1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
module GHC.Data.TrieMap(
-- * Maps over 'Maybe' values
MaybeMap,
-- * Maps over 'List' values
ListMap,
-- * Maps over 'Literal's
LiteralMap,
-- * 'TrieMap' class
TrieMap(..), insertTM, deleteTM, foldMapTM, isEmptyTM,
-- * Things helpful for adding additional Instances.
(>.>), (|>), (|>>), XT,
foldMaybe, filterMaybe,
-- * Map for leaf compression
GenMap,
lkG, xtG, mapG, fdG,
xtList, lkList
) where
import GHC.Prelude
import GHC.Types.Literal
import GHC.Types.Unique.DFM
import GHC.Types.Unique( Uniquable )
import qualified Data.Map as Map
import qualified Data.IntMap as IntMap
import GHC.Utils.Outputable
import Control.Monad( (>=>) )
import Data.Kind( Type )
import qualified Data.Semigroup as S
{-
This module implements TrieMaps, which are finite mappings
whose key is a structured value like a CoreExpr or Type.
This file implements tries over general data structures.
Implementation for tries over Core Expressions/Types are
available in GHC.Core.Map.Expr.
The regular pattern for handling TrieMaps on data structures was first
described (to my knowledge) in Connelly and Morris's 1995 paper "A
generalization of the Trie Data Structure"; there is also an accessible
description of the idea in Okasaki's book "Purely Functional Data
Structures", Section 10.3.2
************************************************************************
* *
The TrieMap class
* *
************************************************************************
-}
type XT a = Maybe a -> Maybe a -- How to alter a non-existent elt (Nothing)
-- or an existing elt (Just)
class Functor m => TrieMap m where
type Key m :: Type
emptyTM :: m a
lookupTM :: forall b. Key m -> m b -> Maybe b
alterTM :: forall b. Key m -> XT b -> m b -> m b
filterTM :: (a -> Bool) -> m a -> m a
foldTM :: (a -> b -> b) -> m a -> b -> b
-- The unusual argument order here makes
-- it easy to compose calls to foldTM;
-- see for example fdE below
insertTM :: TrieMap m => Key m -> a -> m a -> m a
insertTM k v m = alterTM k (\_ -> Just v) m
deleteTM :: TrieMap m => Key m -> m a -> m a
deleteTM k m = alterTM k (\_ -> Nothing) m
foldMapTM :: (TrieMap m, Monoid r) => (a -> r) -> m a -> r
foldMapTM f m = foldTM (\ x r -> f x S.<> r) m mempty
-- This looks inefficient.
isEmptyTM :: TrieMap m => m a -> Bool
isEmptyTM m = foldTM (\ _ _ -> False) m True
----------------------
-- Recall that
-- Control.Monad.(>=>) :: (a -> Maybe b) -> (b -> Maybe c) -> a -> Maybe c
(>.>) :: (a -> b) -> (b -> c) -> a -> c
-- Reverse function composition (do f first, then g)
infixr 1 >.>
(f >.> g) x = g (f x)
infixr 1 |>, |>>
(|>) :: a -> (a->b) -> b -- Reverse application
x |> f = f x
----------------------
(|>>) :: TrieMap m2
=> (XT (m2 a) -> m1 (m2 a) -> m1 (m2 a))
-> (m2 a -> m2 a)
-> m1 (m2 a) -> m1 (m2 a)
(|>>) f g = f (Just . g . deMaybe)
deMaybe :: TrieMap m => Maybe (m a) -> m a
deMaybe Nothing = emptyTM
deMaybe (Just m) = m
{-
Note [Every TrieMap is a Functor]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Every TrieMap T admits
fmap :: (a->b) -> T a -> T b
where (fmap f t) applies `f` to every element of the range of `t`.
Ergo, we make `Functor` a superclass of `TrieMap`.
Moreover it is almost invariably possible to /derive/ Functor for each
particular instance. E.g. in the list instance we have
data ListMap m a
= LM { lm_nil :: Maybe a
, lm_cons :: m (ListMap m a) }
deriving (Functor)
instance TrieMap m => TrieMap (ListMap m) where { .. }
Alas, we not yet derive `Functor` for reasons of performance; see #22292.
-}
{-
************************************************************************
* *
IntMaps
* *
************************************************************************
-}
instance TrieMap IntMap.IntMap where
type Key IntMap.IntMap = Int
emptyTM = IntMap.empty
lookupTM k m = IntMap.lookup k m
alterTM = xtInt
foldTM k m z = IntMap.foldr k z m
filterTM f m = IntMap.filter f m
xtInt :: Int -> XT a -> IntMap.IntMap a -> IntMap.IntMap a
xtInt k f m = IntMap.alter f k m
instance Ord k => TrieMap (Map.Map k) where
type Key (Map.Map k) = k
emptyTM = Map.empty
lookupTM = Map.lookup
alterTM k f m = Map.alter f k m
foldTM k m z = Map.foldr k z m
filterTM f m = Map.filter f m
{-
Note [foldTM determinism]
~~~~~~~~~~~~~~~~~~~~~~~~~
We want foldTM to be deterministic, which is why we have an instance of
TrieMap for UniqDFM, but not for UniqFM. Here's an example of some things that
go wrong if foldTM is nondeterministic. Consider:
f a b = return (a <> b)
Depending on the order that the typechecker generates constraints you
get either:
f :: (Monad m, Monoid a) => a -> a -> m a
or:
f :: (Monoid a, Monad m) => a -> a -> m a
The generated code will be different after desugaring as the dictionaries
will be bound in different orders, leading to potential ABI incompatibility.
One way to solve this would be to notice that the typeclasses could be
sorted alphabetically.
Unfortunately that doesn't quite work with this example:
f a b = let x = a <> a; y = b <> b in x
where you infer:
f :: (Monoid m, Monoid m1) => m1 -> m -> m1
or:
f :: (Monoid m1, Monoid m) => m1 -> m -> m1
Here you could decide to take the order of the type variables in the type
according to depth first traversal and use it to order the constraints.
The real trouble starts when the user enables incoherent instances and
the compiler has to make an arbitrary choice. Consider:
class T a b where
go :: a -> b -> String
instance (Show b) => T Int b where
go a b = show a ++ show b
instance (Show a) => T a Bool where
go a b = show a ++ show b
f = go 10 True
GHC is free to choose either dictionary to implement f, but for the sake of
determinism we'd like it to be consistent when compiling the same sources
with the same flags.
inert_dicts :: DictMap is implemented with a TrieMap. In getUnsolvedInerts it
gets converted to a bag of (Wanted) Cts using a fold. Then in
solve_simple_wanteds it's merged with other WantedConstraints. We want the
conversion to a bag to be deterministic. For that purpose we use UniqDFM
instead of UniqFM to implement the TrieMap.
See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM for more details on how it's made
deterministic.
-}
instance forall key. Uniquable key => TrieMap (UniqDFM key) where
type Key (UniqDFM key) = key
emptyTM = emptyUDFM
lookupTM k m = lookupUDFM m k
alterTM k f m = alterUDFM f m k
foldTM k m z = foldUDFM k z m
filterTM f m = filterUDFM f m
{-
************************************************************************
* *
Maybes
* *
************************************************************************
If m is a map from k -> val
then (MaybeMap m) is a map from (Maybe k) -> val
-}
data MaybeMap m a = MM { mm_nothing :: Maybe a, mm_just :: m a }
-- TODO(22292): derive
instance Functor m => Functor (MaybeMap m) where
fmap f MM { mm_nothing = mn, mm_just = mj } = MM
{ mm_nothing = fmap f mn, mm_just = fmap f mj }
instance TrieMap m => TrieMap (MaybeMap m) where
type Key (MaybeMap m) = Maybe (Key m)
emptyTM = MM { mm_nothing = Nothing, mm_just = emptyTM }
lookupTM = lkMaybe lookupTM
alterTM = xtMaybe alterTM
foldTM = fdMaybe
filterTM = ftMaybe
instance TrieMap m => Foldable (MaybeMap m) where
foldMap = foldMapTM
lkMaybe :: (forall b. k -> m b -> Maybe b)
-> Maybe k -> MaybeMap m a -> Maybe a
lkMaybe _ Nothing = mm_nothing
lkMaybe lk (Just x) = mm_just >.> lk x
xtMaybe :: (forall b. k -> XT b -> m b -> m b)
-> Maybe k -> XT a -> MaybeMap m a -> MaybeMap m a
xtMaybe _ Nothing f m = m { mm_nothing = f (mm_nothing m) }
xtMaybe tr (Just x) f m = m { mm_just = mm_just m |> tr x f }
fdMaybe :: TrieMap m => (a -> b -> b) -> MaybeMap m a -> b -> b
fdMaybe k m = foldMaybe k (mm_nothing m)
. foldTM k (mm_just m)
ftMaybe :: TrieMap m => (a -> Bool) -> MaybeMap m a -> MaybeMap m a
ftMaybe f (MM { mm_nothing = mn, mm_just = mj })
= MM { mm_nothing = filterMaybe f mn, mm_just = filterTM f mj }
foldMaybe :: (a -> b -> b) -> Maybe a -> b -> b
foldMaybe _ Nothing b = b
foldMaybe k (Just a) b = k a b
filterMaybe :: (a -> Bool) -> Maybe a -> Maybe a
filterMaybe _ Nothing = Nothing
filterMaybe f input@(Just x) | f x = input
| otherwise = Nothing
{-
************************************************************************
* *
Lists
* *
************************************************************************
-}
data ListMap m a
= LM { lm_nil :: Maybe a
, lm_cons :: m (ListMap m a) }
-- TODO(22292): derive
instance Functor m => Functor (ListMap m) where
fmap f LM { lm_nil = mnil, lm_cons = mcons } = LM
{ lm_nil = fmap f mnil, lm_cons = fmap (fmap f) mcons }
instance TrieMap m => TrieMap (ListMap m) where
type Key (ListMap m) = [Key m]
emptyTM = LM { lm_nil = Nothing, lm_cons = emptyTM }
lookupTM = lkList lookupTM
alterTM = xtList alterTM
foldTM = fdList
filterTM = ftList
instance TrieMap m => Foldable (ListMap m) where
foldMap = foldMapTM
instance (TrieMap m, Outputable a) => Outputable (ListMap m a) where
ppr m = text "List elts" <+> ppr (foldTM (:) m [])
lkList :: TrieMap m => (forall b. k -> m b -> Maybe b)
-> [k] -> ListMap m a -> Maybe a
lkList _ [] = lm_nil
lkList lk (x:xs) = lm_cons >.> lk x >=> lkList lk xs
xtList :: TrieMap m => (forall b. k -> XT b -> m b -> m b)
-> [k] -> XT a -> ListMap m a -> ListMap m a
xtList _ [] f m = m { lm_nil = f (lm_nil m) }
xtList tr (x:xs) f m = m { lm_cons = lm_cons m |> tr x |>> xtList tr xs f }
fdList :: forall m a b. TrieMap m
=> (a -> b -> b) -> ListMap m a -> b -> b
fdList k m = foldMaybe k (lm_nil m)
. foldTM (fdList k) (lm_cons m)
ftList :: TrieMap m => (a -> Bool) -> ListMap m a -> ListMap m a
ftList f (LM { lm_nil = mnil, lm_cons = mcons })
= LM { lm_nil = filterMaybe f mnil, lm_cons = fmap (filterTM f) mcons }
{-
************************************************************************
* *
Basic maps
* *
************************************************************************
-}
type LiteralMap a = Map.Map Literal a
{-
************************************************************************
* *
GenMap
* *
************************************************************************
Note [Compressed TrieMap]
~~~~~~~~~~~~~~~~~~~~~~~~~
The GenMap constructor augments TrieMaps with leaf compression. This helps
solve the performance problem detailed in #9960: suppose we have a handful
H of entries in a TrieMap, each with a very large key, size K. If you fold over
such a TrieMap you'd expect time O(H). That would certainly be true of an
association list! But with TrieMap we actually have to navigate down a long
singleton structure to get to the elements, so it takes time O(K*H). This
can really hurt on many type-level computation benchmarks:
see for example T9872d.
The point of a TrieMap is that you need to navigate to the point where only one
key remains, and then things should be fast. So the point of a SingletonMap
is that, once we are down to a single (key,value) pair, we stop and
just use SingletonMap.
'EmptyMap' provides an even more basic (but essential) optimization: if there is
nothing in the map, don't bother building out the (possibly infinite) recursive
TrieMap structure!
Compressed triemaps are heavily used by GHC.Core.Map.Expr. So we have to mark some things
as INLINEABLE to permit specialization.
-}
data GenMap m a
= EmptyMap
| SingletonMap (Key m) a
| MultiMap (m a)
instance (Outputable a, Outputable (m a)) => Outputable (GenMap m a) where
ppr EmptyMap = text "Empty map"
ppr (SingletonMap _ v) = text "Singleton map" <+> ppr v
ppr (MultiMap m) = ppr m
-- TODO(22292): derive
instance Functor m => Functor (GenMap m) where
fmap = mapG
{-# INLINE fmap #-}
-- TODO undecidable instance
instance (Eq (Key m), TrieMap m) => TrieMap (GenMap m) where
type Key (GenMap m) = Key m
emptyTM = EmptyMap
lookupTM = lkG
alterTM = xtG
foldTM = fdG
filterTM = ftG
instance (Eq (Key m), TrieMap m) => Foldable (GenMap m) where
foldMap = foldMapTM
--We want to be able to specialize these functions when defining eg
--tries over (GenMap CoreExpr) which requires INLINEABLE
{-# INLINEABLE lkG #-}
lkG :: (Eq (Key m), TrieMap m) => Key m -> GenMap m a -> Maybe a
lkG _ EmptyMap = Nothing
lkG k (SingletonMap k' v') | k == k' = Just v'
| otherwise = Nothing
lkG k (MultiMap m) = lookupTM k m
{-# INLINEABLE xtG #-}
xtG :: (Eq (Key m), TrieMap m) => Key m -> XT a -> GenMap m a -> GenMap m a
xtG k f EmptyMap
= case f Nothing of
Just v -> SingletonMap k v
Nothing -> EmptyMap
xtG k f m@(SingletonMap k' v')
| k' == k
-- The new key matches the (single) key already in the tree. Hence,
-- apply @f@ to @Just v'@ and build a singleton or empty map depending
-- on the 'Just'/'Nothing' response respectively.
= case f (Just v') of
Just v'' -> SingletonMap k' v''
Nothing -> EmptyMap
| otherwise
-- We've hit a singleton tree for a different key than the one we are
-- searching for. Hence apply @f@ to @Nothing@. If result is @Nothing@ then
-- we can just return the old map. If not, we need a map with *two*
-- entries. The easiest way to do that is to insert two items into an empty
-- map of type @m a@.
= case f Nothing of
Nothing -> m
Just v -> emptyTM |> alterTM k' (const (Just v'))
>.> alterTM k (const (Just v))
>.> MultiMap
xtG k f (MultiMap m) = MultiMap (alterTM k f m)
{-# INLINEABLE mapG #-}
mapG :: Functor m => (a -> b) -> GenMap m a -> GenMap m b
mapG _ EmptyMap = EmptyMap
mapG f (SingletonMap k v) = SingletonMap k (f v)
mapG f (MultiMap m) = MultiMap (fmap f m)
{-# INLINEABLE fdG #-}
fdG :: TrieMap m => (a -> b -> b) -> GenMap m a -> b -> b
fdG _ EmptyMap = \z -> z
fdG k (SingletonMap _ v) = \z -> k v z
fdG k (MultiMap m) = foldTM k m
{-# INLINEABLE ftG #-}
ftG :: TrieMap m => (a -> Bool) -> GenMap m a -> GenMap m a
ftG _ EmptyMap = EmptyMap
ftG f input@(SingletonMap _ v)
| f v = input
| otherwise = EmptyMap
ftG f (MultiMap m) = MultiMap (filterTM f m)
-- we don't have enough information to reconstruct the key to make
-- a SingletonMap
|