1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
{-# OPTIONS_GHC -Wno-orphans #-} -- Outputable
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
-- | Abstract Haskell syntax for expressions.
module GHC.Hs.Expr
( module Language.Haskell.Syntax.Expr
, module GHC.Hs.Expr
) where
import Language.Haskell.Syntax.Expr
-- friends:
import GHC.Prelude
import GHC.Hs.Decls() -- import instances
import GHC.Hs.Pat
import GHC.Hs.Lit
import Language.Haskell.Syntax.Extension
import Language.Haskell.Syntax.Basic (FieldLabelString(..))
import GHC.Hs.Extension
import GHC.Hs.Type
import GHC.Hs.Binds
import GHC.Parser.Annotation
-- others:
import GHC.Tc.Types.Evidence
import GHC.Types.Name
import GHC.Types.Name.Reader
import GHC.Types.Name.Set
import GHC.Types.Basic
import GHC.Types.Fixity
import GHC.Types.SourceText
import GHC.Types.SrcLoc
import GHC.Types.Tickish (CoreTickish)
import GHC.Core.ConLike
import GHC.Unit.Module (ModuleName)
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Data.FastString
import GHC.Core.Type
import GHC.Builtin.Types (mkTupleStr)
import GHC.Tc.Utils.TcType (TcType, TcTyVar)
import {-# SOURCE #-} GHC.Tc.Types (TcLclEnv)
import GHCi.RemoteTypes ( ForeignRef )
import qualified Language.Haskell.TH as TH (Q)
-- libraries:
import Data.Data hiding (Fixity(..))
import qualified Data.Data as Data (Fixity(..))
import qualified Data.Kind
import Data.Maybe (isJust)
import Data.Foldable ( toList )
import Data.List (uncons)
import Data.Bifunctor (first)
{- *********************************************************************
* *
Expressions proper
* *
********************************************************************* -}
-- | Post-Type checking Expression
--
-- PostTcExpr is an evidence expression attached to the syntax tree by the
-- type checker (c.f. postTcType).
type PostTcExpr = HsExpr GhcTc
-- | Post-Type checking Table
--
-- We use a PostTcTable where there are a bunch of pieces of evidence, more
-- than is convenient to keep individually.
type PostTcTable = [(Name, PostTcExpr)]
-------------------------
-- Defining SyntaxExpr in two stages allows for better type inference, because
-- we can declare SyntaxExprGhc to be injective (and closed). Without injectivity,
-- noSyntaxExpr would be ambiguous.
type instance SyntaxExpr (GhcPass p) = SyntaxExprGhc p
type family SyntaxExprGhc (p :: Pass) = (r :: Data.Kind.Type) | r -> p where
SyntaxExprGhc 'Parsed = NoExtField
SyntaxExprGhc 'Renamed = SyntaxExprRn
SyntaxExprGhc 'Typechecked = SyntaxExprTc
-- | The function to use in rebindable syntax. See Note [NoSyntaxExpr].
data SyntaxExprRn = SyntaxExprRn (HsExpr GhcRn)
-- Why is the payload not just a Name?
-- See Note [Monad fail : Rebindable syntax, overloaded strings] in "GHC.Rename.Expr"
| NoSyntaxExprRn
-- | An expression with wrappers, used for rebindable syntax
--
-- This should desugar to
--
-- > syn_res_wrap $ syn_expr (syn_arg_wraps[0] arg0)
-- > (syn_arg_wraps[1] arg1) ...
--
-- where the actual arguments come from elsewhere in the AST.
data SyntaxExprTc = SyntaxExprTc { syn_expr :: HsExpr GhcTc
, syn_arg_wraps :: [HsWrapper]
, syn_res_wrap :: HsWrapper }
| NoSyntaxExprTc -- See Note [NoSyntaxExpr]
-- | This is used for rebindable-syntax pieces that are too polymorphic
-- for tcSyntaxOp (trS_fmap and the mzip in ParStmt)
noExpr :: HsExpr (GhcPass p)
noExpr = HsLit noComments (HsString (SourceText "noExpr") (fsLit "noExpr"))
noSyntaxExpr :: forall p. IsPass p => SyntaxExpr (GhcPass p)
-- Before renaming, and sometimes after
-- See Note [NoSyntaxExpr]
noSyntaxExpr = case ghcPass @p of
GhcPs -> noExtField
GhcRn -> NoSyntaxExprRn
GhcTc -> NoSyntaxExprTc
-- | Make a 'SyntaxExpr GhcRn' from an expression
-- Used only in getMonadFailOp.
-- See Note [Monad fail : Rebindable syntax, overloaded strings] in "GHC.Rename.Expr"
mkSyntaxExpr :: HsExpr GhcRn -> SyntaxExprRn
mkSyntaxExpr = SyntaxExprRn
-- | Make a 'SyntaxExpr' from a 'Name' (the "rn" is because this is used in the
-- renamer).
mkRnSyntaxExpr :: Name -> SyntaxExprRn
mkRnSyntaxExpr name = SyntaxExprRn $ HsVar noExtField $ noLocA name
instance Outputable SyntaxExprRn where
ppr (SyntaxExprRn expr) = ppr expr
ppr NoSyntaxExprRn = text "<no syntax expr>"
instance Outputable SyntaxExprTc where
ppr (SyntaxExprTc { syn_expr = expr
, syn_arg_wraps = arg_wraps
, syn_res_wrap = res_wrap })
= sdocOption sdocPrintExplicitCoercions $ \print_co ->
getPprDebug $ \debug ->
if debug || print_co
then ppr expr <> braces (pprWithCommas ppr arg_wraps)
<> braces (ppr res_wrap)
else ppr expr
ppr NoSyntaxExprTc = text "<no syntax expr>"
-- | HsWrap appears only in typechecker output
data HsWrap hs_syn = HsWrap HsWrapper -- the wrapper
(hs_syn GhcTc) -- the thing that is wrapped
deriving instance (Data (hs_syn GhcTc), Typeable hs_syn) => Data (HsWrap hs_syn)
-- ---------------------------------------------------------------------
data HsBracketTc = HsBracketTc
{ hsb_quote :: HsQuote GhcRn -- See Note [The life cycle of a TH quotation]
, hsb_ty :: Type
, hsb_wrap :: Maybe QuoteWrapper -- The wrapper to apply type and dictionary argument to the quote.
, hsb_splices :: [PendingTcSplice] -- Output of the type checker is the *original*
-- renamed expression, plus
-- _typechecked_ splices to be
-- pasted back in by the desugarer
}
type instance XTypedBracket GhcPs = EpAnn [AddEpAnn]
type instance XTypedBracket GhcRn = NoExtField
type instance XTypedBracket GhcTc = HsBracketTc
type instance XUntypedBracket GhcPs = EpAnn [AddEpAnn]
type instance XUntypedBracket GhcRn = [PendingRnSplice] -- See Note [Pending Splices]
-- Output of the renamer is the *original* renamed expression,
-- plus _renamed_ splices to be type checked
type instance XUntypedBracket GhcTc = HsBracketTc
-- ---------------------------------------------------------------------
-- API Annotations types
data EpAnnHsCase = EpAnnHsCase
{ hsCaseAnnCase :: EpaLocation
, hsCaseAnnOf :: EpaLocation
, hsCaseAnnsRest :: [AddEpAnn]
} deriving Data
data EpAnnUnboundVar = EpAnnUnboundVar
{ hsUnboundBackquotes :: (EpaLocation, EpaLocation)
, hsUnboundHole :: EpaLocation
} deriving Data
type instance XVar (GhcPass _) = NoExtField
-- Record selectors at parse time are HsVar; they convert to HsRecSel
-- on renaming.
type instance XRecSel GhcPs = DataConCantHappen
type instance XRecSel GhcRn = NoExtField
type instance XRecSel GhcTc = NoExtField
type instance XLam (GhcPass _) = NoExtField
-- OverLabel not present in GhcTc pass; see GHC.Rename.Expr
-- Note [Handling overloaded and rebindable constructs]
type instance XOverLabel GhcPs = EpAnnCO
type instance XOverLabel GhcRn = EpAnnCO
type instance XOverLabel GhcTc = DataConCantHappen
-- ---------------------------------------------------------------------
type instance XVar (GhcPass _) = NoExtField
type instance XUnboundVar GhcPs = EpAnn EpAnnUnboundVar
type instance XUnboundVar GhcRn = NoExtField
type instance XUnboundVar GhcTc = HoleExprRef
-- We really don't need the whole HoleExprRef; just the IORef EvTerm
-- would be enough. But then deriving a Data instance becomes impossible.
-- Much, much easier just to define HoleExprRef with a Data instance and
-- store the whole structure.
type instance XIPVar GhcPs = EpAnnCO
type instance XIPVar GhcRn = EpAnnCO
type instance XIPVar GhcTc = DataConCantHappen
type instance XOverLitE (GhcPass _) = EpAnnCO
type instance XLitE (GhcPass _) = EpAnnCO
type instance XLam (GhcPass _) = NoExtField
type instance XLamCase (GhcPass _) = EpAnn [AddEpAnn]
type instance XApp (GhcPass _) = EpAnnCO
type instance XAppTypeE GhcPs = NoExtField
type instance XAppTypeE GhcRn = NoExtField
type instance XAppTypeE GhcTc = Type
-- OpApp not present in GhcTc pass; see GHC.Rename.Expr
-- Note [Handling overloaded and rebindable constructs]
type instance XOpApp GhcPs = EpAnn [AddEpAnn]
type instance XOpApp GhcRn = Fixity
type instance XOpApp GhcTc = DataConCantHappen
-- SectionL, SectionR not present in GhcTc pass; see GHC.Rename.Expr
-- Note [Handling overloaded and rebindable constructs]
type instance XSectionL GhcPs = EpAnnCO
type instance XSectionR GhcPs = EpAnnCO
type instance XSectionL GhcRn = EpAnnCO
type instance XSectionR GhcRn = EpAnnCO
type instance XSectionL GhcTc = DataConCantHappen
type instance XSectionR GhcTc = DataConCantHappen
type instance XNegApp GhcPs = EpAnn [AddEpAnn]
type instance XNegApp GhcRn = NoExtField
type instance XNegApp GhcTc = NoExtField
type instance XPar (GhcPass _) = EpAnnCO
type instance XExplicitTuple GhcPs = EpAnn [AddEpAnn]
type instance XExplicitTuple GhcRn = NoExtField
type instance XExplicitTuple GhcTc = NoExtField
type instance XExplicitSum GhcPs = EpAnn AnnExplicitSum
type instance XExplicitSum GhcRn = NoExtField
type instance XExplicitSum GhcTc = [Type]
type instance XCase GhcPs = EpAnn EpAnnHsCase
type instance XCase GhcRn = NoExtField
type instance XCase GhcTc = NoExtField
type instance XIf GhcPs = EpAnn AnnsIf
type instance XIf GhcRn = NoExtField
type instance XIf GhcTc = NoExtField
type instance XMultiIf GhcPs = EpAnn [AddEpAnn]
type instance XMultiIf GhcRn = NoExtField
type instance XMultiIf GhcTc = Type
type instance XLet GhcPs = EpAnnCO
type instance XLet GhcRn = NoExtField
type instance XLet GhcTc = NoExtField
type instance XDo GhcPs = EpAnn AnnList
type instance XDo GhcRn = NoExtField
type instance XDo GhcTc = Type
type instance XExplicitList GhcPs = EpAnn AnnList
type instance XExplicitList GhcRn = NoExtField
type instance XExplicitList GhcTc = Type
-- GhcPs: ExplicitList includes all source-level
-- list literals, including overloaded ones
-- GhcRn and GhcTc: ExplicitList used only for list literals
-- that denote Haskell's built-in lists. Overloaded lists
-- have been expanded away in the renamer
-- See Note [Handling overloaded and rebindable constructs]
-- in GHC.Rename.Expr
type instance XRecordCon GhcPs = EpAnn [AddEpAnn]
type instance XRecordCon GhcRn = NoExtField
type instance XRecordCon GhcTc = PostTcExpr -- Instantiated constructor function
type instance XRecordUpd GhcPs = EpAnn [AddEpAnn]
type instance XRecordUpd GhcRn = NoExtField
type instance XRecordUpd GhcTc = DataConCantHappen
-- We desugar record updates in the typechecker.
-- See [Handling overloaded and rebindable constructs],
-- and [Record Updates] in GHC.Tc.Gen.Expr.
type instance XGetField GhcPs = EpAnnCO
type instance XGetField GhcRn = NoExtField
type instance XGetField GhcTc = DataConCantHappen
-- HsGetField is eliminated by the renamer. See [Handling overloaded
-- and rebindable constructs].
type instance XProjection GhcPs = EpAnn AnnProjection
type instance XProjection GhcRn = NoExtField
type instance XProjection GhcTc = DataConCantHappen
-- HsProjection is eliminated by the renamer. See [Handling overloaded
-- and rebindable constructs].
type instance XExprWithTySig GhcPs = EpAnn [AddEpAnn]
type instance XExprWithTySig GhcRn = NoExtField
type instance XExprWithTySig GhcTc = NoExtField
type instance XArithSeq GhcPs = EpAnn [AddEpAnn]
type instance XArithSeq GhcRn = NoExtField
type instance XArithSeq GhcTc = PostTcExpr
type instance XProc (GhcPass _) = EpAnn [AddEpAnn]
type instance XStatic GhcPs = EpAnn [AddEpAnn]
type instance XStatic GhcRn = NameSet
type instance XStatic GhcTc = (NameSet, Type)
-- Free variables and type of expression, this is stored for convenience as wiring in
-- StaticPtr is a bit tricky (see #20150)
type instance XPragE (GhcPass _) = NoExtField
type instance Anno [LocatedA ((StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (body (GhcPass pr)))))] = SrcSpanAnnL
type instance Anno (StmtLR GhcRn GhcRn (LocatedA (body GhcRn))) = SrcSpanAnnA
data AnnExplicitSum
= AnnExplicitSum {
aesOpen :: EpaLocation,
aesBarsBefore :: [EpaLocation],
aesBarsAfter :: [EpaLocation],
aesClose :: EpaLocation
} deriving Data
data AnnFieldLabel
= AnnFieldLabel {
afDot :: Maybe EpaLocation
} deriving Data
data AnnProjection
= AnnProjection {
apOpen :: EpaLocation, -- ^ '('
apClose :: EpaLocation -- ^ ')'
} deriving Data
data AnnsIf
= AnnsIf {
aiIf :: EpaLocation,
aiThen :: EpaLocation,
aiElse :: EpaLocation,
aiThenSemi :: Maybe EpaLocation,
aiElseSemi :: Maybe EpaLocation
} deriving Data
-- ---------------------------------------------------------------------
type instance XSCC (GhcPass _) = (EpAnn AnnPragma, SourceText)
type instance XXPragE (GhcPass _) = DataConCantHappen
type instance XCDotFieldOcc (GhcPass _) = EpAnn AnnFieldLabel
type instance XXDotFieldOcc (GhcPass _) = DataConCantHappen
type instance XPresent (GhcPass _) = EpAnn [AddEpAnn]
type instance XMissing GhcPs = EpAnn EpaLocation
type instance XMissing GhcRn = NoExtField
type instance XMissing GhcTc = Scaled Type
type instance XXTupArg (GhcPass _) = DataConCantHappen
tupArgPresent :: HsTupArg (GhcPass p) -> Bool
tupArgPresent (Present {}) = True
tupArgPresent (Missing {}) = False
{- *********************************************************************
* *
XXExpr: the extension constructor of HsExpr
* *
********************************************************************* -}
type instance XXExpr GhcPs = DataConCantHappen
type instance XXExpr GhcRn = HsExpansion (HsExpr GhcRn) (HsExpr GhcRn)
type instance XXExpr GhcTc = XXExprGhcTc
-- HsExpansion: see Note [Rebindable syntax and HsExpansion] below
data XXExprGhcTc
= WrapExpr -- Type and evidence application and abstractions
{-# UNPACK #-} !(HsWrap HsExpr)
| ExpansionExpr -- See Note [Rebindable syntax and HsExpansion] below
{-# UNPACK #-} !(HsExpansion (HsExpr GhcRn) (HsExpr GhcTc))
| ConLikeTc -- Result of typechecking a data-con
-- See Note [Typechecking data constructors] in
-- GHC.Tc.Gen.Head
-- The two arguments describe how to eta-expand
-- the data constructor when desugaring
ConLike [TcTyVar] [Scaled TcType]
---------------------------------------
-- Haskell program coverage (Hpc) Support
| HsTick
CoreTickish
(LHsExpr GhcTc) -- sub-expression
| HsBinTick
Int -- module-local tick number for True
Int -- module-local tick number for False
(LHsExpr GhcTc) -- sub-expression
{- *********************************************************************
* *
Pretty-printing expressions
* *
********************************************************************* -}
instance (OutputableBndrId p) => Outputable (HsExpr (GhcPass p)) where
ppr expr = pprExpr expr
-----------------------
-- pprExpr, pprLExpr, pprBinds call pprDeeper;
-- the underscore versions do not
pprLExpr :: (OutputableBndrId p) => LHsExpr (GhcPass p) -> SDoc
pprLExpr (L _ e) = pprExpr e
pprExpr :: (OutputableBndrId p) => HsExpr (GhcPass p) -> SDoc
pprExpr e | isAtomicHsExpr e || isQuietHsExpr e = ppr_expr e
| otherwise = pprDeeper (ppr_expr e)
isQuietHsExpr :: HsExpr id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsExpr (HsPar {}) = True
-- applications don't display anything themselves
isQuietHsExpr (HsApp {}) = True
isQuietHsExpr (HsAppType {}) = True
isQuietHsExpr (OpApp {}) = True
isQuietHsExpr _ = False
pprBinds :: (OutputableBndrId idL, OutputableBndrId idR)
=> HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds b = pprDeeper (ppr b)
-----------------------
ppr_lexpr :: (OutputableBndrId p) => LHsExpr (GhcPass p) -> SDoc
ppr_lexpr e = ppr_expr (unLoc e)
ppr_expr :: forall p. (OutputableBndrId p)
=> HsExpr (GhcPass p) -> SDoc
ppr_expr (HsVar _ (L _ v)) = pprPrefixOcc v
ppr_expr (HsUnboundVar _ uv) = pprPrefixOcc uv
ppr_expr (HsRecSel _ f) = pprPrefixOcc f
ppr_expr (HsIPVar _ v) = ppr v
ppr_expr (HsOverLabel _ s l) = char '#' <> case s of
NoSourceText -> ppr l
SourceText src -> text src
ppr_expr (HsLit _ lit) = ppr lit
ppr_expr (HsOverLit _ lit) = ppr lit
ppr_expr (HsPar _ _ e _) = parens (ppr_lexpr e)
ppr_expr (HsPragE _ prag e) = sep [ppr prag, ppr_lexpr e]
ppr_expr e@(HsApp {}) = ppr_apps e []
ppr_expr e@(HsAppType {}) = ppr_apps e []
ppr_expr (OpApp _ e1 op e2)
| Just pp_op <- ppr_infix_expr (unLoc op)
= pp_infixly pp_op
| otherwise
= pp_prefixly
where
pp_e1 = pprDebugParendExpr opPrec e1 -- In debug mode, add parens
pp_e2 = pprDebugParendExpr opPrec e2 -- to make precedence clear
pp_prefixly
= hang (ppr op) 2 (sep [pp_e1, pp_e2])
pp_infixly pp_op
= hang pp_e1 2 (sep [pp_op, nest 2 pp_e2])
ppr_expr (NegApp _ e _) = char '-' <+> pprDebugParendExpr appPrec e
ppr_expr (SectionL _ expr op)
| Just pp_op <- ppr_infix_expr (unLoc op)
= pp_infixly pp_op
| otherwise
= pp_prefixly
where
pp_expr = pprDebugParendExpr opPrec expr
pp_prefixly = hang (hsep [text " \\ x_ ->", ppr op])
4 (hsep [pp_expr, text "x_ )"])
pp_infixly v = (sep [pp_expr, v])
ppr_expr (SectionR _ op expr)
| Just pp_op <- ppr_infix_expr (unLoc op)
= pp_infixly pp_op
| otherwise
= pp_prefixly
where
pp_expr = pprDebugParendExpr opPrec expr
pp_prefixly = hang (hsep [text "( \\ x_ ->", ppr op, text "x_"])
4 (pp_expr <> rparen)
pp_infixly v = sep [v, pp_expr]
ppr_expr (ExplicitTuple _ exprs boxity)
-- Special-case unary boxed tuples so that they are pretty-printed as
-- `MkSolo x`, not `(x)`
| [Present _ expr] <- exprs
, Boxed <- boxity
= hsep [text (mkTupleStr Boxed dataName 1), ppr expr]
| otherwise
= tupleParens (boxityTupleSort boxity) (fcat (ppr_tup_args exprs))
where
ppr_tup_args [] = []
ppr_tup_args (Present _ e : es) = (ppr_lexpr e <> punc es) : ppr_tup_args es
ppr_tup_args (Missing _ : es) = punc es : ppr_tup_args es
punc (Present {} : _) = comma <> space
punc (Missing {} : _) = comma
punc (XTupArg {} : _) = comma <> space
punc [] = empty
ppr_expr (ExplicitSum _ alt arity expr)
= text "(#" <+> ppr_bars (alt - 1) <+> ppr expr <+> ppr_bars (arity - alt) <+> text "#)"
where
ppr_bars n = hsep (replicate n (char '|'))
ppr_expr (HsLam _ matches)
= pprMatches matches
ppr_expr (HsLamCase _ lc_variant matches)
= sep [ sep [lamCaseKeyword lc_variant],
nest 2 (pprMatches matches) ]
ppr_expr (HsCase _ expr matches@(MG { mg_alts = L _ alts }))
= sep [ sep [text "case", nest 4 (ppr expr), text "of"],
pp_alts ]
where
pp_alts | null alts = text "{}"
| otherwise = nest 2 (pprMatches matches)
ppr_expr (HsIf _ e1 e2 e3)
= sep [hsep [text "if", nest 2 (ppr e1), text "then"],
nest 4 (ppr e2),
text "else",
nest 4 (ppr e3)]
ppr_expr (HsMultiIf _ alts)
= hang (text "if") 3 (vcat (map ppr_alt alts))
where ppr_alt (L _ (GRHS _ guards expr)) =
hang vbar 2 (ppr_one one_alt)
where
ppr_one [] = panic "ppr_exp HsMultiIf"
ppr_one (h:t) = hang h 2 (sep t)
one_alt = [ interpp'SP guards
, text "->" <+> pprDeeper (ppr expr) ]
ppr_alt (L _ (XGRHS x)) = ppr x
-- special case: let ... in let ...
ppr_expr (HsLet _ _ binds _ expr@(L _ (HsLet _ _ _ _ _)))
= sep [hang (text "let") 2 (hsep [pprBinds binds, text "in"]),
ppr_lexpr expr]
ppr_expr (HsLet _ _ binds _ expr)
= sep [hang (text "let") 2 (pprBinds binds),
hang (text "in") 2 (ppr expr)]
ppr_expr (HsDo _ do_or_list_comp (L _ stmts)) = pprDo do_or_list_comp stmts
ppr_expr (ExplicitList _ exprs)
= brackets (pprDeeperList fsep (punctuate comma (map ppr_lexpr exprs)))
ppr_expr (RecordCon { rcon_con = con, rcon_flds = rbinds })
= hang pp_con 2 (ppr rbinds)
where
-- con :: ConLikeP (GhcPass p)
-- so we need case analysis to know to print it
pp_con = case ghcPass @p of
GhcPs -> ppr con
GhcRn -> ppr con
GhcTc -> ppr con
ppr_expr (RecordUpd { rupd_expr = L _ aexp, rupd_flds = flds })
= case flds of
Left rbinds -> hang (ppr aexp) 2 (braces (fsep (punctuate comma (map ppr rbinds))))
Right pbinds -> hang (ppr aexp) 2 (braces (fsep (punctuate comma (map ppr pbinds))))
ppr_expr (HsGetField { gf_expr = L _ fexp, gf_field = field })
= ppr fexp <> dot <> ppr field
ppr_expr (HsProjection { proj_flds = flds }) = parens (hcat (dot : (punctuate dot (map ppr $ toList flds))))
ppr_expr (ExprWithTySig _ expr sig)
= hang (nest 2 (ppr_lexpr expr) <+> dcolon)
4 (ppr sig)
ppr_expr (ArithSeq _ _ info) = brackets (ppr info)
ppr_expr (HsTypedSplice ext e) =
case ghcPass @p of
GhcPs -> pprTypedSplice Nothing e
GhcRn -> pprTypedSplice (Just ext) e
GhcTc -> pprTypedSplice Nothing e
ppr_expr (HsUntypedSplice ext s) =
case ghcPass @p of
GhcPs -> pprUntypedSplice True Nothing s
GhcRn | HsUntypedSpliceNested n <- ext -> pprUntypedSplice True (Just n) s
GhcRn | HsUntypedSpliceTop _ e <- ext -> ppr e
GhcTc -> dataConCantHappen ext
ppr_expr (HsTypedBracket b e)
= case ghcPass @p of
GhcPs -> thTyBrackets (ppr e)
GhcRn -> thTyBrackets (ppr e)
GhcTc | HsBracketTc _ _ty _wrap ps <- b ->
thTyBrackets (ppr e) `ppr_with_pending_tc_splices` ps
ppr_expr (HsUntypedBracket b q)
= case ghcPass @p of
GhcPs -> ppr q
GhcRn -> case b of
[] -> ppr q
ps -> ppr q $$ text "pending(rn)" <+> ppr ps
GhcTc | HsBracketTc rnq _ty _wrap ps <- b ->
ppr rnq `ppr_with_pending_tc_splices` ps
ppr_expr (HsProc _ pat (L _ (HsCmdTop _ cmd)))
= hsep [text "proc", ppr pat, text "->", ppr cmd]
ppr_expr (HsStatic _ e)
= hsep [text "static", ppr e]
ppr_expr (XExpr x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> ppr x
#endif
GhcRn -> ppr x
GhcTc -> ppr x
instance Outputable XXExprGhcTc where
ppr (WrapExpr (HsWrap co_fn e))
= pprHsWrapper co_fn (\_parens -> pprExpr e)
ppr (ExpansionExpr e)
= ppr e -- e is an HsExpansion, we print the original
-- expression (LHsExpr GhcPs), not the
-- desugared one (LHsExpr GhcTc).
ppr (ConLikeTc con _ _) = pprPrefixOcc con
-- Used in error messages generated by
-- the pattern match overlap checker
ppr (HsTick tickish exp) =
pprTicks (ppr exp) $
ppr tickish <+> ppr_lexpr exp
ppr (HsBinTick tickIdTrue tickIdFalse exp) =
pprTicks (ppr exp) $
hcat [text "bintick<",
ppr tickIdTrue,
text ",",
ppr tickIdFalse,
text ">(",
ppr exp, text ")"]
ppr_infix_expr :: forall p. (OutputableBndrId p) => HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr (HsVar _ (L _ v)) = Just (pprInfixOcc v)
ppr_infix_expr (HsRecSel _ f) = Just (pprInfixOcc f)
ppr_infix_expr (HsUnboundVar _ occ) = Just (pprInfixOcc occ)
ppr_infix_expr (XExpr x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 901
GhcPs -> Nothing
#endif
GhcRn -> ppr_infix_expr_rn x
GhcTc -> ppr_infix_expr_tc x
ppr_infix_expr _ = Nothing
ppr_infix_expr_rn :: HsExpansion (HsExpr GhcRn) (HsExpr GhcRn) -> Maybe SDoc
ppr_infix_expr_rn (HsExpanded a _) = ppr_infix_expr a
ppr_infix_expr_tc :: XXExprGhcTc -> Maybe SDoc
ppr_infix_expr_tc (WrapExpr (HsWrap _ e)) = ppr_infix_expr e
ppr_infix_expr_tc (ExpansionExpr (HsExpanded a _)) = ppr_infix_expr a
ppr_infix_expr_tc (ConLikeTc {}) = Nothing
ppr_infix_expr_tc (HsTick {}) = Nothing
ppr_infix_expr_tc (HsBinTick {}) = Nothing
ppr_apps :: (OutputableBndrId p)
=> HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
ppr_apps (HsApp _ (L _ fun) arg) args
= ppr_apps fun (Left arg : args)
ppr_apps (HsAppType _ (L _ fun) _ arg) args
= ppr_apps fun (Right arg : args)
ppr_apps fun args = hang (ppr_expr fun) 2 (fsep (map pp args))
where
pp (Left arg) = ppr arg
-- pp (Right (LHsWcTypeX (HsWC { hswc_body = L _ arg })))
-- = char '@' <> pprHsType arg
pp (Right arg)
= text "@" <> ppr arg
pprDebugParendExpr :: (OutputableBndrId p)
=> PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr p expr
= getPprDebug $ \case
True -> pprParendLExpr p expr
False -> pprLExpr expr
pprParendLExpr :: (OutputableBndrId p)
=> PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprParendLExpr p (L _ e) = pprParendExpr p e
pprParendExpr :: (OutputableBndrId p)
=> PprPrec -> HsExpr (GhcPass p) -> SDoc
pprParendExpr p expr
| hsExprNeedsParens p expr = parens (pprExpr expr)
| otherwise = pprExpr expr
-- Using pprLExpr makes sure that we go 'deeper'
-- I think that is usually (always?) right
-- | @'hsExprNeedsParens' p e@ returns 'True' if the expression @e@ needs
-- parentheses under precedence @p@.
hsExprNeedsParens :: forall p. IsPass p => PprPrec -> HsExpr (GhcPass p) -> Bool
hsExprNeedsParens prec = go
where
go :: HsExpr (GhcPass p) -> Bool
go (HsVar{}) = False
go (HsUnboundVar{}) = False
go (HsIPVar{}) = False
go (HsOverLabel{}) = False
go (HsLit _ l) = hsLitNeedsParens prec l
go (HsOverLit _ ol) = hsOverLitNeedsParens prec ol
go (HsPar{}) = False
go (HsApp{}) = prec >= appPrec
go (HsAppType {}) = prec >= appPrec
go (OpApp{}) = prec >= opPrec
go (NegApp{}) = prec > topPrec
go (SectionL{}) = True
go (SectionR{}) = True
-- Special-case unary boxed tuple applications so that they are
-- parenthesized as `Identity (Solo x)`, not `Identity Solo x` (#18612)
-- See Note [One-tuples] in GHC.Builtin.Types
go (ExplicitTuple _ [Present{}] Boxed)
= prec >= appPrec
go (ExplicitTuple{}) = False
go (ExplicitSum{}) = False
go (HsLam{}) = prec > topPrec
go (HsLamCase{}) = prec > topPrec
go (HsCase{}) = prec > topPrec
go (HsIf{}) = prec > topPrec
go (HsMultiIf{}) = prec > topPrec
go (HsLet{}) = prec > topPrec
go (HsDo _ sc _)
| isDoComprehensionContext sc = False
| otherwise = prec > topPrec
go (ExplicitList{}) = False
go (RecordUpd{}) = False
go (ExprWithTySig{}) = prec >= sigPrec
go (ArithSeq{}) = False
go (HsPragE{}) = prec >= appPrec
go (HsTypedSplice{}) = False
go (HsUntypedSplice{}) = False
go (HsTypedBracket{}) = False
go (HsUntypedBracket{}) = False
go (HsProc{}) = prec > topPrec
go (HsStatic{}) = prec >= appPrec
go (RecordCon{}) = False
go (HsRecSel{}) = False
go (HsProjection{}) = True
go (HsGetField{}) = False
go (XExpr x) = case ghcPass @p of
GhcTc -> go_x_tc x
GhcRn -> go_x_rn x
#if __GLASGOW_HASKELL__ <= 900
GhcPs -> True
#endif
go_x_tc :: XXExprGhcTc -> Bool
go_x_tc (WrapExpr (HsWrap _ e)) = hsExprNeedsParens prec e
go_x_tc (ExpansionExpr (HsExpanded a _)) = hsExprNeedsParens prec a
go_x_tc (ConLikeTc {}) = False
go_x_tc (HsTick _ (L _ e)) = hsExprNeedsParens prec e
go_x_tc (HsBinTick _ _ (L _ e)) = hsExprNeedsParens prec e
go_x_rn :: HsExpansion (HsExpr GhcRn) (HsExpr GhcRn) -> Bool
go_x_rn (HsExpanded a _) = hsExprNeedsParens prec a
-- | Parenthesize an expression without token information
gHsPar :: LHsExpr (GhcPass id) -> HsExpr (GhcPass id)
gHsPar e = HsPar noAnn noHsTok e noHsTok
-- | @'parenthesizeHsExpr' p e@ checks if @'hsExprNeedsParens' p e@ is true,
-- and if so, surrounds @e@ with an 'HsPar'. Otherwise, it simply returns @e@.
parenthesizeHsExpr :: IsPass p => PprPrec -> LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
parenthesizeHsExpr p le@(L loc e)
| hsExprNeedsParens p e = L loc (gHsPar le)
| otherwise = le
stripParensLHsExpr :: LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
stripParensLHsExpr (L _ (HsPar _ _ e _)) = stripParensLHsExpr e
stripParensLHsExpr e = e
stripParensHsExpr :: HsExpr (GhcPass p) -> HsExpr (GhcPass p)
stripParensHsExpr (HsPar _ _ (L _ e) _) = stripParensHsExpr e
stripParensHsExpr e = e
isAtomicHsExpr :: forall p. IsPass p => HsExpr (GhcPass p) -> Bool
-- True of a single token
isAtomicHsExpr (HsVar {}) = True
isAtomicHsExpr (HsLit {}) = True
isAtomicHsExpr (HsOverLit {}) = True
isAtomicHsExpr (HsIPVar {}) = True
isAtomicHsExpr (HsOverLabel {}) = True
isAtomicHsExpr (HsUnboundVar {}) = True
isAtomicHsExpr (HsRecSel{}) = True
isAtomicHsExpr (XExpr x)
| GhcTc <- ghcPass @p = go_x_tc x
| GhcRn <- ghcPass @p = go_x_rn x
where
go_x_tc (WrapExpr (HsWrap _ e)) = isAtomicHsExpr e
go_x_tc (ExpansionExpr (HsExpanded a _)) = isAtomicHsExpr a
go_x_tc (ConLikeTc {}) = True
go_x_tc (HsTick {}) = False
go_x_tc (HsBinTick {}) = False
go_x_rn (HsExpanded a _) = isAtomicHsExpr a
isAtomicHsExpr _ = False
instance Outputable (HsPragE (GhcPass p)) where
ppr (HsPragSCC (_, st) (StringLiteral stl lbl _)) =
pprWithSourceText st (text "{-# SCC")
-- no doublequotes if stl empty, for the case where the SCC was written
-- without quotes.
<+> pprWithSourceText stl (ftext lbl) <+> text "#-}"
{- *********************************************************************
* *
HsExpansion and rebindable syntax
* *
********************************************************************* -}
{- Note [Rebindable syntax and HsExpansion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We implement rebindable syntax (RS) support by performing a desugaring
in the renamer. We transform GhcPs expressions and patterns affected by
RS into the appropriate desugared form, but **annotated with the original
expression/pattern**.
Let us consider a piece of code like:
{-# LANGUAGE RebindableSyntax #-}
ifThenElse :: Char -> () -> () -> ()
ifThenElse _ _ _ = ()
x = if 'a' then () else True
The parsed AST for the RHS of x would look something like (slightly simplified):
L locif (HsIf (L loca 'a') (L loctrue ()) (L locfalse True))
Upon seeing such an AST with RS on, we could transform it into a
mere function call, as per the RS rules, equivalent to the
following function application:
ifThenElse 'a' () True
which doesn't typecheck. But GHC would report an error about
not being able to match the third argument's type (Bool) with the
expected type: (), in the expression _as desugared_, i.e in
the aforementioned function application. But the user never
wrote a function application! This would be pretty bad.
To remedy this, instead of transforming the original HsIf
node into mere applications of 'ifThenElse', we keep the
original 'if' expression around too, using the TTG
XExpr extension point to allow GHC to construct an
'HsExpansion' value that will keep track of the original
expression in its first field, and the desugared one in the
second field. The resulting renamed AST would look like:
L locif (XExpr
(HsExpanded
(HsIf (L loca 'a')
(L loctrue ())
(L locfalse True)
)
(App (L generatedSrcSpan
(App (L generatedSrcSpan
(App (L generatedSrcSpan (Var ifThenElse))
(L loca 'a')
)
)
(L loctrue ())
)
)
(L locfalse True)
)
)
)
When comes the time to typecheck the program, we end up calling
tcMonoExpr on the AST above. If this expression gives rise to
a type error, then it will appear in a context line and GHC
will pretty-print it using the 'Outputable (HsExpansion a b)'
instance defined below, which *only prints the original
expression*. This is the gist of the idea, but is not quite
enough to recover the error messages that we had with the
SyntaxExpr-based, typechecking/desugaring-to-core time
implementation of rebindable syntax. The key idea is to decorate
some elements of the desugared expression so as to be able to
give them a special treatment when typechecking the desugared
expression, to print a different context line or skip one
altogether.
Whenever we 'setSrcSpan' a 'generatedSrcSpan', we update a field in
TcLclEnv called 'tcl_in_gen_code', setting it to True, which indicates that we
entered generated code, i.e code fabricated by the compiler when rebinding some
syntax. If someone tries to push some error context line while that field is set
to True, the pushing won't actually happen and the context line is just dropped.
Once we 'setSrcSpan' a real span (for an expression that was in the original
source code), we set 'tcl_in_gen_code' back to False, indicating that we
"emerged from the generated code tunnel", and that the expressions we will be
processing are relevant to report in context lines again.
You might wonder why TcLclEnv has both
tcl_loc :: RealSrcSpan
tcl_in_gen_code :: Bool
Could we not store a Maybe RealSrcSpan? The problem is that we still
generate constraints when processing generated code, and a CtLoc must
contain a RealSrcSpan -- otherwise, error messages might appear
without source locations. So tcl_loc keeps the RealSrcSpan of the last
location spotted that wasn't generated; it's as good as we're going to
get in generated code. Once we get to sub-trees that are not
generated, then we update the RealSrcSpan appropriately, and set the
tcl_in_gen_code Bool to False.
---
An overview of the constructs that are desugared in this way is laid out in
Note [Handling overloaded and rebindable constructs] in GHC.Rename.Expr.
A general recipe to follow this approach for new constructs could go as follows:
- Remove any GhcRn-time SyntaxExpr extensions to the relevant constructor for your
construct, in HsExpr or related syntax data types.
- At renaming-time:
- take your original node of interest (HsIf above)
- rename its subexpressions/subpatterns (condition and true/false
branches above)
- construct the suitable "rebound"-and-renamed result (ifThenElse call
above), where the 'SrcSpan' attached to any _fabricated node_ (the
HsVar/HsApp nodes, above) is set to 'generatedSrcSpan'
- take both the original node and that rebound-and-renamed result and wrap
them into an expansion construct:
for expressions, XExpr (HsExpanded <original node> <desugared>)
for patterns, XPat (HsPatExpanded <original node> <desugared>)
- At typechecking-time:
- remove any logic that was previously dealing with your rebindable
construct, typically involving [tc]SyntaxOp, SyntaxExpr and friends.
- the XExpr (HsExpanded ... ...) case in tcExpr already makes sure that we
typecheck the desugared expression while reporting the original one in
errors
-}
{- Note [Overview of record dot syntax]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the note that explains all the moving parts for record dot
syntax.
The language extensions @OverloadedRecordDot@ and
@OverloadedRecordUpdate@ (providing "record dot syntax") are
implemented using the techniques of Note [Rebindable syntax and
HsExpansion].
When OverloadedRecordDot is enabled:
- Field selection expressions
- e.g. foo.bar.baz
- Have abstract syntax HsGetField
- After renaming are XExpr (HsExpanded (HsGetField ...) (getField @"..."...)) expressions
- Field selector expressions e.g. (.x.y)
- Have abstract syntax HsProjection
- After renaming are XExpr (HsExpanded (HsProjection ...) ((getField @"...") . (getField @"...") . ...) expressions
When OverloadedRecordUpdate is enabled:
- Record update expressions
- e.g. a{foo.bar=1, quux="corge", baz}
- Have abstract syntax RecordUpd
- With rupd_flds containting a Right
- See Note [RecordDotSyntax field updates] (in Language.Haskell.Syntax.Expr)
- After renaming are XExpr (HsExpanded (RecordUpd ...) (setField@"..." ...) expressions
- Note that this is true for all record updates even for those that do not involve '.'
When OverloadedRecordDot is enabled and RebindableSyntax is not
enabled the name 'getField' is resolved to GHC.Records.getField. When
OverloadedRecordDot is enabled and RebindableSyntax is enabled the
name 'getField' is whatever in-scope name that is.
When OverloadedRecordUpd is enabled and RebindableSyntax is not
enabled it is an error for now (temporary while we wait on native
setField support; see
https://gitlab.haskell.org/ghc/ghc/-/issues/16232). When
OverloadedRecordUpd is enabled and RebindableSyntax is enabled the
names 'getField' and 'setField' are whatever in-scope names they are.
-}
-- See Note [Rebindable syntax and HsExpansion] just above.
data HsExpansion orig expanded
= HsExpanded orig expanded
deriving Data
-- | Just print the original expression (the @a@).
instance (Outputable a, Outputable b) => Outputable (HsExpansion a b) where
ppr (HsExpanded orig expanded)
= ifPprDebug (vcat [ppr orig, braces (text "Expansion:" <+> ppr expanded)])
(ppr orig)
{-
************************************************************************
* *
\subsection{Commands (in arrow abstractions)}
* *
************************************************************************
-}
type instance XCmdArrApp GhcPs = EpAnn AddEpAnn
type instance XCmdArrApp GhcRn = NoExtField
type instance XCmdArrApp GhcTc = Type
type instance XCmdArrForm GhcPs = EpAnn AnnList
type instance XCmdArrForm GhcRn = NoExtField
type instance XCmdArrForm GhcTc = NoExtField
type instance XCmdApp (GhcPass _) = EpAnnCO
type instance XCmdLam (GhcPass _) = NoExtField
type instance XCmdPar (GhcPass _) = EpAnnCO
type instance XCmdCase GhcPs = EpAnn EpAnnHsCase
type instance XCmdCase GhcRn = NoExtField
type instance XCmdCase GhcTc = NoExtField
type instance XCmdLamCase (GhcPass _) = EpAnn [AddEpAnn]
type instance XCmdIf GhcPs = EpAnn AnnsIf
type instance XCmdIf GhcRn = NoExtField
type instance XCmdIf GhcTc = NoExtField
type instance XCmdLet GhcPs = EpAnnCO
type instance XCmdLet GhcRn = NoExtField
type instance XCmdLet GhcTc = NoExtField
type instance XCmdDo GhcPs = EpAnn AnnList
type instance XCmdDo GhcRn = NoExtField
type instance XCmdDo GhcTc = Type
type instance XCmdWrap (GhcPass _) = NoExtField
type instance XXCmd GhcPs = DataConCantHappen
type instance XXCmd GhcRn = DataConCantHappen
type instance XXCmd GhcTc = HsWrap HsCmd
type instance Anno [LocatedA (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsCmd (GhcPass pr))))]
= SrcSpanAnnL
-- If cmd :: arg1 --> res
-- wrap :: arg1 "->" arg2
-- Then (XCmd (HsWrap wrap cmd)) :: arg2 --> res
-- | Command Syntax Table (for Arrow syntax)
type CmdSyntaxTable p = [(Name, HsExpr p)]
-- See Note [CmdSyntaxTable]
{-
Note [CmdSyntaxTable]
~~~~~~~~~~~~~~~~~~~~~
Used only for arrow-syntax stuff (HsCmdTop), the CmdSyntaxTable keeps
track of the methods needed for a Cmd.
* Before the renamer, this list is an empty list
* After the renamer, it takes the form @[(std_name, HsVar actual_name)]@
For example, for the 'arr' method
* normal case: (GHC.Control.Arrow.arr, HsVar GHC.Control.Arrow.arr)
* with rebindable syntax: (GHC.Control.Arrow.arr, arr_22)
where @arr_22@ is whatever 'arr' is in scope
* After the type checker, it takes the form [(std_name, <expression>)]
where <expression> is the evidence for the method. This evidence is
instantiated with the class, but is still polymorphic in everything
else. For example, in the case of 'arr', the evidence has type
forall b c. (b->c) -> a b c
where 'a' is the ambient type of the arrow. This polymorphism is
important because the desugarer uses the same evidence at multiple
different types.
This is Less Cool than what we normally do for rebindable syntax, which is to
make fully-instantiated piece of evidence at every use site. The Cmd way
is Less Cool because
* The renamer has to predict which methods are needed.
See the tedious GHC.Rename.Expr.methodNamesCmd.
* The desugarer has to know the polymorphic type of the instantiated
method. This is checked by Inst.tcSyntaxName, but is less flexible
than the rest of rebindable syntax, where the type is less
pre-ordained. (And this flexibility is useful; for example we can
typecheck do-notation with (>>=) :: m1 a -> (a -> m2 b) -> m2 b.)
-}
data CmdTopTc
= CmdTopTc Type -- Nested tuple of inputs on the command's stack
Type -- return type of the command
(CmdSyntaxTable GhcTc) -- See Note [CmdSyntaxTable]
type instance XCmdTop GhcPs = NoExtField
type instance XCmdTop GhcRn = CmdSyntaxTable GhcRn -- See Note [CmdSyntaxTable]
type instance XCmdTop GhcTc = CmdTopTc
type instance XXCmdTop (GhcPass _) = DataConCantHappen
instance (OutputableBndrId p) => Outputable (HsCmd (GhcPass p)) where
ppr cmd = pprCmd cmd
-----------------------
-- pprCmd and pprLCmd call pprDeeper;
-- the underscore versions do not
pprLCmd :: (OutputableBndrId p) => LHsCmd (GhcPass p) -> SDoc
pprLCmd (L _ c) = pprCmd c
pprCmd :: (OutputableBndrId p) => HsCmd (GhcPass p) -> SDoc
pprCmd c | isQuietHsCmd c = ppr_cmd c
| otherwise = pprDeeper (ppr_cmd c)
isQuietHsCmd :: HsCmd id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsCmd (HsCmdPar {}) = True
-- applications don't display anything themselves
isQuietHsCmd (HsCmdApp {}) = True
isQuietHsCmd _ = False
-----------------------
ppr_lcmd :: (OutputableBndrId p) => LHsCmd (GhcPass p) -> SDoc
ppr_lcmd c = ppr_cmd (unLoc c)
ppr_cmd :: forall p. (OutputableBndrId p
) => HsCmd (GhcPass p) -> SDoc
ppr_cmd (HsCmdPar _ _ c _) = parens (ppr_lcmd c)
ppr_cmd (HsCmdApp _ c e)
= let (fun, args) = collect_args c [e] in
hang (ppr_lcmd fun) 2 (sep (map ppr args))
where
collect_args (L _ (HsCmdApp _ fun arg)) args = collect_args fun (arg:args)
collect_args fun args = (fun, args)
ppr_cmd (HsCmdLam _ matches)
= pprMatches matches
ppr_cmd (HsCmdCase _ expr matches)
= sep [ sep [text "case", nest 4 (ppr expr), text "of"],
nest 2 (pprMatches matches) ]
ppr_cmd (HsCmdLamCase _ lc_variant matches)
= sep [ lamCaseKeyword lc_variant, nest 2 (pprMatches matches) ]
ppr_cmd (HsCmdIf _ _ e ct ce)
= sep [hsep [text "if", nest 2 (ppr e), text "then"],
nest 4 (ppr ct),
text "else",
nest 4 (ppr ce)]
-- special case: let ... in let ...
ppr_cmd (HsCmdLet _ _ binds _ cmd@(L _ (HsCmdLet {})))
= sep [hang (text "let") 2 (hsep [pprBinds binds, text "in"]),
ppr_lcmd cmd]
ppr_cmd (HsCmdLet _ _ binds _ cmd)
= sep [hang (text "let") 2 (pprBinds binds),
hang (text "in") 2 (ppr cmd)]
ppr_cmd (HsCmdDo _ (L _ stmts)) = pprArrowExpr stmts
ppr_cmd (HsCmdArrApp _ arrow arg HsFirstOrderApp True)
= hsep [ppr_lexpr arrow, larrowt, ppr_lexpr arg]
ppr_cmd (HsCmdArrApp _ arrow arg HsFirstOrderApp False)
= hsep [ppr_lexpr arg, arrowt, ppr_lexpr arrow]
ppr_cmd (HsCmdArrApp _ arrow arg HsHigherOrderApp True)
= hsep [ppr_lexpr arrow, larrowtt, ppr_lexpr arg]
ppr_cmd (HsCmdArrApp _ arrow arg HsHigherOrderApp False)
= hsep [ppr_lexpr arg, arrowtt, ppr_lexpr arrow]
ppr_cmd (HsCmdArrForm _ (L _ op) ps_fix rn_fix args)
| HsVar _ (L _ v) <- op
= ppr_cmd_infix v
| GhcTc <- ghcPass @p
, XExpr (ConLikeTc c _ _) <- op
= ppr_cmd_infix (conLikeName c)
| otherwise
= fall_through
where
fall_through = hang (text "(|" <+> ppr_expr op)
4 (sep (map (pprCmdArg.unLoc) args) <+> text "|)")
ppr_cmd_infix :: OutputableBndr v => v -> SDoc
ppr_cmd_infix v
| [arg1, arg2] <- args
, isJust rn_fix || ps_fix == Infix
= hang (pprCmdArg (unLoc arg1))
4 (sep [ pprInfixOcc v, pprCmdArg (unLoc arg2)])
| otherwise
= fall_through
ppr_cmd (XCmd x) = case ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
GhcPs -> ppr x
GhcRn -> ppr x
#endif
GhcTc -> case x of
HsWrap w cmd -> pprHsWrapper w (\_ -> parens (ppr_cmd cmd))
pprCmdArg :: (OutputableBndrId p) => HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (HsCmdTop _ cmd)
= ppr_lcmd cmd
instance (OutputableBndrId p) => Outputable (HsCmdTop (GhcPass p)) where
ppr = pprCmdArg
{-
************************************************************************
* *
\subsection{@Match@, @GRHSs@, and @GRHS@ datatypes}
* *
************************************************************************
-}
type instance XMG GhcPs b = Origin
type instance XMG GhcRn b = Origin
type instance XMG GhcTc b = MatchGroupTc
data MatchGroupTc
= MatchGroupTc
{ mg_arg_tys :: [Scaled Type] -- Types of the arguments, t1..tn
, mg_res_ty :: Type -- Type of the result, tr
, mg_origin :: Origin -- Origin (Generated vs FromSource)
} deriving Data
type instance XXMatchGroup (GhcPass _) b = DataConCantHappen
type instance XCMatch (GhcPass _) b = EpAnn [AddEpAnn]
type instance XXMatch (GhcPass _) b = DataConCantHappen
instance (OutputableBndrId pr, Outputable body)
=> Outputable (Match (GhcPass pr) body) where
ppr = pprMatch
isEmptyMatchGroup :: MatchGroup (GhcPass p) body -> Bool
isEmptyMatchGroup (MG { mg_alts = ms }) = null $ unLoc ms
-- | Is there only one RHS in this list of matches?
isSingletonMatchGroup :: [LMatch (GhcPass p) body] -> Bool
isSingletonMatchGroup matches
| [L _ match] <- matches
, Match { m_grhss = GRHSs { grhssGRHSs = [_] } } <- match
= True
| otherwise
= False
matchGroupArity :: MatchGroup (GhcPass id) body -> Arity
-- Precondition: MatchGroup is non-empty
-- This is called before type checking, when mg_arg_tys is not set
matchGroupArity (MG { mg_alts = alts })
| L _ (alt1:_) <- alts = length (hsLMatchPats alt1)
| otherwise = panic "matchGroupArity"
hsLMatchPats :: LMatch (GhcPass id) body -> [LPat (GhcPass id)]
hsLMatchPats (L _ (Match { m_pats = pats })) = pats
-- We keep the type checker happy by providing EpAnnComments. They
-- can only be used if they follow a `where` keyword with no binds,
-- but in that case the comment is attached to the following parsed
-- item. So this can never be used in practice.
type instance XCGRHSs (GhcPass _) _ = EpAnnComments
type instance XXGRHSs (GhcPass _) _ = DataConCantHappen
data GrhsAnn
= GrhsAnn {
ga_vbar :: Maybe EpaLocation, -- TODO:AZ do we need this?
ga_sep :: AddEpAnn -- ^ Match separator location
} deriving (Data)
type instance XCGRHS (GhcPass _) _ = EpAnn GrhsAnn
-- Location of matchSeparator
-- TODO:AZ does this belong on the GRHS, or GRHSs?
type instance XXGRHS (GhcPass _) b = DataConCantHappen
pprMatches :: (OutputableBndrId idR, Outputable body)
=> MatchGroup (GhcPass idR) body -> SDoc
pprMatches MG { mg_alts = matches }
= vcat (map pprMatch (map unLoc (unLoc matches)))
-- Don't print the type; it's only a place-holder before typechecking
-- Exported to GHC.Hs.Binds, which can't see the defn of HsMatchContext
pprFunBind :: (OutputableBndrId idR)
=> MatchGroup (GhcPass idR) (LHsExpr (GhcPass idR)) -> SDoc
pprFunBind matches = pprMatches matches
-- Exported to GHC.Hs.Binds, which can't see the defn of HsMatchContext
pprPatBind :: forall bndr p . (OutputableBndrId bndr,
OutputableBndrId p)
=> LPat (GhcPass bndr) -> GRHSs (GhcPass p) (LHsExpr (GhcPass p)) -> SDoc
pprPatBind pat grhss
= sep [ppr pat,
nest 2 (pprGRHSs (PatBindRhs :: HsMatchContext (GhcPass p)) grhss)]
pprMatch :: (OutputableBndrId idR, Outputable body)
=> Match (GhcPass idR) body -> SDoc
pprMatch (Match { m_pats = pats, m_ctxt = ctxt, m_grhss = grhss })
= sep [ sep (herald : map (nest 2 . pprParendLPat appPrec) other_pats)
, nest 2 (pprGRHSs ctxt grhss) ]
where
(herald, other_pats)
= case ctxt of
FunRhs {mc_fun=L _ fun, mc_fixity=fixity, mc_strictness=strictness}
| SrcStrict <- strictness
-> assert (null pats) -- A strict variable binding
(char '!'<>pprPrefixOcc fun, pats)
| Prefix <- fixity
-> (pprPrefixOcc fun, pats) -- f x y z = e
-- Not pprBndr; the AbsBinds will
-- have printed the signature
| otherwise
-> case pats of
(p1:p2:rest)
| null rest -> (pp_infix, []) -- x &&& y = e
| otherwise -> (parens pp_infix, rest) -- (x &&& y) z = e
where
pp_infix = pprParendLPat opPrec p1
<+> pprInfixOcc fun
<+> pprParendLPat opPrec p2
_ -> pprPanic "pprMatch" (ppr ctxt $$ ppr pats)
LambdaExpr -> (char '\\', pats)
-- We don't simply return (empty, pats) to avoid introducing an
-- additional `nest 2` via the empty herald
LamCaseAlt LamCases ->
maybe (empty, []) (first $ pprParendLPat appPrec) (uncons pats)
ArrowMatchCtxt (ArrowLamCaseAlt LamCases) ->
maybe (empty, []) (first $ pprParendLPat appPrec) (uncons pats)
ArrowMatchCtxt KappaExpr -> (char '\\', pats)
ArrowMatchCtxt ProcExpr -> (text "proc", pats)
_ -> case pats of
[] -> (empty, [])
[pat] -> (ppr pat, []) -- No parens around the single pat in a case
_ -> pprPanic "pprMatch" (ppr ctxt $$ ppr pats)
pprGRHSs :: (OutputableBndrId idR, Outputable body)
=> HsMatchContext passL -> GRHSs (GhcPass idR) body -> SDoc
pprGRHSs ctxt (GRHSs _ grhss binds)
= vcat (map (pprGRHS ctxt . unLoc) grhss)
-- Print the "where" even if the contents of the binds is empty. Only
-- EmptyLocalBinds means no "where" keyword
$$ ppUnless (eqEmptyLocalBinds binds)
(text "where" $$ nest 4 (pprBinds binds))
pprGRHS :: (OutputableBndrId idR, Outputable body)
=> HsMatchContext passL -> GRHS (GhcPass idR) body -> SDoc
pprGRHS ctxt (GRHS _ [] body)
= pp_rhs ctxt body
pprGRHS ctxt (GRHS _ guards body)
= sep [vbar <+> interpp'SP guards, pp_rhs ctxt body]
pp_rhs :: Outputable body => HsMatchContext passL -> body -> SDoc
pp_rhs ctxt rhs = matchSeparator ctxt <+> pprDeeper (ppr rhs)
instance Outputable GrhsAnn where
ppr (GrhsAnn v s) = text "GrhsAnn" <+> ppr v <+> ppr s
{-
************************************************************************
* *
\subsection{Do stmts and list comprehensions}
* *
************************************************************************
-}
-- Extra fields available post typechecking for RecStmt.
data RecStmtTc =
RecStmtTc
{ recS_bind_ty :: Type -- S in (>>=) :: Q -> (R -> S) -> T
, recS_later_rets :: [PostTcExpr] -- (only used in the arrow version)
, recS_rec_rets :: [PostTcExpr] -- These expressions correspond 1-to-1
-- with recS_later_ids and recS_rec_ids,
-- and are the expressions that should be
-- returned by the recursion.
-- They may not quite be the Ids themselves,
-- because the Id may be *polymorphic*, but
-- the returned thing has to be *monomorphic*,
-- so they may be type applications
, recS_ret_ty :: Type -- The type of
-- do { stmts; return (a,b,c) }
-- With rebindable syntax the type might not
-- be quite as simple as (m (tya, tyb, tyc)).
}
type instance XLastStmt (GhcPass _) (GhcPass _) b = NoExtField
type instance XBindStmt (GhcPass _) GhcPs b = EpAnn [AddEpAnn]
type instance XBindStmt (GhcPass _) GhcRn b = XBindStmtRn
type instance XBindStmt (GhcPass _) GhcTc b = XBindStmtTc
data XBindStmtRn = XBindStmtRn
{ xbsrn_bindOp :: SyntaxExpr GhcRn
, xbsrn_failOp :: FailOperator GhcRn
}
data XBindStmtTc = XBindStmtTc
{ xbstc_bindOp :: SyntaxExpr GhcTc
, xbstc_boundResultType :: Type -- If (>>=) :: Q -> (R -> S) -> T, this is S
, xbstc_boundResultMult :: Mult -- If (>>=) :: Q -> (R -> S) -> T, this is S
, xbstc_failOp :: FailOperator GhcTc
}
type instance XApplicativeStmt (GhcPass _) GhcPs b = NoExtField
type instance XApplicativeStmt (GhcPass _) GhcRn b = NoExtField
type instance XApplicativeStmt (GhcPass _) GhcTc b = Type
type instance XBodyStmt (GhcPass _) GhcPs b = NoExtField
type instance XBodyStmt (GhcPass _) GhcRn b = NoExtField
type instance XBodyStmt (GhcPass _) GhcTc b = Type
type instance XLetStmt (GhcPass _) (GhcPass _) b = EpAnn [AddEpAnn]
type instance XParStmt (GhcPass _) GhcPs b = NoExtField
type instance XParStmt (GhcPass _) GhcRn b = NoExtField
type instance XParStmt (GhcPass _) GhcTc b = Type
type instance XTransStmt (GhcPass _) GhcPs b = EpAnn [AddEpAnn]
type instance XTransStmt (GhcPass _) GhcRn b = NoExtField
type instance XTransStmt (GhcPass _) GhcTc b = Type
type instance XRecStmt (GhcPass _) GhcPs b = EpAnn AnnList
type instance XRecStmt (GhcPass _) GhcRn b = NoExtField
type instance XRecStmt (GhcPass _) GhcTc b = RecStmtTc
type instance XXStmtLR (GhcPass _) (GhcPass _) b = DataConCantHappen
type instance XParStmtBlock (GhcPass pL) (GhcPass pR) = NoExtField
type instance XXParStmtBlock (GhcPass pL) (GhcPass pR) = DataConCantHappen
type instance XApplicativeArgOne GhcPs = NoExtField
type instance XApplicativeArgOne GhcRn = FailOperator GhcRn
type instance XApplicativeArgOne GhcTc = FailOperator GhcTc
type instance XApplicativeArgMany (GhcPass _) = NoExtField
type instance XXApplicativeArg (GhcPass _) = DataConCantHappen
instance (Outputable (StmtLR (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))),
Outputable (XXParStmtBlock (GhcPass idL) (GhcPass idR)))
=> Outputable (ParStmtBlock (GhcPass idL) (GhcPass idR)) where
ppr (ParStmtBlock _ stmts _ _) = interpp'SP stmts
instance (OutputableBndrId pl, OutputableBndrId pr,
Anno (StmtLR (GhcPass pl) (GhcPass pr) body) ~ SrcSpanAnnA,
Outputable body)
=> Outputable (StmtLR (GhcPass pl) (GhcPass pr) body) where
ppr stmt = pprStmt stmt
pprStmt :: forall idL idR body . (OutputableBndrId idL,
OutputableBndrId idR,
Anno (StmtLR (GhcPass idL) (GhcPass idR) body) ~ SrcSpanAnnA,
Outputable body)
=> (StmtLR (GhcPass idL) (GhcPass idR) body) -> SDoc
pprStmt (LastStmt _ expr m_dollar_stripped _)
= whenPprDebug (text "[last]") <+>
(case m_dollar_stripped of
Just True -> text "return $"
Just False -> text "return"
Nothing -> empty) <+>
ppr expr
pprStmt (BindStmt _ pat expr) = pprBindStmt pat expr
pprStmt (LetStmt _ binds) = hsep [text "let", pprBinds binds]
pprStmt (BodyStmt _ expr _ _) = ppr expr
pprStmt (ParStmt _ stmtss _ _) = sep (punctuate (text " | ") (map ppr stmtss))
pprStmt (TransStmt { trS_stmts = stmts, trS_by = by
, trS_using = using, trS_form = form })
= sep $ punctuate comma (map ppr stmts ++ [pprTransStmt by using form])
pprStmt (RecStmt { recS_stmts = segment, recS_rec_ids = rec_ids
, recS_later_ids = later_ids })
= text "rec" <+>
vcat [ ppr_do_stmts (unLoc segment)
, whenPprDebug (vcat [ text "rec_ids=" <> ppr rec_ids
, text "later_ids=" <> ppr later_ids])]
pprStmt (ApplicativeStmt _ args mb_join)
= getPprStyle $ \style ->
if userStyle style
then pp_for_user
else pp_debug
where
-- make all the Applicative stuff invisible in error messages by
-- flattening the whole ApplicativeStmt nest back to a sequence
-- of statements.
pp_for_user = vcat $ concatMap flattenArg args
-- ppr directly rather than transforming here, because we need to
-- inject a "return" which is hard when we're polymorphic in the id
-- type.
flattenStmt :: ExprLStmt (GhcPass idL) -> [SDoc]
flattenStmt (L _ (ApplicativeStmt _ args _)) = concatMap flattenArg args
flattenStmt stmt = [ppr stmt]
flattenArg :: forall a . (a, ApplicativeArg (GhcPass idL)) -> [SDoc]
flattenArg (_, ApplicativeArgOne _ pat expr isBody)
| isBody = [ppr expr] -- See Note [Applicative BodyStmt]
| otherwise = [pprBindStmt pat expr]
flattenArg (_, ApplicativeArgMany _ stmts _ _ _) =
concatMap flattenStmt stmts
pp_debug =
let
ap_expr = sep (punctuate (text " |") (map pp_arg args))
in
whenPprDebug (if isJust mb_join then text "[join]" else empty) <+>
(if lengthAtLeast args 2 then parens else id) ap_expr
pp_arg :: (a, ApplicativeArg (GhcPass idL)) -> SDoc
pp_arg (_, applicativeArg) = ppr applicativeArg
pprBindStmt :: (Outputable pat, Outputable expr) => pat -> expr -> SDoc
pprBindStmt pat expr = hsep [ppr pat, larrow, ppr expr]
instance (OutputableBndrId idL)
=> Outputable (ApplicativeArg (GhcPass idL)) where
ppr = pprArg
pprArg :: forall idL . (OutputableBndrId idL) => ApplicativeArg (GhcPass idL) -> SDoc
pprArg (ApplicativeArgOne _ pat expr isBody)
| isBody = ppr expr -- See Note [Applicative BodyStmt]
| otherwise = pprBindStmt pat expr
pprArg (ApplicativeArgMany _ stmts return pat ctxt) =
ppr pat <+>
text "<-" <+>
pprDo ctxt (stmts ++
[noLocA (LastStmt noExtField (noLocA return) Nothing noSyntaxExpr)])
pprTransformStmt :: (OutputableBndrId p)
=> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
-> Maybe (LHsExpr (GhcPass p)) -> SDoc
pprTransformStmt bndrs using by
= sep [ text "then" <+> whenPprDebug (braces (ppr bndrs))
, nest 2 (ppr using)
, nest 2 (pprBy by)]
pprTransStmt :: Outputable body => Maybe body -> body -> TransForm -> SDoc
pprTransStmt by using ThenForm
= sep [ text "then", nest 2 (ppr using), nest 2 (pprBy by)]
pprTransStmt by using GroupForm
= sep [ text "then group", nest 2 (pprBy by), nest 2 (text "using" <+> ppr using)]
pprBy :: Outputable body => Maybe body -> SDoc
pprBy Nothing = empty
pprBy (Just e) = text "by" <+> ppr e
pprDo :: (OutputableBndrId p, Outputable body,
Anno (StmtLR (GhcPass p) (GhcPass p) body) ~ SrcSpanAnnA
)
=> HsDoFlavour -> [LStmt (GhcPass p) body] -> SDoc
pprDo (DoExpr m) stmts =
ppr_module_name_prefix m <> text "do" <+> ppr_do_stmts stmts
pprDo GhciStmtCtxt stmts = text "do" <+> ppr_do_stmts stmts
pprDo (MDoExpr m) stmts =
ppr_module_name_prefix m <> text "mdo" <+> ppr_do_stmts stmts
pprDo ListComp stmts = brackets $ pprComp stmts
pprDo MonadComp stmts = brackets $ pprComp stmts
pprArrowExpr :: (OutputableBndrId p, Outputable body,
Anno (StmtLR (GhcPass p) (GhcPass p) body) ~ SrcSpanAnnA
)
=> [LStmt (GhcPass p) body] -> SDoc
pprArrowExpr stmts = text "do" <+> ppr_do_stmts stmts
ppr_module_name_prefix :: Maybe ModuleName -> SDoc
ppr_module_name_prefix = \case
Nothing -> empty
Just module_name -> ppr module_name <> char '.'
ppr_do_stmts :: (OutputableBndrId idL, OutputableBndrId idR,
Anno (StmtLR (GhcPass idL) (GhcPass idR) body) ~ SrcSpanAnnA,
Outputable body)
=> [LStmtLR (GhcPass idL) (GhcPass idR) body] -> SDoc
-- Print a bunch of do stmts
ppr_do_stmts stmts = pprDeeperList vcat (map ppr stmts)
pprComp :: (OutputableBndrId p, Outputable body,
Anno (StmtLR (GhcPass p) (GhcPass p) body) ~ SrcSpanAnnA)
=> [LStmt (GhcPass p) body] -> SDoc
pprComp quals -- Prints: body | qual1, ..., qualn
| Just (initStmts, L _ (LastStmt _ body _ _)) <- snocView quals
= if null initStmts
-- If there are no statements in a list comprehension besides the last
-- one, we simply treat it like a normal list. This does arise
-- occasionally in code that GHC generates, e.g., in implementations of
-- 'range' for derived 'Ix' instances for product datatypes with exactly
-- one constructor (e.g., see #12583).
then ppr body
else hang (ppr body <+> vbar) 2 (pprQuals initStmts)
| otherwise
= pprPanic "pprComp" (pprQuals quals)
pprQuals :: (OutputableBndrId p, Outputable body,
Anno (StmtLR (GhcPass p) (GhcPass p) body) ~ SrcSpanAnnA)
=> [LStmt (GhcPass p) body] -> SDoc
-- Show list comprehension qualifiers separated by commas
pprQuals quals = interpp'SP quals
{-
************************************************************************
* *
Template Haskell quotation brackets
* *
************************************************************************
-}
-- | Finalizers produced by a splice with
-- 'Language.Haskell.TH.Syntax.addModFinalizer'
--
-- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice. For how
-- this is used.
--
newtype ThModFinalizers = ThModFinalizers [ForeignRef (TH.Q ())]
-- A Data instance which ignores the argument of 'ThModFinalizers'.
instance Data ThModFinalizers where
gunfold _ z _ = z $ ThModFinalizers []
toConstr a = mkConstr (dataTypeOf a) "ThModFinalizers" [] Data.Prefix
dataTypeOf a = mkDataType "HsExpr.ThModFinalizers" [toConstr a]
-- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice.
-- This is the result of splicing a splice. It is produced by
-- the renamer and consumed by the typechecker. It lives only between the two.
data HsUntypedSpliceResult thing -- 'thing' can be HsExpr or HsType
= HsUntypedSpliceTop
{ utsplice_result_finalizers :: ThModFinalizers -- ^ TH finalizers produced by the splice.
, utsplice_result :: thing -- ^ The result of splicing; See Note [Lifecycle of a splice]
}
| HsUntypedSpliceNested SplicePointName -- A unique name to identify this splice point
type instance XTypedSplice GhcPs = (EpAnnCO, EpAnn [AddEpAnn])
type instance XTypedSplice GhcRn = SplicePointName
type instance XTypedSplice GhcTc = DelayedSplice
type instance XUntypedSplice GhcPs = EpAnnCO
type instance XUntypedSplice GhcRn = HsUntypedSpliceResult (HsExpr GhcRn)
type instance XUntypedSplice GhcTc = DataConCantHappen
-- HsUntypedSplice
type instance XUntypedSpliceExpr GhcPs = EpAnn [AddEpAnn]
type instance XUntypedSpliceExpr GhcRn = EpAnn [AddEpAnn]
type instance XUntypedSpliceExpr GhcTc = DataConCantHappen
type instance XQuasiQuote p = NoExtField
type instance XXUntypedSplice p = DataConCantHappen
-- See Note [Running typed splices in the zonker]
-- These are the arguments that are passed to `GHC.Tc.Gen.Splice.runTopSplice`
data DelayedSplice =
DelayedSplice
TcLclEnv -- The local environment to run the splice in
(LHsExpr GhcRn) -- The original renamed expression
TcType -- The result type of running the splice, unzonked
(LHsExpr GhcTc) -- The typechecked expression to run and splice in the result
-- A Data instance which ignores the argument of 'DelayedSplice'.
instance Data DelayedSplice where
gunfold _ _ _ = panic "DelayedSplice"
toConstr a = mkConstr (dataTypeOf a) "DelayedSplice" [] Data.Prefix
dataTypeOf a = mkDataType "HsExpr.DelayedSplice" [toConstr a]
-- See Note [Pending Splices]
type SplicePointName = Name
data UntypedSpliceFlavour
= UntypedExpSplice
| UntypedPatSplice
| UntypedTypeSplice
| UntypedDeclSplice
deriving Data
-- | Pending Renamer Splice
data PendingRnSplice
= PendingRnSplice UntypedSpliceFlavour SplicePointName (LHsExpr GhcRn)
-- | Pending Type-checker Splice
data PendingTcSplice
= PendingTcSplice SplicePointName (LHsExpr GhcTc)
pprPendingSplice :: (OutputableBndrId p)
=> SplicePointName -> LHsExpr (GhcPass p) -> SDoc
pprPendingSplice n e = angleBrackets (ppr n <> comma <+> ppr (stripParensLHsExpr e))
pprTypedSplice :: (OutputableBndrId p) => Maybe SplicePointName -> LHsExpr (GhcPass p) -> SDoc
pprTypedSplice n e = ppr_splice (text "$$") n e
pprUntypedSplice :: forall p. (OutputableBndrId p)
=> Bool -- Whether to precede the splice with "$"
-> Maybe SplicePointName -- Used for pretty printing when exists
-> HsUntypedSplice (GhcPass p)
-> SDoc
pprUntypedSplice True n (HsUntypedSpliceExpr _ e) = ppr_splice (text "$") n e
pprUntypedSplice False n (HsUntypedSpliceExpr _ e) = ppr_splice empty n e
pprUntypedSplice _ _ (HsQuasiQuote _ q s) = ppr_quasi q (unLoc s)
ppr_quasi :: OutputableBndr p => p -> FastString -> SDoc
ppr_quasi quoter quote = char '[' <> ppr quoter <> vbar <>
ppr quote <> text "|]"
ppr_splice :: (OutputableBndrId p)
=> SDoc
-> Maybe SplicePointName
-> LHsExpr (GhcPass p)
-> SDoc
ppr_splice herald mn e
= herald
<> (case mn of
Nothing -> empty
Just splice_name -> whenPprDebug (brackets (ppr splice_name)))
<> ppr e
type instance XExpBr GhcPs = NoExtField
type instance XPatBr GhcPs = NoExtField
type instance XDecBrL GhcPs = NoExtField
type instance XDecBrG GhcPs = NoExtField
type instance XTypBr GhcPs = NoExtField
type instance XVarBr GhcPs = NoExtField
type instance XXQuote GhcPs = DataConCantHappen
type instance XExpBr GhcRn = NoExtField
type instance XPatBr GhcRn = NoExtField
type instance XDecBrL GhcRn = NoExtField
type instance XDecBrG GhcRn = NoExtField
type instance XTypBr GhcRn = NoExtField
type instance XVarBr GhcRn = NoExtField
type instance XXQuote GhcRn = DataConCantHappen
-- See Note [The life cycle of a TH quotation]
type instance XExpBr GhcTc = DataConCantHappen
type instance XPatBr GhcTc = DataConCantHappen
type instance XDecBrL GhcTc = DataConCantHappen
type instance XDecBrG GhcTc = DataConCantHappen
type instance XTypBr GhcTc = DataConCantHappen
type instance XVarBr GhcTc = DataConCantHappen
type instance XXQuote GhcTc = NoExtField
instance OutputableBndrId p
=> Outputable (HsQuote (GhcPass p)) where
ppr = pprHsQuote
where
pprHsQuote :: forall p. (OutputableBndrId p)
=> HsQuote (GhcPass p) -> SDoc
pprHsQuote (ExpBr _ e) = thBrackets empty (ppr e)
pprHsQuote (PatBr _ p) = thBrackets (char 'p') (ppr p)
pprHsQuote (DecBrG _ gp) = thBrackets (char 'd') (ppr gp)
pprHsQuote (DecBrL _ ds) = thBrackets (char 'd') (vcat (map ppr ds))
pprHsQuote (TypBr _ t) = thBrackets (char 't') (ppr t)
pprHsQuote (VarBr _ True n)
= char '\'' <> pprPrefixOcc (unLoc n)
pprHsQuote (VarBr _ False n)
= text "''" <> pprPrefixOcc (unLoc n)
pprHsQuote (XQuote b) = case ghcPass @p of
#if __GLASGOW_HASKELL__ <= 900
GhcPs -> dataConCantHappen b
GhcRn -> dataConCantHappen b
#endif
GhcTc -> pprPanic "pprHsQuote: `HsQuote GhcTc` shouldn't exist" (ppr b)
-- See Note [The life cycle of a TH quotation]
thBrackets :: SDoc -> SDoc -> SDoc
thBrackets pp_kind pp_body = char '[' <> pp_kind <> vbar <+>
pp_body <+> text "|]"
thTyBrackets :: SDoc -> SDoc
thTyBrackets pp_body = text "[||" <+> pp_body <+> text "||]"
instance Outputable PendingRnSplice where
ppr (PendingRnSplice _ n e) = pprPendingSplice n e
instance Outputable PendingTcSplice where
ppr (PendingTcSplice n e) = pprPendingSplice n e
ppr_with_pending_tc_splices :: SDoc -> [PendingTcSplice] -> SDoc
ppr_with_pending_tc_splices x [] = x
ppr_with_pending_tc_splices x ps = x $$ text "pending(tc)" <+> ppr ps
{-
************************************************************************
* *
\subsection{Enumerations and list comprehensions}
* *
************************************************************************
-}
instance OutputableBndrId p
=> Outputable (ArithSeqInfo (GhcPass p)) where
ppr (From e1) = hcat [ppr e1, pp_dotdot]
ppr (FromThen e1 e2) = hcat [ppr e1, comma, space, ppr e2, pp_dotdot]
ppr (FromTo e1 e3) = hcat [ppr e1, pp_dotdot, ppr e3]
ppr (FromThenTo e1 e2 e3)
= hcat [ppr e1, comma, space, ppr e2, pp_dotdot, ppr e3]
pp_dotdot :: SDoc
pp_dotdot = text " .. "
{-
************************************************************************
* *
\subsection{HsMatchCtxt}
* *
************************************************************************
-}
instance OutputableBndrId p => Outputable (HsMatchContext (GhcPass p)) where
ppr m@(FunRhs{}) = text "FunRhs" <+> ppr (mc_fun m) <+> ppr (mc_fixity m)
ppr LambdaExpr = text "LambdaExpr"
ppr CaseAlt = text "CaseAlt"
ppr (LamCaseAlt lc_variant) = text "LamCaseAlt" <+> ppr lc_variant
ppr IfAlt = text "IfAlt"
ppr (ArrowMatchCtxt c) = text "ArrowMatchCtxt" <+> ppr c
ppr PatBindRhs = text "PatBindRhs"
ppr PatBindGuards = text "PatBindGuards"
ppr RecUpd = text "RecUpd"
ppr (StmtCtxt _) = text "StmtCtxt _"
ppr ThPatSplice = text "ThPatSplice"
ppr ThPatQuote = text "ThPatQuote"
ppr PatSyn = text "PatSyn"
instance Outputable LamCaseVariant where
ppr = text . \case
LamCase -> "LamCase"
LamCases -> "LamCases"
lamCaseKeyword :: LamCaseVariant -> SDoc
lamCaseKeyword LamCase = text "\\case"
lamCaseKeyword LamCases = text "\\cases"
pprExternalSrcLoc :: (StringLiteral,(Int,Int),(Int,Int)) -> SDoc
pprExternalSrcLoc (StringLiteral _ src _,(n1,n2),(n3,n4))
= ppr (src,(n1,n2),(n3,n4))
instance Outputable HsArrowMatchContext where
ppr ProcExpr = text "ProcExpr"
ppr ArrowCaseAlt = text "ArrowCaseAlt"
ppr (ArrowLamCaseAlt lc_variant) = parens $ text "ArrowLamCaseAlt" <+> ppr lc_variant
ppr KappaExpr = text "KappaExpr"
pprHsArrType :: HsArrAppType -> SDoc
pprHsArrType HsHigherOrderApp = text "higher order arrow application"
pprHsArrType HsFirstOrderApp = text "first order arrow application"
-----------------
instance OutputableBndrId p
=> Outputable (HsStmtContext (GhcPass p)) where
ppr = pprStmtContext
-- Used to generate the string for a *runtime* error message
matchContextErrString :: OutputableBndrId p
=> HsMatchContext (GhcPass p) -> SDoc
matchContextErrString (FunRhs{mc_fun=L _ fun}) = text "function" <+> ppr fun
matchContextErrString CaseAlt = text "case"
matchContextErrString (LamCaseAlt lc_variant) = lamCaseKeyword lc_variant
matchContextErrString IfAlt = text "multi-way if"
matchContextErrString PatBindRhs = text "pattern binding"
matchContextErrString PatBindGuards = text "pattern binding guards"
matchContextErrString RecUpd = text "record update"
matchContextErrString LambdaExpr = text "lambda"
matchContextErrString (ArrowMatchCtxt c) = matchArrowContextErrString c
matchContextErrString ThPatSplice = panic "matchContextErrString" -- Not used at runtime
matchContextErrString ThPatQuote = panic "matchContextErrString" -- Not used at runtime
matchContextErrString PatSyn = panic "matchContextErrString" -- Not used at runtime
matchContextErrString (StmtCtxt (ParStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (TransStmtCtxt c)) = matchContextErrString (StmtCtxt c)
matchContextErrString (StmtCtxt (PatGuard _)) = text "pattern guard"
matchContextErrString (StmtCtxt (ArrowExpr)) = text "'do' block"
matchContextErrString (StmtCtxt (HsDoStmt flavour)) = matchDoContextErrString flavour
matchArrowContextErrString :: HsArrowMatchContext -> SDoc
matchArrowContextErrString ProcExpr = text "proc"
matchArrowContextErrString ArrowCaseAlt = text "case"
matchArrowContextErrString (ArrowLamCaseAlt lc_variant) = lamCaseKeyword lc_variant
matchArrowContextErrString KappaExpr = text "kappa"
matchDoContextErrString :: HsDoFlavour -> SDoc
matchDoContextErrString GhciStmtCtxt = text "interactive GHCi command"
matchDoContextErrString (DoExpr m) = prependQualified m (text "'do' block")
matchDoContextErrString (MDoExpr m) = prependQualified m (text "'mdo' block")
matchDoContextErrString ListComp = text "list comprehension"
matchDoContextErrString MonadComp = text "monad comprehension"
pprMatchInCtxt :: (OutputableBndrId idR, Outputable body)
=> Match (GhcPass idR) body -> SDoc
pprMatchInCtxt match = hang (text "In" <+> pprMatchContext (m_ctxt match)
<> colon)
4 (pprMatch match)
pprStmtInCtxt :: (OutputableBndrId idL,
OutputableBndrId idR,
OutputableBndrId ctx,
Outputable body,
Anno (StmtLR (GhcPass idL) (GhcPass idR) body) ~ SrcSpanAnnA)
=> HsStmtContext (GhcPass ctx)
-> StmtLR (GhcPass idL) (GhcPass idR) body
-> SDoc
pprStmtInCtxt ctxt (LastStmt _ e _ _)
| isComprehensionContext ctxt -- For [ e | .. ], do not mutter about "stmts"
= hang (text "In the expression:") 2 (ppr e)
pprStmtInCtxt ctxt stmt
= hang (text "In a stmt of" <+> pprAStmtContext ctxt <> colon)
2 (ppr_stmt stmt)
where
-- For Group and Transform Stmts, don't print the nested stmts!
ppr_stmt (TransStmt { trS_by = by, trS_using = using
, trS_form = form }) = pprTransStmt by using form
ppr_stmt stmt = pprStmt stmt
matchSeparator :: HsMatchContext p -> SDoc
matchSeparator FunRhs{} = text "="
matchSeparator CaseAlt = text "->"
matchSeparator LamCaseAlt{} = text "->"
matchSeparator IfAlt = text "->"
matchSeparator LambdaExpr = text "->"
matchSeparator ArrowMatchCtxt{} = text "->"
matchSeparator PatBindRhs = text "="
matchSeparator PatBindGuards = text "="
matchSeparator StmtCtxt{} = text "<-"
matchSeparator RecUpd = text "=" -- This can be printed by the pattern
-- match checker trace
matchSeparator ThPatSplice = panic "unused"
matchSeparator ThPatQuote = panic "unused"
matchSeparator PatSyn = panic "unused"
pprMatchContext :: (Outputable (IdP (NoGhcTc p)), UnXRec (NoGhcTc p))
=> HsMatchContext p -> SDoc
pprMatchContext ctxt
| want_an ctxt = text "an" <+> pprMatchContextNoun ctxt
| otherwise = text "a" <+> pprMatchContextNoun ctxt
where
want_an (FunRhs {}) = True -- Use "an" in front
want_an (ArrowMatchCtxt ProcExpr) = True
want_an (ArrowMatchCtxt KappaExpr) = True
want_an _ = False
pprMatchContextNoun :: forall p. (Outputable (IdP (NoGhcTc p)), UnXRec (NoGhcTc p))
=> HsMatchContext p -> SDoc
pprMatchContextNoun (FunRhs {mc_fun=fun}) = text "equation for"
<+> quotes (ppr (unXRec @(NoGhcTc p) fun))
pprMatchContextNoun CaseAlt = text "case alternative"
pprMatchContextNoun (LamCaseAlt lc_variant) = lamCaseKeyword lc_variant
<+> text "alternative"
pprMatchContextNoun IfAlt = text "multi-way if alternative"
pprMatchContextNoun RecUpd = text "record-update construct"
pprMatchContextNoun ThPatSplice = text "Template Haskell pattern splice"
pprMatchContextNoun ThPatQuote = text "Template Haskell pattern quotation"
pprMatchContextNoun PatBindRhs = text "pattern binding"
pprMatchContextNoun PatBindGuards = text "pattern binding guards"
pprMatchContextNoun LambdaExpr = text "lambda abstraction"
pprMatchContextNoun (ArrowMatchCtxt c) = pprArrowMatchContextNoun c
pprMatchContextNoun (StmtCtxt ctxt) = text "pattern binding in"
$$ pprAStmtContext ctxt
pprMatchContextNoun PatSyn = text "pattern synonym declaration"
pprMatchContextNouns :: forall p. (Outputable (IdP (NoGhcTc p)), UnXRec (NoGhcTc p))
=> HsMatchContext p -> SDoc
pprMatchContextNouns (FunRhs {mc_fun=fun}) = text "equations for"
<+> quotes (ppr (unXRec @(NoGhcTc p) fun))
pprMatchContextNouns PatBindGuards = text "pattern binding guards"
pprMatchContextNouns (ArrowMatchCtxt c) = pprArrowMatchContextNouns c
pprMatchContextNouns (StmtCtxt ctxt) = text "pattern bindings in"
$$ pprAStmtContext ctxt
pprMatchContextNouns ctxt = pprMatchContextNoun ctxt <> char 's'
pprArrowMatchContextNoun :: HsArrowMatchContext -> SDoc
pprArrowMatchContextNoun ProcExpr = text "arrow proc pattern"
pprArrowMatchContextNoun ArrowCaseAlt = text "case alternative within arrow notation"
pprArrowMatchContextNoun (ArrowLamCaseAlt lc_variant) = lamCaseKeyword lc_variant
<+> text "alternative within arrow notation"
pprArrowMatchContextNoun KappaExpr = text "arrow kappa abstraction"
pprArrowMatchContextNouns :: HsArrowMatchContext -> SDoc
pprArrowMatchContextNouns ArrowCaseAlt = text "case alternatives within arrow notation"
pprArrowMatchContextNouns (ArrowLamCaseAlt lc_variant) = lamCaseKeyword lc_variant
<+> text "alternatives within arrow notation"
pprArrowMatchContextNouns ctxt = pprArrowMatchContextNoun ctxt <> char 's'
-----------------
pprAStmtContext, pprStmtContext :: (Outputable (IdP (NoGhcTc p)), UnXRec (NoGhcTc p))
=> HsStmtContext p -> SDoc
pprAStmtContext (HsDoStmt flavour) = pprAHsDoFlavour flavour
pprAStmtContext ctxt = text "a" <+> pprStmtContext ctxt
-----------------
pprStmtContext (HsDoStmt flavour) = pprHsDoFlavour flavour
pprStmtContext (PatGuard ctxt) = text "pattern guard for" $$ pprMatchContext ctxt
pprStmtContext ArrowExpr = text "'do' block in an arrow command"
-- Drop the inner contexts when reporting errors, else we get
-- Unexpected transform statement
-- in a transformed branch of
-- transformed branch of
-- transformed branch of monad comprehension
pprStmtContext (ParStmtCtxt c) =
ifPprDebug (sep [text "parallel branch of", pprAStmtContext c])
(pprStmtContext c)
pprStmtContext (TransStmtCtxt c) =
ifPprDebug (sep [text "transformed branch of", pprAStmtContext c])
(pprStmtContext c)
pprStmtCat :: Stmt (GhcPass p) body -> SDoc
pprStmtCat (TransStmt {}) = text "transform"
pprStmtCat (LastStmt {}) = text "return expression"
pprStmtCat (BodyStmt {}) = text "body"
pprStmtCat (BindStmt {}) = text "binding"
pprStmtCat (LetStmt {}) = text "let"
pprStmtCat (RecStmt {}) = text "rec"
pprStmtCat (ParStmt {}) = text "parallel"
pprStmtCat (ApplicativeStmt {}) = text "applicative"
pprAHsDoFlavour, pprHsDoFlavour :: HsDoFlavour -> SDoc
pprAHsDoFlavour flavour = article <+> pprHsDoFlavour flavour
where
pp_an = text "an"
pp_a = text "a"
article = case flavour of
MDoExpr Nothing -> pp_an
GhciStmtCtxt -> pp_an
_ -> pp_a
pprHsDoFlavour (DoExpr m) = prependQualified m (text "'do' block")
pprHsDoFlavour (MDoExpr m) = prependQualified m (text "'mdo' block")
pprHsDoFlavour ListComp = text "list comprehension"
pprHsDoFlavour MonadComp = text "monad comprehension"
pprHsDoFlavour GhciStmtCtxt = text "interactive GHCi command"
prependQualified :: Maybe ModuleName -> SDoc -> SDoc
prependQualified Nothing t = t
prependQualified (Just _) t = text "qualified" <+> t
{-
************************************************************************
* *
FieldLabelStrings
* *
************************************************************************
-}
instance (UnXRec p, Outputable (XRec p FieldLabelString)) => Outputable (FieldLabelStrings p) where
ppr (FieldLabelStrings flds) =
hcat (punctuate dot (map (ppr . unXRec @p) flds))
instance (UnXRec p, Outputable (XRec p FieldLabelString)) => OutputableBndr (FieldLabelStrings p) where
pprInfixOcc = pprFieldLabelStrings
pprPrefixOcc = pprFieldLabelStrings
instance (UnXRec p, Outputable (XRec p FieldLabelString)) => OutputableBndr (Located (FieldLabelStrings p)) where
pprInfixOcc = pprInfixOcc . unLoc
pprPrefixOcc = pprInfixOcc . unLoc
pprFieldLabelStrings :: forall p. (UnXRec p, Outputable (XRec p FieldLabelString)) => FieldLabelStrings p -> SDoc
pprFieldLabelStrings (FieldLabelStrings flds) =
hcat (punctuate dot (map (ppr . unXRec @p) flds))
pprPrefixFastString :: FastString -> SDoc
pprPrefixFastString fs = pprPrefixOcc (mkVarUnqual fs)
instance UnXRec p => Outputable (DotFieldOcc p) where
ppr (DotFieldOcc _ s) = (pprPrefixFastString . field_label . unXRec @p) s
ppr XDotFieldOcc{} = text "XDotFieldOcc"
{-
************************************************************************
* *
\subsection{Anno instances}
* *
************************************************************************
-}
type instance Anno (HsExpr (GhcPass p)) = SrcSpanAnnA
type instance Anno [LocatedA ((StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsExpr (GhcPass pr)))))] = SrcSpanAnnL
type instance Anno [LocatedA ((StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsCmd (GhcPass pr)))))] = SrcSpanAnnL
type instance Anno (HsCmd (GhcPass p)) = SrcSpanAnnA
type instance Anno [LocatedA (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (HsCmd (GhcPass pr))))]
= SrcSpanAnnL
type instance Anno (HsCmdTop (GhcPass p)) = SrcAnn NoEpAnns
type instance Anno [LocatedA (Match (GhcPass p) (LocatedA (HsExpr (GhcPass p))))] = SrcSpanAnnL
type instance Anno [LocatedA (Match (GhcPass p) (LocatedA (HsCmd (GhcPass p))))] = SrcSpanAnnL
type instance Anno (Match (GhcPass p) (LocatedA (HsExpr (GhcPass p)))) = SrcSpanAnnA
type instance Anno (Match (GhcPass p) (LocatedA (HsCmd (GhcPass p)))) = SrcSpanAnnA
type instance Anno (GRHS (GhcPass p) (LocatedA (HsExpr (GhcPass p)))) = SrcAnn NoEpAnns
type instance Anno (GRHS (GhcPass p) (LocatedA (HsCmd (GhcPass p)))) = SrcAnn NoEpAnns
type instance Anno (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (body (GhcPass pr)))) = SrcSpanAnnA
type instance Anno (HsUntypedSplice (GhcPass p)) = SrcSpanAnnA
type instance Anno [LocatedA (StmtLR (GhcPass pl) (GhcPass pr) (LocatedA (body (GhcPass pr))))] = SrcSpanAnnL
type instance Anno (FieldLabelStrings (GhcPass p)) = SrcAnn NoEpAnns
type instance Anno FieldLabelString = SrcSpanAnnN
type instance Anno FastString = SrcAnn NoEpAnns
-- Used in HsQuasiQuote and perhaps elsewhere
type instance Anno (DotFieldOcc (GhcPass p)) = SrcAnn NoEpAnns
instance (Anno a ~ SrcSpanAnn' (EpAnn an))
=> WrapXRec (GhcPass p) a where
wrapXRec = noLocA
|