1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
{-# OPTIONS_GHC -Wno-orphans #-} -- Outputable
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[HsBinds]{Abstract syntax: top-level bindings and signatures}
Datatype for: @BindGroup@, @Bind@, @Sig@, @Bind@.
-}
module GHC.Hs.Binds
( module Language.Haskell.Syntax.Binds
, module GHC.Hs.Binds
) where
import GHC.Prelude
import Language.Haskell.Syntax.Extension
import Language.Haskell.Syntax.Binds
import {-# SOURCE #-} GHC.Hs.Expr ( pprExpr, pprFunBind, pprPatBind )
import {-# SOURCE #-} GHC.Hs.Pat (pprLPat )
import GHC.Types.Tickish
import GHC.Hs.Extension
import GHC.Parser.Annotation
import GHC.Hs.Type
import GHC.Tc.Types.Evidence
import GHC.Core.Type
import GHC.Types.Name.Set
import GHC.Types.Basic
import GHC.Types.SourceText
import GHC.Types.SrcLoc as SrcLoc
import GHC.Types.Var
import GHC.Data.Bag
import GHC.Data.BooleanFormula (LBooleanFormula)
import GHC.Types.Name.Reader
import GHC.Types.Name
import GHC.Utils.Outputable
import GHC.Utils.Panic
import Data.Function
import Data.List (sortBy)
import Data.Data (Data)
{-
************************************************************************
* *
\subsection{Bindings: @BindGroup@}
* *
************************************************************************
Global bindings (where clauses)
-}
-- the ...LR datatypes are parameterized by two id types,
-- one for the left and one for the right.
type instance XHsValBinds (GhcPass pL) (GhcPass pR) = EpAnn AnnList
type instance XHsIPBinds (GhcPass pL) (GhcPass pR) = EpAnn AnnList
type instance XEmptyLocalBinds (GhcPass pL) (GhcPass pR) = NoExtField
type instance XXHsLocalBindsLR (GhcPass pL) (GhcPass pR) = DataConCantHappen
-- ---------------------------------------------------------------------
-- Deal with ValBindsOut
-- TODO: make this the only type for ValBinds
data NHsValBindsLR idL
= NValBinds
[(RecFlag, LHsBinds idL)]
[LSig GhcRn]
type instance XValBinds (GhcPass pL) (GhcPass pR) = AnnSortKey
type instance XXValBindsLR (GhcPass pL) pR
= NHsValBindsLR (GhcPass pL)
-- ---------------------------------------------------------------------
type instance XFunBind (GhcPass pL) GhcPs = NoExtField
type instance XFunBind (GhcPass pL) GhcRn = NameSet
-- ^ After the renamer (but before the type-checker), the FunBind
-- extension field contains the locally-bound free variables of this
-- defn. See Note [Bind free vars]
type instance XFunBind (GhcPass pL) GhcTc = (HsWrapper, [CoreTickish])
-- ^ After the type-checker, the FunBind extension field contains
-- the ticks to put on the rhs, if any, and a coercion from the
-- type of the MatchGroup to the type of the Id.
-- Example:
--
-- @
-- f :: Int -> forall a. a -> a
-- f x y = y
-- @
--
-- Then the MatchGroup will have type (Int -> a' -> a')
-- (with a free type variable a'). The coercion will take
-- a CoreExpr of this type and convert it to a CoreExpr of
-- type Int -> forall a'. a' -> a'
-- Notice that the coercion captures the free a'.
type instance XPatBind GhcPs (GhcPass pR) = EpAnn [AddEpAnn]
type instance XPatBind GhcRn (GhcPass pR) = NameSet -- See Note [Bind free vars]
type instance XPatBind GhcTc (GhcPass pR) =
( Type -- Type of the GRHSs
, ( [CoreTickish] -- Ticks to put on the rhs, if any
, [[CoreTickish]] ) ) -- and ticks to put on the bound variables.
type instance XVarBind (GhcPass pL) (GhcPass pR) = NoExtField
type instance XPatSynBind (GhcPass pL) (GhcPass pR) = NoExtField
type instance XXHsBindsLR GhcPs pR = DataConCantHappen
type instance XXHsBindsLR GhcRn pR = DataConCantHappen
type instance XXHsBindsLR GhcTc pR = AbsBinds
type instance XPSB (GhcPass idL) GhcPs = EpAnn [AddEpAnn]
type instance XPSB (GhcPass idL) GhcRn = NameSet -- Post renaming, FVs. See Note [Bind free vars]
type instance XPSB (GhcPass idL) GhcTc = NameSet
type instance XXPatSynBind (GhcPass idL) (GhcPass idR) = DataConCantHappen
-- ---------------------------------------------------------------------
-- | Typechecked, generalised bindings, used in the output to the type checker.
-- See Note [AbsBinds].
data AbsBinds = AbsBinds {
abs_tvs :: [TyVar],
abs_ev_vars :: [EvVar], -- ^ Includes equality constraints
-- | AbsBinds only gets used when idL = idR after renaming,
-- but these need to be idL's for the collect... code in HsUtil
-- to have the right type
abs_exports :: [ABExport],
-- | Evidence bindings
-- Why a list? See "GHC.Tc.TyCl.Instance"
-- Note [Typechecking plan for instance declarations]
abs_ev_binds :: [TcEvBinds],
-- | Typechecked user bindings
abs_binds :: LHsBinds GhcTc,
abs_sig :: Bool -- See Note [The abs_sig field of AbsBinds]
}
-- Consider (AbsBinds tvs ds [(ftvs, poly_f, mono_f) binds]
--
-- Creates bindings for (polymorphic, overloaded) poly_f
-- in terms of monomorphic, non-overloaded mono_f
--
-- Invariants:
-- 1. 'binds' binds mono_f
-- 2. ftvs is a subset of tvs
-- 3. ftvs includes all tyvars free in ds
--
-- See Note [AbsBinds]
-- | Abstraction Bindings Export
data ABExport
= ABE { abe_poly :: Id -- ^ Any INLINE pragma is attached to this Id
, abe_mono :: Id
, abe_wrap :: HsWrapper -- ^ See Note [ABExport wrapper]
-- Shape: (forall abs_tvs. abs_ev_vars => abe_mono) ~ abe_poly
, abe_prags :: TcSpecPrags -- ^ SPECIALISE pragmas
}
{-
Note [AbsBinds]
~~~~~~~~~~~~~~~
The AbsBinds constructor is used in the output of the type checker, to
record *typechecked* and *generalised* bindings. Specifically
AbsBinds { abs_tvs = tvs
, abs_ev_vars = [d1,d2]
, abs_exports = [ABE { abe_poly = fp, abe_mono = fm
, abe_wrap = fwrap }
ABE { slly for g } ]
, abs_ev_binds = DBINDS
, abs_binds = BIND[fm,gm] }
where 'BIND' binds the monomorphic Ids 'fm' and 'gm', means
fp = fwrap [/\ tvs. \d1 d2. letrec { DBINDS ]
[ ; BIND[fm,gm] } ]
[ in fm ]
gp = ...same again, with gm instead of fm
The 'fwrap' is an impedance-matcher that typically does nothing; see
Note [ABExport wrapper].
This is a pretty bad translation, because it duplicates all the bindings.
So the desugarer tries to do a better job:
fp = /\ [a,b] -> \ [d1,d2] -> case tp [a,b] [d1,d2] of
(fm,gm) -> fm
..ditto for gp..
tp = /\ [a,b] -> \ [d1,d2] -> letrec { DBINDS; BIND }
in (fm,gm)
In general:
* abs_tvs are the type variables over which the binding group is
generalised
* abs_ev_var are the evidence variables (usually dictionaries)
over which the binding group is generalised
* abs_binds are the monomorphic bindings
* abs_ex_binds are the evidence bindings that wrap the abs_binds
* abs_exports connects the monomorphic Ids bound by abs_binds
with the polymorphic Ids bound by the AbsBinds itself.
For example, consider a module M, with this top-level binding, where
there is no type signature for M.reverse,
M.reverse [] = []
M.reverse (x:xs) = M.reverse xs ++ [x]
In Hindley-Milner, a recursive binding is typechecked with the
*recursive* uses being *monomorphic*. So after typechecking *and*
desugaring we will get something like this
M.reverse :: forall a. [a] -> [a]
= /\a. letrec
reverse :: [a] -> [a] = \xs -> case xs of
[] -> []
(x:xs) -> reverse xs ++ [x]
in reverse
Notice that 'M.reverse' is polymorphic as expected, but there is a local
definition for plain 'reverse' which is *monomorphic*. The type variable
'a' scopes over the entire letrec.
That's after desugaring. What about after type checking but before
desugaring? That's where AbsBinds comes in. It looks like this:
AbsBinds { abs_tvs = [a]
, abs_ev_vars = []
, abs_exports = [ABE { abe_poly = M.reverse :: forall a. [a] -> [a],
, abe_mono = reverse :: [a] -> [a]}]
, abs_ev_binds = {}
, abs_binds = { reverse :: [a] -> [a]
= \xs -> case xs of
[] -> []
(x:xs) -> reverse xs ++ [x] } }
Here,
* abs_tvs says what type variables are abstracted over the binding
group, just 'a' in this case.
* abs_binds is the *monomorphic* bindings of the group
* abs_exports describes how to get the polymorphic Id 'M.reverse'
from the monomorphic one 'reverse'
Notice that the *original* function (the polymorphic one you thought
you were defining) appears in the abe_poly field of the
abs_exports. The bindings in abs_binds are for fresh, local, Ids with
a *monomorphic* Id.
If there is a group of mutually recursive (see Note [Polymorphic
recursion]) functions without type signatures, we get one AbsBinds
with the monomorphic versions of the bindings in abs_binds, and one
element of abe_exports for each variable bound in the mutually
recursive group. This is true even for pattern bindings. Example:
(f,g) = (\x -> x, f)
After type checking we get
AbsBinds { abs_tvs = [a]
, abs_exports = [ ABE { abe_poly = M.f :: forall a. a -> a
, abe_mono = f :: a -> a }
, ABE { abe_poly = M.g :: forall a. a -> a
, abe_mono = g :: a -> a }]
, abs_binds = { (f,g) = (\x -> x, f) }
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
Rec { f x = ...(g ef)...
; g :: forall a. [a] -> [a]
; g y = ...(f eg)... }
These bindings /are/ mutually recursive (f calls g, and g calls f).
But we can use the type signature for g to break the recursion,
like this:
1. Add g :: forall a. [a] -> [a] to the type environment
2. Typecheck the definition of f, all by itself,
including generalising it to find its most general
type, say f :: forall b. b -> b -> [b]
3. Extend the type environment with that type for f
4. Typecheck the definition of g, all by itself,
checking that it has the type claimed by its signature
Steps 2 and 4 each generate a separate AbsBinds, so we end
up with
Rec { AbsBinds { ...for f ... }
; AbsBinds { ...for g ... } }
This approach allows both f and to call each other
polymorphically, even though only g has a signature.
We get an AbsBinds that encompasses multiple source-program
bindings only when
* Each binding in the group has at least one binder that
lacks a user type signature
* The group forms a strongly connected component
Note [The abs_sig field of AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The abs_sig field supports a couple of special cases for bindings.
Consider
x :: Num a => (# a, a #)
x = (# 3, 4 #)
The general desugaring for AbsBinds would give
x = /\a. \ ($dNum :: Num a) ->
letrec xm = (# fromInteger $dNum 3, fromInteger $dNum 4 #) in
xm
But that has an illegal let-binding for an unboxed tuple. In this
case we'd prefer to generate the (more direct)
x = /\ a. \ ($dNum :: Num a) ->
(# fromInteger $dNum 3, fromInteger $dNum 4 #)
A similar thing happens with representation-polymorphic defns
(#11405):
undef :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
undef = error "undef"
Again, the vanilla desugaring gives a local let-binding for a
representation-polymorphic (undefm :: a), which is illegal. But
again we can desugar without a let:
undef = /\ a. \ (d:HasCallStack) -> error a d "undef"
The abs_sig field supports this direct desugaring, with no local
let-binding. When abs_sig = True
* the abs_binds is single FunBind
* the abs_exports is a singleton
* we have a complete type sig for binder
and hence the abs_binds is non-recursive
(it binds the mono_id but refers to the poly_id
These properties are exploited in GHC.HsToCore.Binds.dsAbsBinds to
generate code without a let-binding.
Note [ABExport wrapper]
~~~~~~~~~~~~~~~~~~~~~~~
Consider
(f,g) = (\x.x, \y.y)
This ultimately desugars to something like this:
tup :: forall a b. (a->a, b->b)
tup = /\a b. (\x:a.x, \y:b.y)
f :: forall a. a -> a
f = /\a. case tup a Any of
(fm::a->a,gm:Any->Any) -> fm
...similarly for g...
The abe_wrap field deals with impedance-matching between
(/\a b. case tup a b of { (f,g) -> f })
and the thing we really want, which may have fewer type
variables. The action happens in GHC.Tc.Gen.Bind.mkExport.
Note [Bind free vars]
~~~~~~~~~~~~~~~~~~~~~
The extension fields of FunBind, PatBind and PatSynBind at GhcRn records the free
variables of the definition. It is used for the following purposes:
a) Dependency analysis prior to type checking
(see GHC.Tc.Gen.Bind.tc_group)
b) Deciding whether we can do generalisation of the binding
(see GHC.Tc.Gen.Bind.decideGeneralisationPlan)
c) Deciding whether the binding can be used in static forms
(see GHC.Tc.Gen.Expr.checkClosedInStaticForm for the HsStatic case and
GHC.Tc.Gen.Bind.isClosedBndrGroup).
Specifically,
* it includes all free vars that are defined in this module
(including top-level things and lexically scoped type variables)
* it excludes imported vars; this is just to keep the set smaller
* Before renaming, and after typechecking, the field is unused;
it's just an error thunk
-}
instance (OutputableBndrId pl, OutputableBndrId pr)
=> Outputable (HsLocalBindsLR (GhcPass pl) (GhcPass pr)) where
ppr (HsValBinds _ bs) = ppr bs
ppr (HsIPBinds _ bs) = ppr bs
ppr (EmptyLocalBinds _) = empty
instance (OutputableBndrId pl, OutputableBndrId pr)
=> Outputable (HsValBindsLR (GhcPass pl) (GhcPass pr)) where
ppr (ValBinds _ binds sigs)
= pprDeclList (pprLHsBindsForUser binds sigs)
ppr (XValBindsLR (NValBinds sccs sigs))
= getPprDebug $ \case
-- Print with sccs showing
True -> vcat (map ppr sigs) $$ vcat (map ppr_scc sccs)
False -> pprDeclList (pprLHsBindsForUser (unionManyBags (map snd sccs)) sigs)
where
ppr_scc (rec_flag, binds) = pp_rec rec_flag <+> pprLHsBinds binds
pp_rec Recursive = text "rec"
pp_rec NonRecursive = text "nonrec"
pprLHsBinds :: (OutputableBndrId idL, OutputableBndrId idR)
=> LHsBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprLHsBinds binds
| isEmptyLHsBinds binds = empty
| otherwise = pprDeclList (map ppr (bagToList binds))
pprLHsBindsForUser :: (OutputableBndrId idL,
OutputableBndrId idR,
OutputableBndrId id2)
=> LHsBindsLR (GhcPass idL) (GhcPass idR) -> [LSig (GhcPass id2)] -> [SDoc]
-- pprLHsBindsForUser is different to pprLHsBinds because
-- a) No braces: 'let' and 'where' include a list of HsBindGroups
-- and we don't want several groups of bindings each
-- with braces around
-- b) Sort by location before printing
-- c) Include signatures
pprLHsBindsForUser binds sigs
= map snd (sort_by_loc decls)
where
decls :: [(SrcSpan, SDoc)]
decls = [(locA loc, ppr sig) | L loc sig <- sigs] ++
[(locA loc, ppr bind) | L loc bind <- bagToList binds]
sort_by_loc decls = sortBy (SrcLoc.leftmost_smallest `on` fst) decls
pprDeclList :: [SDoc] -> SDoc -- Braces with a space
-- Print a bunch of declarations
-- One could choose { d1; d2; ... }, using 'sep'
-- or d1
-- d2
-- ..
-- using vcat
-- At the moment we chose the latter
-- Also we do the 'pprDeeperList' thing.
pprDeclList ds = pprDeeperList vcat ds
------------
emptyLocalBinds :: HsLocalBindsLR (GhcPass a) (GhcPass b)
emptyLocalBinds = EmptyLocalBinds noExtField
eqEmptyLocalBinds :: HsLocalBindsLR a b -> Bool
eqEmptyLocalBinds (EmptyLocalBinds _) = True
eqEmptyLocalBinds _ = False
isEmptyValBinds :: HsValBindsLR (GhcPass a) (GhcPass b) -> Bool
isEmptyValBinds (ValBinds _ ds sigs) = isEmptyLHsBinds ds && null sigs
isEmptyValBinds (XValBindsLR (NValBinds ds sigs)) = null ds && null sigs
emptyValBindsIn, emptyValBindsOut :: HsValBindsLR (GhcPass a) (GhcPass b)
emptyValBindsIn = ValBinds NoAnnSortKey emptyBag []
emptyValBindsOut = XValBindsLR (NValBinds [] [])
emptyLHsBinds :: LHsBindsLR (GhcPass idL) idR
emptyLHsBinds = emptyBag
isEmptyLHsBinds :: LHsBindsLR (GhcPass idL) idR -> Bool
isEmptyLHsBinds = isEmptyBag
------------
plusHsValBinds :: HsValBinds (GhcPass a) -> HsValBinds (GhcPass a)
-> HsValBinds(GhcPass a)
plusHsValBinds (ValBinds _ ds1 sigs1) (ValBinds _ ds2 sigs2)
= ValBinds NoAnnSortKey (ds1 `unionBags` ds2) (sigs1 ++ sigs2)
plusHsValBinds (XValBindsLR (NValBinds ds1 sigs1))
(XValBindsLR (NValBinds ds2 sigs2))
= XValBindsLR (NValBinds (ds1 ++ ds2) (sigs1 ++ sigs2))
plusHsValBinds _ _
= panic "HsBinds.plusHsValBinds"
instance (OutputableBndrId pl, OutputableBndrId pr)
=> Outputable (HsBindLR (GhcPass pl) (GhcPass pr)) where
ppr mbind = ppr_monobind mbind
ppr_monobind :: forall idL idR.
(OutputableBndrId idL, OutputableBndrId idR)
=> HsBindLR (GhcPass idL) (GhcPass idR) -> SDoc
ppr_monobind (PatBind { pat_lhs = pat, pat_rhs = grhss })
= pprPatBind pat grhss
ppr_monobind (VarBind { var_id = var, var_rhs = rhs })
= sep [pprBndr CasePatBind var, nest 2 $ equals <+> pprExpr (unLoc rhs)]
ppr_monobind (FunBind { fun_id = fun,
fun_matches = matches,
fun_ext = ext })
= pprTicks empty ticksDoc
$$ whenPprDebug (pprBndr LetBind (unLoc fun))
$$ pprFunBind matches
$$ whenPprDebug (pprIfTc @idR $ wrapDoc)
where
ticksDoc :: SDoc
ticksDoc = case ghcPass @idR of
GhcPs -> empty
GhcRn -> empty
GhcTc | (_, ticks) <- ext ->
if null ticks
then empty
else text "-- ticks = " <> ppr ticks
wrapDoc :: SDoc
wrapDoc = case ghcPass @idR of
GhcPs -> empty
GhcRn -> empty
GhcTc | (wrap, _) <- ext -> ppr wrap
ppr_monobind (PatSynBind _ psb) = ppr psb
ppr_monobind (XHsBindsLR b) = case ghcPass @idL of
#if __GLASGOW_HASKELL__ <= 900
GhcPs -> dataConCantHappen b
GhcRn -> dataConCantHappen b
#endif
GhcTc -> ppr_absbinds b
where
ppr_absbinds (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dictvars
, abs_exports = exports, abs_binds = val_binds
, abs_ev_binds = ev_binds })
= sdocOption sdocPrintTypecheckerElaboration $ \case
False -> pprLHsBinds val_binds
True -> -- Show extra information (bug number: #10662)
hang (text "AbsBinds"
<+> sep [ brackets (interpp'SP tyvars)
, brackets (interpp'SP dictvars) ])
2 $ braces $ vcat
[ text "Exports:" <+>
brackets (sep (punctuate comma (map ppr exports)))
, text "Exported types:" <+>
vcat [pprBndr LetBind (abe_poly ex) | ex <- exports]
, text "Binds:" <+> pprLHsBinds val_binds
, pprIfTc @idR (text "Evidence:" <+> ppr ev_binds)
]
instance Outputable ABExport where
ppr (ABE { abe_wrap = wrap, abe_poly = gbl, abe_mono = lcl, abe_prags = prags })
= vcat [ sep [ ppr gbl, nest 2 (text "<=" <+> ppr lcl) ]
, nest 2 (pprTcSpecPrags prags)
, ppr $ nest 2 (text "wrap:" <+> ppr wrap) ]
instance (OutputableBndrId l, OutputableBndrId r)
=> Outputable (PatSynBind (GhcPass l) (GhcPass r)) where
ppr (PSB{ psb_id = (L _ psyn), psb_args = details, psb_def = pat,
psb_dir = dir })
= ppr_lhs <+> ppr_rhs
where
ppr_lhs = text "pattern" <+> ppr_details
ppr_simple syntax = syntax <+> pprLPat pat
ppr_details = case details of
InfixCon v1 v2 -> hsep [ppr_v v1, pprInfixOcc psyn, ppr_v v2]
where
ppr_v v = case ghcPass @r of
GhcPs -> ppr v
GhcRn -> ppr v
GhcTc -> ppr v
PrefixCon _ vs -> hsep (pprPrefixOcc psyn : map ppr_v vs)
where
ppr_v v = case ghcPass @r of
GhcPs -> ppr v
GhcRn -> ppr v
GhcTc -> ppr v
RecCon vs -> pprPrefixOcc psyn
<> braces (sep (punctuate comma (map ppr_v vs)))
where
ppr_v v = case ghcPass @r of
GhcPs -> ppr v
GhcRn -> ppr v
GhcTc -> ppr v
ppr_rhs = case dir of
Unidirectional -> ppr_simple (text "<-")
ImplicitBidirectional -> ppr_simple equals
ExplicitBidirectional mg -> ppr_simple (text "<-") <+> text "where" $$
(nest 2 $ pprFunBind mg)
pprTicks :: SDoc -> SDoc -> SDoc
-- Print stuff about ticks only when -dppr-debug is on, to avoid
-- them appearing in error messages (from the desugarer); see # 3263
-- Also print ticks in dumpStyle, so that -ddump-hpc actually does
-- something useful.
pprTicks pp_no_debug pp_when_debug
= getPprStyle $ \sty ->
getPprDebug $ \debug ->
if debug || dumpStyle sty
then pp_when_debug
else pp_no_debug
instance Outputable (XRec a RdrName) => Outputable (RecordPatSynField a) where
ppr (RecordPatSynField { recordPatSynField = v }) = ppr v
{-
************************************************************************
* *
Implicit parameter bindings
* *
************************************************************************
-}
type instance XIPBinds GhcPs = NoExtField
type instance XIPBinds GhcRn = NoExtField
type instance XIPBinds GhcTc = TcEvBinds -- binds uses of the
-- implicit parameters
type instance XXHsIPBinds (GhcPass p) = DataConCantHappen
isEmptyIPBindsPR :: HsIPBinds (GhcPass p) -> Bool
isEmptyIPBindsPR (IPBinds _ is) = null is
isEmptyIPBindsTc :: HsIPBinds GhcTc -> Bool
isEmptyIPBindsTc (IPBinds ds is) = null is && isEmptyTcEvBinds ds
-- EPA annotations in GhcPs, dictionary Id in GhcTc
type instance XCIPBind GhcPs = EpAnn [AddEpAnn]
type instance XCIPBind GhcRn = NoExtField
type instance XCIPBind GhcTc = Id
type instance XXIPBind (GhcPass p) = DataConCantHappen
instance OutputableBndrId p
=> Outputable (HsIPBinds (GhcPass p)) where
ppr (IPBinds ds bs) = pprDeeperList vcat (map ppr bs)
$$ whenPprDebug (pprIfTc @p $ ppr ds)
instance OutputableBndrId p => Outputable (IPBind (GhcPass p)) where
ppr (IPBind x (L _ ip) rhs) = name <+> equals <+> pprExpr (unLoc rhs)
where name = case ghcPass @p of
GhcPs -> pprBndr LetBind ip
GhcRn -> pprBndr LetBind ip
GhcTc -> pprBndr LetBind x
{-
************************************************************************
* *
\subsection{@Sig@: type signatures and value-modifying user pragmas}
* *
************************************************************************
-}
type instance XTypeSig (GhcPass p) = EpAnn AnnSig
type instance XPatSynSig (GhcPass p) = EpAnn AnnSig
type instance XClassOpSig (GhcPass p) = EpAnn AnnSig
type instance XFixSig (GhcPass p) = EpAnn [AddEpAnn]
type instance XInlineSig (GhcPass p) = EpAnn [AddEpAnn]
type instance XSpecSig (GhcPass p) = EpAnn [AddEpAnn]
type instance XSpecInstSig (GhcPass p) = (EpAnn [AddEpAnn], SourceText)
type instance XMinimalSig (GhcPass p) = (EpAnn [AddEpAnn], SourceText)
type instance XSCCFunSig (GhcPass p) = (EpAnn [AddEpAnn], SourceText)
type instance XCompleteMatchSig (GhcPass p) = (EpAnn [AddEpAnn], SourceText)
-- SourceText: Note [Pragma source text] in GHC.Types.SourceText
type instance XXSig GhcPs = DataConCantHappen
type instance XXSig GhcRn = IdSig
type instance XXSig GhcTc = IdSig
type instance XFixitySig (GhcPass p) = NoExtField
type instance XXFixitySig (GhcPass p) = DataConCantHappen
-- | A type signature in generated code, notably the code
-- generated for record selectors. We simply record the desired Id
-- itself, replete with its name, type and IdDetails. Otherwise it's
-- just like a type signature: there should be an accompanying binding
newtype IdSig = IdSig { unIdSig :: Id }
deriving Data
data AnnSig
= AnnSig {
asDcolon :: AddEpAnn, -- Not an EpaAnchor to capture unicode option
asRest :: [AddEpAnn]
} deriving Data
-- | Type checker Specialisation Pragmas
--
-- 'TcSpecPrags' conveys @SPECIALISE@ pragmas from the type checker to the desugarer
data TcSpecPrags
= IsDefaultMethod -- ^ Super-specialised: a default method should
-- be macro-expanded at every call site
| SpecPrags [LTcSpecPrag]
deriving Data
-- | Located Type checker Specification Pragmas
type LTcSpecPrag = Located TcSpecPrag
-- | Type checker Specification Pragma
data TcSpecPrag
= SpecPrag
Id
HsWrapper
InlinePragma
-- ^ The Id to be specialised, a wrapper that specialises the
-- polymorphic function, and inlining spec for the specialised function
deriving Data
noSpecPrags :: TcSpecPrags
noSpecPrags = SpecPrags []
hasSpecPrags :: TcSpecPrags -> Bool
hasSpecPrags (SpecPrags ps) = not (null ps)
hasSpecPrags IsDefaultMethod = False
isDefaultMethod :: TcSpecPrags -> Bool
isDefaultMethod IsDefaultMethod = True
isDefaultMethod (SpecPrags {}) = False
instance OutputableBndrId p => Outputable (Sig (GhcPass p)) where
ppr sig = ppr_sig sig
ppr_sig :: forall p. OutputableBndrId p
=> Sig (GhcPass p) -> SDoc
ppr_sig (TypeSig _ vars ty) = pprVarSig (map unLoc vars) (ppr ty)
ppr_sig (ClassOpSig _ is_deflt vars ty)
| is_deflt = text "default" <+> pprVarSig (map unLoc vars) (ppr ty)
| otherwise = pprVarSig (map unLoc vars) (ppr ty)
ppr_sig (FixSig _ fix_sig) = ppr fix_sig
ppr_sig (SpecSig _ var ty inl@(InlinePragma { inl_inline = spec }))
= pragSrcBrackets (inlinePragmaSource inl) pragmaSrc (pprSpec (unLoc var)
(interpp'SP ty) inl)
where
pragmaSrc = case spec of
NoUserInlinePrag -> "{-# " ++ extractSpecPragName (inl_src inl)
_ -> "{-# " ++ extractSpecPragName (inl_src inl) ++ "_INLINE"
ppr_sig (InlineSig _ var inl)
= ppr_pfx <+> pprInline inl <+> pprPrefixOcc (unLoc var) <+> text "#-}"
where
ppr_pfx = case inlinePragmaSource inl of
SourceText src -> text src
NoSourceText -> text "{-#" <+> inlinePragmaName (inl_inline inl)
ppr_sig (SpecInstSig (_, src) ty)
= pragSrcBrackets src "{-# pragma" (text "instance" <+> ppr ty)
ppr_sig (MinimalSig (_, src) bf)
= pragSrcBrackets src "{-# MINIMAL" (pprMinimalSig bf)
ppr_sig (PatSynSig _ names sig_ty)
= text "pattern" <+> pprVarSig (map unLoc names) (ppr sig_ty)
ppr_sig (SCCFunSig (_, src) fn mlabel)
= pragSrcBrackets src "{-# SCC" (ppr_fn <+> maybe empty ppr mlabel )
where
ppr_fn = case ghcPass @p of
GhcPs -> ppr fn
GhcRn -> ppr fn
GhcTc -> ppr fn
ppr_sig (CompleteMatchSig (_, src) cs mty)
= pragSrcBrackets src "{-# COMPLETE"
((hsep (punctuate comma (map ppr_n (unLoc cs))))
<+> opt_sig)
where
opt_sig = maybe empty ((\t -> dcolon <+> ppr t) . unLoc) mty
ppr_n n = case ghcPass @p of
GhcPs -> ppr n
GhcRn -> ppr n
GhcTc -> ppr n
ppr_sig (XSig x) = case ghcPass @p of
GhcRn | IdSig id <- x -> pprVarSig [id] (ppr (varType id))
GhcTc | IdSig id <- x -> pprVarSig [id] (ppr (varType id))
hsSigDoc :: forall p. IsPass p => Sig (GhcPass p) -> SDoc
hsSigDoc (TypeSig {}) = text "type signature"
hsSigDoc (PatSynSig {}) = text "pattern synonym signature"
hsSigDoc (ClassOpSig _ is_deflt _ _)
| is_deflt = text "default type signature"
| otherwise = text "class method signature"
hsSigDoc (SpecSig _ _ _ inl) = (inlinePragmaName . inl_inline $ inl) <+> text "pragma"
hsSigDoc (InlineSig _ _ prag) = (inlinePragmaName . inl_inline $ prag) <+> text "pragma"
-- Using the 'inlinePragmaName' function ensures that the pragma name for any
-- one of the INLINE/INLINABLE/NOINLINE pragmas are printed after being extracted
-- from the InlineSpec field of the pragma.
hsSigDoc (SpecInstSig (_, src) _) = text (extractSpecPragName src) <+> text "instance pragma"
hsSigDoc (FixSig {}) = text "fixity declaration"
hsSigDoc (MinimalSig {}) = text "MINIMAL pragma"
hsSigDoc (SCCFunSig {}) = text "SCC pragma"
hsSigDoc (CompleteMatchSig {}) = text "COMPLETE pragma"
hsSigDoc (XSig _) = case ghcPass @p of
GhcRn -> text "id signature"
GhcTc -> text "id signature"
-- | Extracts the name for a SPECIALIZE instance pragma. In 'hsSigDoc', the src
-- field of 'SpecInstSig' signature contains the SourceText for a SPECIALIZE
-- instance pragma of the form: "SourceText {-# SPECIALIZE"
--
-- Extraction ensures that all variants of the pragma name (with a 'Z' or an
-- 'S') are output exactly as used in the pragma.
extractSpecPragName :: SourceText -> String
extractSpecPragName srcTxt = case (words $ show srcTxt) of
(_:_:pragName:_) -> filter (/= '\"') pragName
_ -> pprPanic "hsSigDoc: Misformed SPECIALISE instance pragma:" (ppr srcTxt)
instance OutputableBndrId p
=> Outputable (FixitySig (GhcPass p)) where
ppr (FixitySig _ names fixity) = sep [ppr fixity, pprops]
where
pprops = hsep $ punctuate comma (map (pprInfixOcc . unLoc) names)
pragBrackets :: SDoc -> SDoc
pragBrackets doc = text "{-#" <+> doc <+> text "#-}"
-- | Using SourceText in case the pragma was spelled differently or used mixed
-- case
pragSrcBrackets :: SourceText -> String -> SDoc -> SDoc
pragSrcBrackets (SourceText src) _ doc = text src <+> doc <+> text "#-}"
pragSrcBrackets NoSourceText alt doc = text alt <+> doc <+> text "#-}"
pprVarSig :: (OutputableBndr id) => [id] -> SDoc -> SDoc
pprVarSig vars pp_ty = sep [pprvars <+> dcolon, nest 2 pp_ty]
where
pprvars = hsep $ punctuate comma (map pprPrefixOcc vars)
pprSpec :: (OutputableBndr id) => id -> SDoc -> InlinePragma -> SDoc
pprSpec var pp_ty inl = pp_inl <+> pprVarSig [var] pp_ty
where
pp_inl | isDefaultInlinePragma inl = empty
| otherwise = pprInline inl
pprTcSpecPrags :: TcSpecPrags -> SDoc
pprTcSpecPrags IsDefaultMethod = text "<default method>"
pprTcSpecPrags (SpecPrags ps) = vcat (map (ppr . unLoc) ps)
instance Outputable TcSpecPrag where
ppr (SpecPrag var _ inl)
= text (extractSpecPragName $ inl_src inl) <+> pprSpec var (text "<type>") inl
pprMinimalSig :: (OutputableBndr name)
=> LBooleanFormula (GenLocated l name) -> SDoc
pprMinimalSig (L _ bf) = ppr (fmap unLoc bf)
{-
************************************************************************
* *
\subsection{Anno instances}
* *
************************************************************************
-}
type instance Anno (HsBindLR (GhcPass idL) (GhcPass idR)) = SrcSpanAnnA
type instance Anno (IPBind (GhcPass p)) = SrcSpanAnnA
type instance Anno (Sig (GhcPass p)) = SrcSpanAnnA
-- For CompleteMatchSig
type instance Anno [LocatedN RdrName] = SrcSpan
type instance Anno [LocatedN Name] = SrcSpan
type instance Anno [LocatedN Id] = SrcSpan
type instance Anno (FixitySig (GhcPass p)) = SrcSpanAnnA
type instance Anno StringLiteral = SrcAnn NoEpAnns
type instance Anno (LocatedN RdrName) = SrcSpan
type instance Anno (LocatedN Name) = SrcSpan
type instance Anno (LocatedN Id) = SrcSpan
|