = utf8DecodeShortByteString $ fs_sbs fs
-- | Returns a Z-encoded version of a 'FastString'. This might be the
-- original, if it was already Z-encoded. The first time this
-- function is applied to a particular 'FastString', the results are
-- memoized.
--
zEncodeFS :: FastString -> FastZString
zEncodeFS fs = fs_zenc fs
appendFS :: FastString -> FastString -> FastString
appendFS fs1 fs2 = mkFastStringShortByteString
$ (Semi.<>) (fs_sbs fs1) (fs_sbs fs2)
concatFS :: [FastString] -> FastString
concatFS = mkFastStringShortByteString . mconcat . map fs_sbs
consFS :: Char -> FastString -> FastString
consFS c fs = mkFastString (c : unpackFS fs)
unconsFS :: FastString -> Maybe (Char, FastString)
unconsFS fs =
case unpackFS fs of
[] -> Nothing
(chr : str) -> Just (chr, mkFastString str)
uniqueOfFS :: FastString -> Int
uniqueOfFS fs = uniq fs
nilFS :: FastString
nilFS = mkFastString ""
-- -----------------------------------------------------------------------------
-- Stats
getFastStringTable :: IO [[[FastString]]]
getFastStringTable =
forM [0 .. numSegments - 1] $ \(I# i#) -> do
let (# segmentRef #) = indexArray# segments# i#
FastStringTableSegment _ _ buckets# <- readIORef segmentRef
let bucketSize = I# (sizeofMutableArray# buckets#)
forM [0 .. bucketSize - 1] $ \(I# j#) ->
IO $ readArray# buckets# j#
where
!(FastStringTable _ _ segments#) = stringTable
getFastStringZEncCounter :: IO Int
getFastStringZEncCounter = readFastMutInt n_zencs
where
!(FastStringTable _ n_zencs _) = stringTable
-- -----------------------------------------------------------------------------
-- Outputting 'FastString's
-- |Outputs a 'FastString' with /no decoding at all/, that is, you
-- get the actual bytes in the 'FastString' written to the 'Handle'.
hPutFS :: Handle -> FastString -> IO ()
hPutFS handle fs = BS.hPut handle $ bytesFS fs
-- ToDo: we'll probably want an hPutFSLocal, or something, to output
-- in the current locale's encoding (for error messages and suchlike).
-- -----------------------------------------------------------------------------
-- PtrStrings, here for convenience only.
-- | A 'PtrString' is a pointer to some array of Latin-1 encoded chars.
data PtrString = PtrString !(Ptr Word8) !Int
-- | Wrap an unboxed address into a 'PtrString'.
mkPtrString# :: Addr# -> PtrString
{-# INLINE mkPtrString# #-}
mkPtrString# a# = PtrString (Ptr a#) (ptrStrLength (Ptr a#))
-- | Decode a 'PtrString' back into a 'String' using Latin-1 encoding.
-- This does not free the memory associated with 'PtrString'.
unpackPtrString :: PtrString -> String
unpackPtrString (PtrString (Ptr p#) (I# n#)) = unpackNBytes# p# n#
-- | @unpackPtrStringTakeN n = 'take' n . 'unpackPtrString'@
-- but is performed in \(O(\min(n,l))\) rather than \(O(l)\),
-- where \(l\) is the length of the 'PtrString'.
unpackPtrStringTakeN :: Int -> PtrString -> String
unpackPtrStringTakeN n (PtrString (Ptr p#) len) =
case min n len of
I# n# -> unpackNBytes# p# n#
-- | Return the length of a 'PtrString'
lengthPS :: PtrString -> Int
lengthPS (PtrString _ n) = n
-- -----------------------------------------------------------------------------
-- under the carpet
#if !MIN_VERSION_GLASGOW_HASKELL(9,0,0,0)
foreign import ccall unsafe "strlen"
cstringLength# :: Addr# -> Int#
#endif
ptrStrLength :: Ptr Word8 -> Int
{-# INLINE ptrStrLength #-}
ptrStrLength (Ptr a) = I# (cstringLength# a)
{-# NOINLINE fsLit #-}
fsLit :: String -> FastString
fsLit x = mkFastString x
{-# RULES "fslit"
forall x . fsLit (unpackCString# x) = mkFastString# x #-}
|