1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE PatternSynonyms #-}
--
-- (c) The University of Glasgow 2002-2006
--
-- | The IO Monad with an environment
--
-- The environment is passed around as a Reader monad but
-- as its in the IO monad, mutable references can be used
-- for updating state.
--
module GHC.Data.IOEnv (
IOEnv, -- Instance of Monad
-- Monad utilities
module GHC.Utils.Monad,
-- Errors
failM, failWithM,
IOEnvFailure(..),
-- Getting at the environment
getEnv, setEnv, updEnv,
runIOEnv, unsafeInterleaveM, uninterruptibleMaskM_,
tryM, tryAllM, tryMostM, fixM,
-- I/O operations
IORef, newMutVar, readMutVar, writeMutVar, updMutVar, updMutVarM,
atomicUpdMutVar, atomicUpdMutVar'
) where
import GHC.Prelude
import GHC.Driver.Session
import {-# SOURCE #-} GHC.Driver.Hooks
import GHC.IO (catchException)
import GHC.Utils.Exception
import GHC.Unit.Module
import GHC.Utils.Panic
import Data.IORef ( IORef, newIORef, readIORef, writeIORef, modifyIORef,
atomicModifyIORef, atomicModifyIORef' )
import System.IO.Unsafe ( unsafeInterleaveIO )
import System.IO ( fixIO )
import Control.Monad
import Control.Monad.Trans.Reader
import Control.Monad.Catch (MonadCatch, MonadMask, MonadThrow)
import GHC.Utils.Monad
import GHC.Utils.Logger
import Control.Applicative (Alternative(..))
import GHC.Exts( oneShot )
import Control.Concurrent.MVar (newEmptyMVar, readMVar, putMVar)
import Control.Concurrent (forkIO, killThread)
----------------------------------------------------------------------
-- Defining the monad type
----------------------------------------------------------------------
newtype IOEnv env a = IOEnv' (env -> IO a)
deriving (MonadThrow, MonadCatch, MonadMask, MonadFix) via (ReaderT env IO)
-- See Note [The one-shot state monad trick] in GHC.Utils.Monad
instance Functor (IOEnv env) where
fmap f (IOEnv g) = IOEnv $ \env -> fmap f (g env)
a <$ IOEnv g = IOEnv $ \env -> g env >> pure a
instance MonadIO (IOEnv env) where
liftIO f = IOEnv (\_ -> f)
pattern IOEnv :: forall env a. (env -> IO a) -> IOEnv env a
pattern IOEnv m <- IOEnv' m
where
IOEnv m = IOEnv' (oneShot m)
{-# COMPLETE IOEnv #-}
unIOEnv :: IOEnv env a -> (env -> IO a)
unIOEnv (IOEnv m) = m
instance Monad (IOEnv m) where
(>>=) = thenM
(>>) = (*>)
instance MonadFail (IOEnv m) where
fail _ = failM -- Ignore the string
instance Applicative (IOEnv m) where
pure = returnM
IOEnv f <*> IOEnv x = IOEnv (\ env -> f env <*> x env )
(*>) = thenM_
returnM :: a -> IOEnv env a
returnM a = IOEnv (\ _ -> return a)
thenM :: IOEnv env a -> (a -> IOEnv env b) -> IOEnv env b
thenM (IOEnv m) f = IOEnv (\ env -> do { r <- m env ;
unIOEnv (f r) env })
thenM_ :: IOEnv env a -> IOEnv env b -> IOEnv env b
thenM_ (IOEnv m) f = IOEnv (\ env -> do { _ <- m env ; unIOEnv f env })
failM :: IOEnv env a
failM = IOEnv (\ _ -> throwIO IOEnvFailure)
failWithM :: String -> IOEnv env a
failWithM s = IOEnv (\ _ -> ioError (userError s))
data IOEnvFailure = IOEnvFailure
instance Show IOEnvFailure where
show IOEnvFailure = "IOEnv failure"
instance Exception IOEnvFailure
instance ContainsDynFlags env => HasDynFlags (IOEnv env) where
getDynFlags = do env <- getEnv
return $! extractDynFlags env
instance ContainsHooks env => HasHooks (IOEnv env) where
getHooks = do env <- getEnv
return $! extractHooks env
instance ContainsLogger env => HasLogger (IOEnv env) where
getLogger = do env <- getEnv
return $! extractLogger env
instance ContainsModule env => HasModule (IOEnv env) where
getModule = do env <- getEnv
return $ extractModule env
----------------------------------------------------------------------
-- Fundamental combinators specific to the monad
----------------------------------------------------------------------
---------------------------
runIOEnv :: env -> IOEnv env a -> IO a
runIOEnv env (IOEnv m) = m env
---------------------------
{-# NOINLINE fixM #-}
-- Aargh! Not inlining fixM alleviates a space leak problem.
-- Normally fixM is used with a lazy tuple match: if the optimiser is
-- shown the definition of fixM, it occasionally transforms the code
-- in such a way that the code generator doesn't spot the selector
-- thunks. Sigh.
fixM :: (a -> IOEnv env a) -> IOEnv env a
fixM f = IOEnv (\ env -> fixIO (\ r -> unIOEnv (f r) env))
---------------------------
tryM :: IOEnv env r -> IOEnv env (Either IOEnvFailure r)
-- Reflect UserError exceptions (only) into IOEnv monad
-- Other exceptions are not caught; they are simply propagated as exns
--
-- The idea is that errors in the program being compiled will give rise
-- to UserErrors. But, say, pattern-match failures in GHC itself should
-- not be caught here, else they'll be reported as errors in the program
-- begin compiled!
tryM (IOEnv thing) = IOEnv (\ env -> tryIOEnvFailure (thing env))
tryIOEnvFailure :: IO a -> IO (Either IOEnvFailure a)
tryIOEnvFailure = try
tryAllM :: IOEnv env r -> IOEnv env (Either SomeException r)
-- Catch *all* synchronous exceptions
-- This is used when running a Template-Haskell splice, when
-- even a pattern-match failure is a programmer error
tryAllM (IOEnv thing) = IOEnv (\ env -> safeTry (thing env))
-- | Like 'try', but doesn't catch asynchronous exceptions
safeTry :: IO a -> IO (Either SomeException a)
safeTry act = do
var <- newEmptyMVar
-- uninterruptible because we want to mask around 'killThread', which is interruptible.
uninterruptibleMask $ \restore -> do
-- Fork, so that 'act' is safe from all asynchronous exceptions other than the ones we send it
t <- forkIO $ try (restore act) >>= putMVar var
restore (readMVar var)
`catchException` \(e :: SomeException) -> do
-- Control reaches this point only if the parent thread was sent an async exception
-- In that case, kill the 'act' thread and re-raise the exception
killThread t
throwIO e
tryMostM :: IOEnv env r -> IOEnv env (Either SomeException r)
tryMostM (IOEnv thing) = IOEnv (\ env -> tryMost (thing env))
---------------------------
unsafeInterleaveM :: IOEnv env a -> IOEnv env a
unsafeInterleaveM (IOEnv m) = IOEnv (\ env -> unsafeInterleaveIO (m env))
uninterruptibleMaskM_ :: IOEnv env a -> IOEnv env a
uninterruptibleMaskM_ (IOEnv m) = IOEnv (\ env -> uninterruptibleMask_ (m env))
----------------------------------------------------------------------
-- Alternative/MonadPlus
----------------------------------------------------------------------
instance Alternative (IOEnv env) where
empty = IOEnv (const empty)
m <|> n = IOEnv (\env -> unIOEnv m env <|> unIOEnv n env)
instance MonadPlus (IOEnv env)
----------------------------------------------------------------------
-- Accessing input/output
----------------------------------------------------------------------
newMutVar :: a -> IOEnv env (IORef a)
newMutVar val = liftIO (newIORef val)
writeMutVar :: IORef a -> a -> IOEnv env ()
writeMutVar var val = liftIO (writeIORef var val)
readMutVar :: IORef a -> IOEnv env a
readMutVar var = liftIO (readIORef var)
updMutVar :: IORef a -> (a -> a) -> IOEnv env ()
updMutVar var upd = liftIO (modifyIORef var upd)
updMutVarM :: IORef a -> (a -> IOEnv env a) -> IOEnv env ()
updMutVarM ref upd
= do { contents <- liftIO $ readIORef ref
; new_contents <- upd contents
; liftIO $ writeIORef ref new_contents }
-- | Atomically update the reference. Does not force the evaluation of the
-- new variable contents. For strict update, use 'atomicUpdMutVar''.
atomicUpdMutVar :: IORef a -> (a -> (a, b)) -> IOEnv env b
atomicUpdMutVar var upd = liftIO (atomicModifyIORef var upd)
-- | Strict variant of 'atomicUpdMutVar'.
atomicUpdMutVar' :: IORef a -> (a -> (a, b)) -> IOEnv env b
atomicUpdMutVar' var upd = liftIO (atomicModifyIORef' var upd)
----------------------------------------------------------------------
-- Accessing the environment
----------------------------------------------------------------------
getEnv :: IOEnv env env
{-# INLINE getEnv #-}
getEnv = IOEnv (\ env -> return env)
-- | Perform a computation with a different environment
setEnv :: env' -> IOEnv env' a -> IOEnv env a
{-# INLINE setEnv #-}
setEnv new_env (IOEnv m) = IOEnv (\ _ -> m new_env)
-- | Perform a computation with an altered environment
updEnv :: (env -> env') -> IOEnv env' a -> IOEnv env a
{-# INLINE updEnv #-}
updEnv upd (IOEnv m) = IOEnv (\ env -> m (upd env))
|