1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
|
{-# LANGUAGE ConstraintKinds #-}
{-|
Module : GHC.Hs.Utils
Description : Generic helpers for the HsSyn type.
Copyright : (c) The University of Glasgow, 1992-2006
Here we collect a variety of helper functions that construct or
analyse HsSyn. All these functions deal with generic HsSyn; functions
which deal with the instantiated versions are located elsewhere:
Parameterised by Module
---------------- -------------
GhcPs/RdrName GHC.Parser.PostProcess
GhcRn/Name GHC.Rename.*
GhcTc/Id GHC.Tc.Utils.Zonk
The @mk*@ functions attempt to construct a not-completely-useless SrcSpan
from their components, compared with the @nl*@ functions which
just attach noSrcSpan to everything.
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
module GHC.Hs.Utils(
-- * Terms
mkHsPar, mkHsApp, mkHsAppWith, mkHsApps, mkHsAppsWith,
mkHsAppType, mkHsAppTypes, mkHsCaseAlt,
mkSimpleMatch, unguardedGRHSs, unguardedRHS,
mkMatchGroup, mkLamCaseMatchGroup, mkMatch, mkPrefixFunRhs, mkHsLam, mkHsIf,
mkHsWrap, mkLHsWrap, mkHsWrapCo, mkHsWrapCoR, mkLHsWrapCo,
mkHsDictLet, mkHsLams,
mkHsOpApp, mkHsDo, mkHsDoAnns, mkHsComp, mkHsCompAnns, mkHsWrapPat, mkHsWrapPatCo,
mkLHsPar, mkHsCmdWrap, mkLHsCmdWrap,
mkHsCmdIf, mkConLikeTc,
nlHsTyApp, nlHsTyApps, nlHsVar, nl_HsVar, nlHsDataCon,
nlHsLit, nlHsApp, nlHsApps, nlHsSyntaxApps,
nlHsIntLit, nlHsVarApps,
nlHsDo, nlHsOpApp, nlHsLam, nlHsPar, nlHsIf, nlHsCase, nlList,
mkLHsTupleExpr, mkLHsVarTuple, missingTupArg,
mkLocatedList,
-- * Bindings
mkFunBind, mkVarBind, mkHsVarBind, mkSimpleGeneratedFunBind, mkTopFunBind,
mkPatSynBind,
isInfixFunBind,
spanHsLocaLBinds,
-- * Literals
mkHsIntegral, mkHsFractional, mkHsIsString, mkHsString, mkHsStringFS, mkHsStringPrimLit,
mkHsCharPrimLit,
-- * Patterns
mkNPat, mkNPlusKPat, nlVarPat, nlLitPat, nlConVarPat, nlConVarPatName, nlConPat,
nlConPatName, nlInfixConPat, nlNullaryConPat, nlWildConPat, nlWildPat,
nlWildPatName, nlTuplePat, mkParPat, nlParPat,
mkBigLHsVarTup, mkBigLHsTup, mkBigLHsVarPatTup, mkBigLHsPatTup,
-- * Types
mkHsAppTy, mkHsAppKindTy,
hsTypeToHsSigType, hsTypeToHsSigWcType, mkClassOpSigs, mkHsSigEnv,
nlHsAppTy, nlHsAppKindTy, nlHsTyVar, nlHsFunTy, nlHsParTy, nlHsTyConApp,
-- * Stmts
mkTransformStmt, mkTransformByStmt, mkBodyStmt,
mkPsBindStmt, mkRnBindStmt, mkTcBindStmt,
mkLastStmt,
emptyTransStmt, mkGroupUsingStmt, mkGroupByUsingStmt,
emptyRecStmt, emptyRecStmtName, emptyRecStmtId, mkRecStmt,
unitRecStmtTc,
mkLetStmt,
-- * Collecting binders
isUnliftedHsBind, isBangedHsBind,
collectLocalBinders, collectHsValBinders, collectHsBindListBinders,
collectHsIdBinders,
collectHsBindsBinders, collectHsBindBinders, collectMethodBinders,
collectPatBinders, collectPatsBinders,
collectLStmtsBinders, collectStmtsBinders,
collectLStmtBinders, collectStmtBinders,
CollectPass(..), CollectFlag(..),
hsLTyClDeclBinders, hsTyClForeignBinders,
hsPatSynSelectors, getPatSynBinds,
hsForeignDeclsBinders, hsGroupBinders, hsDataFamInstBinders,
-- * Collecting implicit binders
lStmtsImplicits, hsValBindsImplicits, lPatImplicits
) where
import GHC.Prelude hiding (head, init, last, tail)
import GHC.Hs.Decls
import GHC.Hs.Binds
import GHC.Hs.Expr
import GHC.Hs.Pat
import GHC.Hs.Type
import GHC.Hs.Lit
import Language.Haskell.Syntax.Extension
import GHC.Hs.Extension
import GHC.Parser.Annotation
import GHC.Tc.Types.Evidence
import GHC.Core.Coercion( isReflCo )
import GHC.Core.Multiplicity ( pattern ManyTy )
import GHC.Core.DataCon
import GHC.Core.ConLike
import GHC.Core.Make ( mkChunkified )
import GHC.Core.Type ( Type, isUnliftedType )
import GHC.Builtin.Types ( unitTy )
import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Name.Set hiding ( unitFV )
import GHC.Types.Name.Env
import GHC.Types.Name.Reader
import GHC.Types.Var
import GHC.Types.Basic
import GHC.Types.SrcLoc
import GHC.Types.Fixity
import GHC.Types.SourceText
import GHC.Data.FastString
import GHC.Data.Bag
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import Data.Either
import Data.Foldable ( toList )
import Data.Function
import Data.List ( partition, deleteBy )
import Data.List.NonEmpty ( nonEmpty )
import qualified Data.List.NonEmpty as NE
{-
************************************************************************
* *
Some useful helpers for constructing syntax
* *
************************************************************************
These functions attempt to construct a not-completely-useless 'SrcSpan'
from their components, compared with the @nl*@ functions below which
just attach 'noSrcSpan' to everything.
-}
-- | @e => (e)@
mkHsPar :: LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
mkHsPar e = L (getLoc e) (gHsPar e)
mkSimpleMatch :: (Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
~ SrcSpanAnnA,
Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p))))
~ SrcAnn NoEpAnns)
=> HsMatchContext (GhcPass p)
-> [LPat (GhcPass p)] -> LocatedA (body (GhcPass p))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkSimpleMatch ctxt pats rhs
= L loc $
Match { m_ext = noAnn, m_ctxt = ctxt, m_pats = pats
, m_grhss = unguardedGRHSs (locA loc) rhs noAnn }
where
loc = case pats of
[] -> getLoc rhs
(pat:_) -> combineSrcSpansA (getLoc pat) (getLoc rhs)
unguardedGRHSs :: Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p))))
~ SrcAnn NoEpAnns
=> SrcSpan -> LocatedA (body (GhcPass p)) -> EpAnn GrhsAnn
-> GRHSs (GhcPass p) (LocatedA (body (GhcPass p)))
unguardedGRHSs loc rhs an
= GRHSs emptyComments (unguardedRHS an loc rhs) emptyLocalBinds
unguardedRHS :: Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p))))
~ SrcAnn NoEpAnns
=> EpAnn GrhsAnn -> SrcSpan -> LocatedA (body (GhcPass p))
-> [LGRHS (GhcPass p) (LocatedA (body (GhcPass p)))]
unguardedRHS an loc rhs = [L (noAnnSrcSpan loc) (GRHS an [] rhs)]
type AnnoBody p body
= ( XMG (GhcPass p) (LocatedA (body (GhcPass p))) ~ Origin
, Anno [LocatedA (Match (GhcPass p) (LocatedA (body (GhcPass p))))] ~ SrcSpanAnnL
, Anno (Match (GhcPass p) (LocatedA (body (GhcPass p)))) ~ SrcSpanAnnA
)
mkMatchGroup :: AnnoBody p body
=> Origin
-> LocatedL [LocatedA (Match (GhcPass p) (LocatedA (body (GhcPass p))))]
-> MatchGroup (GhcPass p) (LocatedA (body (GhcPass p)))
mkMatchGroup origin matches = MG { mg_ext = origin
, mg_alts = matches }
mkLamCaseMatchGroup :: AnnoBody p body
=> Origin
-> LamCaseVariant
-> LocatedL [LocatedA (Match (GhcPass p) (LocatedA (body (GhcPass p))))]
-> MatchGroup (GhcPass p) (LocatedA (body (GhcPass p)))
mkLamCaseMatchGroup origin lc_variant (L l matches)
= mkMatchGroup origin (L l $ map fixCtxt matches)
where fixCtxt (L a match) = L a match{m_ctxt = LamCaseAlt lc_variant}
mkLocatedList :: Semigroup a
=> [GenLocated (SrcAnn a) e2] -> LocatedAn an [GenLocated (SrcAnn a) e2]
mkLocatedList ms = case nonEmpty ms of
Nothing -> noLocA []
Just ms1 -> L (noAnnSrcSpan $ locA $ combineLocsA (NE.head ms1) (NE.last ms1)) ms
mkHsApp :: LHsExpr (GhcPass id) -> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
mkHsApp e1 e2 = addCLocAA e1 e2 (HsApp noComments e1 e2)
mkHsAppWith
:: (LHsExpr (GhcPass id) -> LHsExpr (GhcPass id) -> HsExpr (GhcPass id) -> LHsExpr (GhcPass id))
-> LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id)
mkHsAppWith mkLocated e1 e2 = mkLocated e1 e2 (HsApp noAnn e1 e2)
mkHsApps
:: LHsExpr (GhcPass id) -> [LHsExpr (GhcPass id)] -> LHsExpr (GhcPass id)
mkHsApps = mkHsAppsWith addCLocAA
mkHsAppsWith
:: (LHsExpr (GhcPass id) -> LHsExpr (GhcPass id) -> HsExpr (GhcPass id) -> LHsExpr (GhcPass id))
-> LHsExpr (GhcPass id)
-> [LHsExpr (GhcPass id)]
-> LHsExpr (GhcPass id)
mkHsAppsWith mkLocated = foldl' (mkHsAppWith mkLocated)
mkHsAppType :: LHsExpr GhcRn -> LHsWcType GhcRn -> LHsExpr GhcRn
mkHsAppType e t = addCLocAA t_body e (HsAppType noExtField e noHsTok paren_wct)
where
t_body = hswc_body t
paren_wct = t { hswc_body = parenthesizeHsType appPrec t_body }
mkHsAppTypes :: LHsExpr GhcRn -> [LHsWcType GhcRn] -> LHsExpr GhcRn
mkHsAppTypes = foldl' mkHsAppType
mkHsLam :: (IsPass p, XMG (GhcPass p) (LHsExpr (GhcPass p)) ~ Origin)
=> [LPat (GhcPass p)]
-> LHsExpr (GhcPass p)
-> LHsExpr (GhcPass p)
mkHsLam pats body = mkHsPar (L (getLoc body) (HsLam noExtField matches))
where
matches = mkMatchGroup Generated
(noLocA [mkSimpleMatch LambdaExpr pats' body])
pats' = map (parenthesizePat appPrec) pats
mkHsLams :: [TyVar] -> [EvVar] -> LHsExpr GhcTc -> LHsExpr GhcTc
mkHsLams tyvars dicts expr = mkLHsWrap (mkWpTyLams tyvars
<.> mkWpEvLams dicts) expr
-- |A simple case alternative with a single pattern, no binds, no guards;
-- pre-typechecking
mkHsCaseAlt :: (Anno (GRHS (GhcPass p) (LocatedA (body (GhcPass p))))
~ SrcAnn NoEpAnns,
Anno (Match (GhcPass p) (LocatedA (body (GhcPass p))))
~ SrcSpanAnnA)
=> LPat (GhcPass p) -> (LocatedA (body (GhcPass p)))
-> LMatch (GhcPass p) (LocatedA (body (GhcPass p)))
mkHsCaseAlt pat expr
= mkSimpleMatch CaseAlt [pat] expr
nlHsTyApp :: Id -> [Type] -> LHsExpr GhcTc
nlHsTyApp fun_id tys
= noLocA (mkHsWrap (mkWpTyApps tys) (HsVar noExtField (noLocA fun_id)))
nlHsTyApps :: Id -> [Type] -> [LHsExpr GhcTc] -> LHsExpr GhcTc
nlHsTyApps fun_id tys xs = foldl' nlHsApp (nlHsTyApp fun_id tys) xs
--------- Adding parens ---------
-- | Wrap in parens if @'hsExprNeedsParens' appPrec@ says it needs them
-- So @f x@ becomes @(f x)@, but @3@ stays as @3@.
mkLHsPar :: IsPass id => LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
mkLHsPar = parenthesizeHsExpr appPrec
mkParPat :: IsPass p => LPat (GhcPass p) -> LPat (GhcPass p)
mkParPat = parenthesizePat appPrec
nlParPat :: LPat (GhcPass name) -> LPat (GhcPass name)
nlParPat p = noLocA (gParPat p)
-------------------------------
-- These are the bits of syntax that contain rebindable names
-- See GHC.Rename.Env.lookupSyntax
mkHsIntegral :: IntegralLit -> HsOverLit GhcPs
mkHsFractional :: FractionalLit -> HsOverLit GhcPs
mkHsIsString :: SourceText -> FastString -> HsOverLit GhcPs
mkHsDo :: HsDoFlavour -> LocatedL [ExprLStmt GhcPs] -> HsExpr GhcPs
mkHsDoAnns :: HsDoFlavour -> LocatedL [ExprLStmt GhcPs] -> EpAnn AnnList -> HsExpr GhcPs
mkHsComp :: HsDoFlavour -> [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> HsExpr GhcPs
mkHsCompAnns :: HsDoFlavour -> [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> EpAnn AnnList
-> HsExpr GhcPs
mkNPat :: LocatedAn NoEpAnns (HsOverLit GhcPs) -> Maybe (SyntaxExpr GhcPs) -> EpAnn [AddEpAnn]
-> Pat GhcPs
mkNPlusKPat :: LocatedN RdrName -> LocatedAn NoEpAnns (HsOverLit GhcPs) -> EpAnn EpaLocation
-> Pat GhcPs
-- NB: The following functions all use noSyntaxExpr: the generated expressions
-- will not work with rebindable syntax if used after the renamer
mkLastStmt :: IsPass idR => LocatedA (bodyR (GhcPass idR))
-> StmtLR (GhcPass idL) (GhcPass idR) (LocatedA (bodyR (GhcPass idR)))
mkBodyStmt :: LocatedA (bodyR GhcPs)
-> StmtLR (GhcPass idL) GhcPs (LocatedA (bodyR GhcPs))
mkPsBindStmt :: EpAnn [AddEpAnn] -> LPat GhcPs -> LocatedA (bodyR GhcPs)
-> StmtLR GhcPs GhcPs (LocatedA (bodyR GhcPs))
mkRnBindStmt :: LPat GhcRn -> LocatedA (bodyR GhcRn)
-> StmtLR GhcRn GhcRn (LocatedA (bodyR GhcRn))
mkTcBindStmt :: LPat GhcTc -> LocatedA (bodyR GhcTc)
-> StmtLR GhcTc GhcTc (LocatedA (bodyR GhcTc))
emptyRecStmt :: (Anno [GenLocated
(Anno (StmtLR (GhcPass idL) GhcPs bodyR))
(StmtLR (GhcPass idL) GhcPs bodyR)]
~ SrcSpanAnnL)
=> StmtLR (GhcPass idL) GhcPs bodyR
emptyRecStmtName :: (Anno [GenLocated
(Anno (StmtLR GhcRn GhcRn bodyR))
(StmtLR GhcRn GhcRn bodyR)]
~ SrcSpanAnnL)
=> StmtLR GhcRn GhcRn bodyR
emptyRecStmtId :: Stmt GhcTc (LocatedA (HsCmd GhcTc))
mkRecStmt :: forall (idL :: Pass) bodyR.
(Anno [GenLocated
(Anno (StmtLR (GhcPass idL) GhcPs bodyR))
(StmtLR (GhcPass idL) GhcPs bodyR)]
~ SrcSpanAnnL)
=> EpAnn AnnList
-> LocatedL [LStmtLR (GhcPass idL) GhcPs bodyR]
-> StmtLR (GhcPass idL) GhcPs bodyR
mkRecStmt anns stmts = (emptyRecStmt' anns :: StmtLR (GhcPass idL) GhcPs bodyR)
{ recS_stmts = stmts }
mkHsIntegral i = OverLit noExtField (HsIntegral i)
mkHsFractional f = OverLit noExtField (HsFractional f)
mkHsIsString src s = OverLit noExtField (HsIsString src s)
mkHsDo ctxt stmts = HsDo noAnn ctxt stmts
mkHsDoAnns ctxt stmts anns = HsDo anns ctxt stmts
mkHsComp ctxt stmts expr = mkHsCompAnns ctxt stmts expr noAnn
mkHsCompAnns ctxt stmts expr anns = mkHsDoAnns ctxt (mkLocatedList (stmts ++ [last_stmt])) anns
where
-- Strip the annotations from the location, they are in the embedded expr
last_stmt = L (noAnnSrcSpan $ getLocA expr) $ mkLastStmt expr
-- restricted to GhcPs because other phases might need a SyntaxExpr
mkHsIf :: LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs -> EpAnn AnnsIf
-> HsExpr GhcPs
mkHsIf c a b anns = HsIf anns c a b
-- restricted to GhcPs because other phases might need a SyntaxExpr
mkHsCmdIf :: LHsExpr GhcPs -> LHsCmd GhcPs -> LHsCmd GhcPs -> EpAnn AnnsIf
-> HsCmd GhcPs
mkHsCmdIf c a b anns = HsCmdIf anns noSyntaxExpr c a b
mkNPat lit neg anns = NPat anns lit neg noSyntaxExpr
mkNPlusKPat id lit anns
= NPlusKPat anns id lit (unLoc lit) noSyntaxExpr noSyntaxExpr
mkTransformStmt :: EpAnn [AddEpAnn] -> [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> StmtLR GhcPs GhcPs (LHsExpr GhcPs)
mkTransformByStmt :: EpAnn [AddEpAnn] -> [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> LHsExpr GhcPs -> StmtLR GhcPs GhcPs (LHsExpr GhcPs)
mkGroupUsingStmt :: EpAnn [AddEpAnn] -> [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> StmtLR GhcPs GhcPs (LHsExpr GhcPs)
mkGroupByUsingStmt :: EpAnn [AddEpAnn] -> [ExprLStmt GhcPs] -> LHsExpr GhcPs
-> LHsExpr GhcPs
-> StmtLR GhcPs GhcPs (LHsExpr GhcPs)
emptyTransStmt :: EpAnn [AddEpAnn] -> StmtLR GhcPs GhcPs (LHsExpr GhcPs)
emptyTransStmt anns = TransStmt { trS_ext = anns
, trS_form = panic "emptyTransStmt: form"
, trS_stmts = [], trS_bndrs = []
, trS_by = Nothing, trS_using = noLocA noExpr
, trS_ret = noSyntaxExpr, trS_bind = noSyntaxExpr
, trS_fmap = noExpr }
mkTransformStmt a ss u = (emptyTransStmt a) { trS_form = ThenForm, trS_stmts = ss, trS_using = u }
mkTransformByStmt a ss u b = (emptyTransStmt a) { trS_form = ThenForm, trS_stmts = ss, trS_using = u, trS_by = Just b }
mkGroupUsingStmt a ss u = (emptyTransStmt a) { trS_form = GroupForm, trS_stmts = ss, trS_using = u }
mkGroupByUsingStmt a ss b u = (emptyTransStmt a) { trS_form = GroupForm, trS_stmts = ss, trS_using = u, trS_by = Just b }
mkLastStmt body = LastStmt noExtField body Nothing noSyntaxExpr
mkBodyStmt body
= BodyStmt noExtField body noSyntaxExpr noSyntaxExpr
mkPsBindStmt ann pat body = BindStmt ann pat body
mkRnBindStmt pat body = BindStmt (XBindStmtRn { xbsrn_bindOp = noSyntaxExpr, xbsrn_failOp = Nothing }) pat body
mkTcBindStmt pat body = BindStmt (XBindStmtTc { xbstc_bindOp = noSyntaxExpr,
xbstc_boundResultType = unitTy,
-- unitTy is a dummy value
-- can't panic here: it's forced during zonking
xbstc_boundResultMult = ManyTy,
xbstc_failOp = Nothing }) pat body
emptyRecStmt' :: forall idL idR body .
(WrapXRec (GhcPass idR) [LStmtLR (GhcPass idL) (GhcPass idR) body], IsPass idR)
=> XRecStmt (GhcPass idL) (GhcPass idR) body
-> StmtLR (GhcPass idL) (GhcPass idR) body
emptyRecStmt' tyVal =
RecStmt
{ recS_stmts = wrapXRec @(GhcPass idR) []
, recS_later_ids = []
, recS_rec_ids = []
, recS_ret_fn = noSyntaxExpr
, recS_mfix_fn = noSyntaxExpr
, recS_bind_fn = noSyntaxExpr
, recS_ext = tyVal }
unitRecStmtTc :: RecStmtTc
unitRecStmtTc = RecStmtTc { recS_bind_ty = unitTy
, recS_later_rets = []
, recS_rec_rets = []
, recS_ret_ty = unitTy }
emptyRecStmt = emptyRecStmt' noAnn
emptyRecStmtName = emptyRecStmt' noExtField
emptyRecStmtId = emptyRecStmt' unitRecStmtTc
-- a panic might trigger during zonking
mkLetStmt :: EpAnn [AddEpAnn] -> HsLocalBinds GhcPs -> StmtLR GhcPs GhcPs (LocatedA b)
mkLetStmt anns binds = LetStmt anns binds
-------------------------------
-- | A useful function for building @OpApps@. The operator is always a
-- variable, and we don't know the fixity yet.
mkHsOpApp :: LHsExpr GhcPs -> IdP GhcPs -> LHsExpr GhcPs -> HsExpr GhcPs
mkHsOpApp e1 op e2 = OpApp noAnn e1 (noLocA (HsVar noExtField (noLocA op))) e2
mkHsString :: String -> HsLit (GhcPass p)
mkHsString s = HsString NoSourceText (mkFastString s)
mkHsStringFS :: FastString -> HsLit (GhcPass p)
mkHsStringFS s = HsString NoSourceText s
mkHsStringPrimLit :: FastString -> HsLit (GhcPass p)
mkHsStringPrimLit fs = HsStringPrim NoSourceText (bytesFS fs)
mkHsCharPrimLit :: Char -> HsLit (GhcPass p)
mkHsCharPrimLit c = HsChar NoSourceText c
mkConLikeTc :: ConLike -> HsExpr GhcTc
mkConLikeTc con = XExpr (ConLikeTc con [] [])
{-
************************************************************************
* *
Constructing syntax with no location info
* *
************************************************************************
-}
nlHsVar :: IsSrcSpanAnn p a
=> IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar n = noLocA (HsVar noExtField (noLocA n))
nl_HsVar :: IsSrcSpanAnn p a
=> IdP (GhcPass p) -> HsExpr (GhcPass p)
nl_HsVar n = HsVar noExtField (noLocA n)
-- | NB: Only for 'LHsExpr' 'Id'.
nlHsDataCon :: DataCon -> LHsExpr GhcTc
nlHsDataCon con = noLocA (mkConLikeTc (RealDataCon con))
nlHsLit :: HsLit (GhcPass p) -> LHsExpr (GhcPass p)
nlHsLit n = noLocA (HsLit noComments n)
nlHsIntLit :: Integer -> LHsExpr (GhcPass p)
nlHsIntLit n = noLocA (HsLit noComments (HsInt noExtField (mkIntegralLit n)))
nlVarPat :: IsSrcSpanAnn p a
=> IdP (GhcPass p) -> LPat (GhcPass p)
nlVarPat n = noLocA (VarPat noExtField (noLocA n))
nlLitPat :: HsLit GhcPs -> LPat GhcPs
nlLitPat l = noLocA (LitPat noExtField l)
nlHsApp :: IsPass id => LHsExpr (GhcPass id) -> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp f x = noLocA (HsApp noComments f (mkLHsPar x))
nlHsSyntaxApps :: SyntaxExprTc -> [LHsExpr GhcTc]
-> LHsExpr GhcTc
nlHsSyntaxApps (SyntaxExprTc { syn_expr = fun
, syn_arg_wraps = arg_wraps
, syn_res_wrap = res_wrap }) args
= mkLHsWrap res_wrap (foldl' nlHsApp (noLocA fun) (zipWithEqual "nlHsSyntaxApps"
mkLHsWrap arg_wraps args))
nlHsSyntaxApps NoSyntaxExprTc args = pprPanic "nlHsSyntaxApps" (ppr args)
-- this function should never be called in scenarios where there is no
-- syntax expr
nlHsApps :: IsSrcSpanAnn p a
=> IdP (GhcPass p) -> [LHsExpr (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsApps f xs = foldl' nlHsApp (nlHsVar f) xs
nlHsVarApps :: IsSrcSpanAnn p a
=> IdP (GhcPass p) -> [IdP (GhcPass p)] -> LHsExpr (GhcPass p)
nlHsVarApps f xs = noLocA (foldl' mk (HsVar noExtField (noLocA f))
(map ((HsVar noExtField) . noLocA) xs))
where
mk f a = HsApp noComments (noLocA f) (noLocA a)
nlConVarPat :: RdrName -> [RdrName] -> LPat GhcPs
nlConVarPat con vars = nlConPat con (map nlVarPat vars)
nlConVarPatName :: Name -> [Name] -> LPat GhcRn
nlConVarPatName con vars = nlConPatName con (map nlVarPat vars)
nlInfixConPat :: RdrName -> LPat GhcPs -> LPat GhcPs -> LPat GhcPs
nlInfixConPat con l r = noLocA $ ConPat
{ pat_con = noLocA con
, pat_args = InfixCon (parenthesizePat opPrec l)
(parenthesizePat opPrec r)
, pat_con_ext = noAnn
}
nlConPat :: RdrName -> [LPat GhcPs] -> LPat GhcPs
nlConPat con pats = noLocA $ ConPat
{ pat_con_ext = noAnn
, pat_con = noLocA con
, pat_args = PrefixCon [] (map (parenthesizePat appPrec) pats)
}
nlConPatName :: Name -> [LPat GhcRn] -> LPat GhcRn
nlConPatName con pats = noLocA $ ConPat
{ pat_con_ext = noExtField
, pat_con = noLocA con
, pat_args = PrefixCon [] (map (parenthesizePat appPrec) pats)
}
nlNullaryConPat :: RdrName -> LPat GhcPs
nlNullaryConPat con = noLocA $ ConPat
{ pat_con_ext = noAnn
, pat_con = noLocA con
, pat_args = PrefixCon [] []
}
nlWildConPat :: DataCon -> LPat GhcPs
nlWildConPat con = noLocA $ ConPat
{ pat_con_ext = noAnn
, pat_con = noLocA $ getRdrName con
, pat_args = PrefixCon [] $
replicate (dataConSourceArity con)
nlWildPat
}
-- | Wildcard pattern - after parsing
nlWildPat :: LPat GhcPs
nlWildPat = noLocA (WildPat noExtField )
-- | Wildcard pattern - after renaming
nlWildPatName :: LPat GhcRn
nlWildPatName = noLocA (WildPat noExtField )
nlHsDo :: HsDoFlavour -> [LStmt GhcPs (LHsExpr GhcPs)]
-> LHsExpr GhcPs
nlHsDo ctxt stmts = noLocA (mkHsDo ctxt (noLocA stmts))
nlHsOpApp :: LHsExpr GhcPs -> IdP GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
nlHsOpApp e1 op e2 = noLocA (mkHsOpApp e1 op e2)
nlHsLam :: LMatch GhcPs (LHsExpr GhcPs) -> LHsExpr GhcPs
nlHsPar :: LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsCase :: LHsExpr GhcPs -> [LMatch GhcPs (LHsExpr GhcPs)]
-> LHsExpr GhcPs
nlList :: [LHsExpr GhcPs] -> LHsExpr GhcPs
-- AZ:Is this used?
nlHsLam match = noLocA (HsLam noExtField (mkMatchGroup Generated (noLocA [match])))
nlHsPar e = noLocA (gHsPar e)
-- nlHsIf should generate if-expressions which are NOT subject to
-- RebindableSyntax, so the first field of HsIf is False. (#12080)
nlHsIf :: LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs -> LHsExpr GhcPs
nlHsIf cond true false = noLocA (HsIf noAnn cond true false)
nlHsCase expr matches
= noLocA (HsCase noAnn expr (mkMatchGroup Generated (noLocA matches)))
nlList exprs = noLocA (ExplicitList noAnn exprs)
nlHsAppTy :: LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
nlHsTyVar :: IsSrcSpanAnn p a
=> PromotionFlag -> IdP (GhcPass p) -> LHsType (GhcPass p)
nlHsFunTy :: LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
nlHsParTy :: LHsType (GhcPass p) -> LHsType (GhcPass p)
nlHsAppTy f t = noLocA (HsAppTy noExtField f (parenthesizeHsType appPrec t))
nlHsTyVar p x = noLocA (HsTyVar noAnn p (noLocA x))
nlHsFunTy a b = noLocA (HsFunTy noAnn (HsUnrestrictedArrow noHsUniTok) (parenthesizeHsType funPrec a) b)
nlHsParTy t = noLocA (HsParTy noAnn t)
nlHsTyConApp :: IsSrcSpanAnn p a
=> PromotionFlag
-> LexicalFixity -> IdP (GhcPass p)
-> [LHsTypeArg (GhcPass p)] -> LHsType (GhcPass p)
nlHsTyConApp prom fixity tycon tys
| Infix <- fixity
, HsValArg ty1 : HsValArg ty2 : rest <- tys
= foldl' mk_app (noLocA $ HsOpTy noAnn prom ty1 (noLocA tycon) ty2) rest
| otherwise
= foldl' mk_app (nlHsTyVar prom tycon) tys
where
mk_app :: LHsType (GhcPass p) -> LHsTypeArg (GhcPass p) -> LHsType (GhcPass p)
mk_app fun@(L _ (HsOpTy {})) arg = mk_app (noLocA $ HsParTy noAnn fun) arg
-- parenthesize things like `(A + B) C`
mk_app fun (HsValArg ty) = noLocA (HsAppTy noExtField fun (parenthesizeHsType appPrec ty))
mk_app fun (HsTypeArg _ ki) = noLocA (HsAppKindTy noSrcSpan fun (parenthesizeHsType appPrec ki))
mk_app fun (HsArgPar _) = noLocA (HsParTy noAnn fun)
nlHsAppKindTy ::
LHsType (GhcPass p) -> LHsKind (GhcPass p) -> LHsType (GhcPass p)
nlHsAppKindTy f k
= noLocA (HsAppKindTy noSrcSpan f (parenthesizeHsType appPrec k))
{-
Tuples. All these functions are *pre-typechecker* because they lack
types on the tuple.
-}
mkLHsTupleExpr :: [LHsExpr (GhcPass p)] -> XExplicitTuple (GhcPass p)
-> LHsExpr (GhcPass p)
-- Makes a pre-typechecker boxed tuple, deals with 1 case
mkLHsTupleExpr [e] _ = e
mkLHsTupleExpr es ext
= noLocA $ ExplicitTuple ext (map (Present noAnn) es) Boxed
mkLHsVarTuple :: IsSrcSpanAnn p a
=> [IdP (GhcPass p)] -> XExplicitTuple (GhcPass p)
-> LHsExpr (GhcPass p)
mkLHsVarTuple ids ext = mkLHsTupleExpr (map nlHsVar ids) ext
nlTuplePat :: [LPat GhcPs] -> Boxity -> LPat GhcPs
nlTuplePat pats box = noLocA (TuplePat noAnn pats box)
missingTupArg :: EpAnn EpaLocation -> HsTupArg GhcPs
missingTupArg ann = Missing ann
mkLHsPatTup :: [LPat GhcRn] -> LPat GhcRn
mkLHsPatTup [] = noLocA $ TuplePat noExtField [] Boxed
mkLHsPatTup [lpat] = lpat
mkLHsPatTup lpats@(lpat:_) = L (getLoc lpat) $ TuplePat noExtField lpats Boxed
-- | The Big equivalents for the source tuple expressions
mkBigLHsVarTup :: IsSrcSpanAnn p a
=> [IdP (GhcPass p)] -> XExplicitTuple (GhcPass p)
-> LHsExpr (GhcPass p)
mkBigLHsVarTup ids anns = mkBigLHsTup (map nlHsVar ids) anns
mkBigLHsTup :: [LHsExpr (GhcPass id)] -> XExplicitTuple (GhcPass id)
-> LHsExpr (GhcPass id)
mkBigLHsTup es anns = mkChunkified (\e -> mkLHsTupleExpr e anns) es
-- | The Big equivalents for the source tuple patterns
mkBigLHsVarPatTup :: [IdP GhcRn] -> LPat GhcRn
mkBigLHsVarPatTup bs = mkBigLHsPatTup (map nlVarPat bs)
mkBigLHsPatTup :: [LPat GhcRn] -> LPat GhcRn
mkBigLHsPatTup = mkChunkified mkLHsPatTup
{-
************************************************************************
* *
LHsSigType and LHsSigWcType
* *
********************************************************************* -}
-- | Convert an 'LHsType' to an 'LHsSigType'.
hsTypeToHsSigType :: LHsType GhcPs -> LHsSigType GhcPs
hsTypeToHsSigType lty@(L loc ty) = L loc $ case ty of
HsForAllTy { hst_tele = HsForAllInvis { hsf_xinvis = an
, hsf_invis_bndrs = bndrs }
, hst_body = body }
-> mkHsExplicitSigType an bndrs body
_ -> mkHsImplicitSigType lty
-- | Convert an 'LHsType' to an 'LHsSigWcType'.
hsTypeToHsSigWcType :: LHsType GhcPs -> LHsSigWcType GhcPs
hsTypeToHsSigWcType = mkHsWildCardBndrs . hsTypeToHsSigType
mkHsSigEnv :: forall a. (LSig GhcRn -> Maybe ([LocatedN Name], a))
-> [LSig GhcRn]
-> NameEnv a
mkHsSigEnv get_info sigs
= mkNameEnv (mk_pairs ordinary_sigs)
`extendNameEnvList` (mk_pairs gen_dm_sigs)
-- The subtlety is this: in a class decl with a
-- default-method signature as well as a method signature
-- we want the latter to win (#12533)
-- class C x where
-- op :: forall a . x a -> x a
-- default op :: forall b . x b -> x b
-- op x = ...(e :: b -> b)...
-- The scoped type variables of the 'default op', namely 'b',
-- scope over the code for op. The 'forall a' does not!
-- This applies both in the renamer and typechecker, both
-- of which use this function
where
(gen_dm_sigs, ordinary_sigs) = partition is_gen_dm_sig sigs
is_gen_dm_sig (L _ (ClassOpSig _ True _ _)) = True
is_gen_dm_sig _ = False
mk_pairs :: [LSig GhcRn] -> [(Name, a)]
mk_pairs sigs = [ (n,a) | Just (ns,a) <- map get_info sigs
, L _ n <- ns ]
mkClassOpSigs :: [LSig GhcPs] -> [LSig GhcPs]
-- ^ Convert 'TypeSig' to 'ClassOpSig'.
-- The former is what is parsed, but the latter is
-- what we need in class/instance declarations
mkClassOpSigs sigs
= map fiddle sigs
where
fiddle (L loc (TypeSig anns nms ty))
= L loc (ClassOpSig anns False nms (dropWildCards ty))
fiddle sig = sig
{- *********************************************************************
* *
--------- HsWrappers: type args, dict args, casts ---------
* *
********************************************************************* -}
mkLHsWrap :: HsWrapper -> LHsExpr GhcTc -> LHsExpr GhcTc
mkLHsWrap co_fn (L loc e) = L loc (mkHsWrap co_fn e)
mkHsWrap :: HsWrapper -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrap co_fn e | isIdHsWrapper co_fn = e
mkHsWrap co_fn e = XExpr (WrapExpr $ HsWrap co_fn e)
mkHsWrapCo :: TcCoercionN -- A Nominal coercion a ~N b
-> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrapCo co e = mkHsWrap (mkWpCastN co) e
mkHsWrapCoR :: TcCoercionR -- A Representational coercion a ~R b
-> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrapCoR co e = mkHsWrap (mkWpCastR co) e
mkLHsWrapCo :: TcCoercionN -> LHsExpr GhcTc -> LHsExpr GhcTc
mkLHsWrapCo co (L loc e) = L loc (mkHsWrapCo co e)
mkHsCmdWrap :: HsWrapper -> HsCmd GhcTc -> HsCmd GhcTc
mkHsCmdWrap w cmd | isIdHsWrapper w = cmd
| otherwise = XCmd (HsWrap w cmd)
mkLHsCmdWrap :: HsWrapper -> LHsCmd GhcTc -> LHsCmd GhcTc
mkLHsCmdWrap w (L loc c) = L loc (mkHsCmdWrap w c)
mkHsWrapPat :: HsWrapper -> Pat GhcTc -> Type -> Pat GhcTc
mkHsWrapPat co_fn p ty | isIdHsWrapper co_fn = p
| otherwise = XPat $ CoPat co_fn p ty
mkHsWrapPatCo :: TcCoercionN -> Pat GhcTc -> Type -> Pat GhcTc
mkHsWrapPatCo co pat ty | isReflCo co = pat
| otherwise = XPat $ CoPat (mkWpCastN co) pat ty
mkHsDictLet :: TcEvBinds -> LHsExpr GhcTc -> LHsExpr GhcTc
mkHsDictLet ev_binds expr = mkLHsWrap (mkWpLet ev_binds) expr
{-
l
************************************************************************
* *
Bindings; with a location at the top
* *
************************************************************************
-}
mkFunBind :: Origin -> LocatedN RdrName -> [LMatch GhcPs (LHsExpr GhcPs)]
-> HsBind GhcPs
-- ^ Not infix, with place holders for coercion and free vars
mkFunBind origin fn ms
= FunBind { fun_id = fn
, fun_matches = mkMatchGroup origin (noLocA ms)
, fun_ext = noExtField
}
mkTopFunBind :: Origin -> LocatedN Name -> [LMatch GhcRn (LHsExpr GhcRn)]
-> HsBind GhcRn
-- ^ In Name-land, with empty bind_fvs
mkTopFunBind origin fn ms = FunBind { fun_id = fn
, fun_matches = mkMatchGroup origin (noLocA ms)
, fun_ext = emptyNameSet -- NB: closed
-- binding
}
mkHsVarBind :: SrcSpan -> RdrName -> LHsExpr GhcPs -> LHsBind GhcPs
mkHsVarBind loc var rhs = mkSimpleGeneratedFunBind loc var [] rhs
mkVarBind :: IdP (GhcPass p) -> LHsExpr (GhcPass p) -> LHsBind (GhcPass p)
mkVarBind var rhs = L (getLoc rhs) $
VarBind { var_ext = noExtField,
var_id = var, var_rhs = rhs }
mkPatSynBind :: LocatedN RdrName -> HsPatSynDetails GhcPs
-> LPat GhcPs -> HsPatSynDir GhcPs -> EpAnn [AddEpAnn] -> HsBind GhcPs
mkPatSynBind name details lpat dir anns = PatSynBind noExtField psb
where
psb = PSB{ psb_ext = anns
, psb_id = name
, psb_args = details
, psb_def = lpat
, psb_dir = dir }
-- |If any of the matches in the 'FunBind' are infix, the 'FunBind' is
-- considered infix.
isInfixFunBind :: forall id1 id2. UnXRec id2 => HsBindLR id1 id2 -> Bool
isInfixFunBind (FunBind { fun_matches = MG _ matches })
= any (isInfixMatch . unXRec @id2) (unXRec @id2 matches)
isInfixFunBind _ = False
-- |Return the 'SrcSpan' encompassing the contents of any enclosed binds
spanHsLocaLBinds :: HsLocalBinds (GhcPass p) -> SrcSpan
spanHsLocaLBinds (EmptyLocalBinds _) = noSrcSpan
spanHsLocaLBinds (HsValBinds _ (ValBinds _ bs sigs))
= foldr combineSrcSpans noSrcSpan (bsSpans ++ sigsSpans)
where
bsSpans :: [SrcSpan]
bsSpans = map getLocA $ bagToList bs
sigsSpans :: [SrcSpan]
sigsSpans = map getLocA sigs
spanHsLocaLBinds (HsValBinds _ (XValBindsLR (NValBinds bs sigs)))
= foldr combineSrcSpans noSrcSpan (bsSpans ++ sigsSpans)
where
bsSpans :: [SrcSpan]
bsSpans = map getLocA $ concatMap (bagToList . snd) bs
sigsSpans :: [SrcSpan]
sigsSpans = map getLocA sigs
spanHsLocaLBinds (HsIPBinds _ (IPBinds _ bs))
= foldr combineSrcSpans noSrcSpan (map getLocA bs)
------------
-- | Convenience function using 'mkFunBind'.
-- This is for generated bindings only, do not use for user-written code.
mkSimpleGeneratedFunBind :: SrcSpan -> RdrName -> [LPat GhcPs]
-> LHsExpr GhcPs -> LHsBind GhcPs
mkSimpleGeneratedFunBind loc fun pats expr
= L (noAnnSrcSpan loc) $ mkFunBind Generated (L (noAnnSrcSpan loc) fun)
[mkMatch (mkPrefixFunRhs (L (noAnnSrcSpan loc) fun)) pats expr
emptyLocalBinds]
-- | Make a prefix, non-strict function 'HsMatchContext'
mkPrefixFunRhs :: LIdP (NoGhcTc p) -> HsMatchContext p
mkPrefixFunRhs n = FunRhs { mc_fun = n
, mc_fixity = Prefix
, mc_strictness = NoSrcStrict }
------------
mkMatch :: forall p. IsPass p
=> HsMatchContext (GhcPass p)
-> [LPat (GhcPass p)]
-> LHsExpr (GhcPass p)
-> HsLocalBinds (GhcPass p)
-> LMatch (GhcPass p) (LHsExpr (GhcPass p))
mkMatch ctxt pats expr binds
= noLocA (Match { m_ext = noAnn
, m_ctxt = ctxt
, m_pats = map mkParPat pats
, m_grhss = GRHSs emptyComments (unguardedRHS noAnn noSrcSpan expr) binds })
{-
************************************************************************
* *
Collecting binders
* *
************************************************************************
Get all the binders in some HsBindGroups, IN THE ORDER OF APPEARANCE. eg.
...
where
(x, y) = ...
f i j = ...
[a, b] = ...
it should return [x, y, f, a, b] (remember, order important).
Note [Collect binders only after renaming]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These functions should only be used on HsSyn *after* the renamer,
to return a [Name] or [Id]. Before renaming the record punning
and wild-card mechanism makes it hard to know what is bound.
So these functions should not be applied to (HsSyn RdrName)
Note [Unlifted id check in isUnliftedHsBind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function isUnliftedHsBind is used to complain if we make a top-level
binding for a variable of unlifted type.
Such a binding is illegal if the top-level binding would be unlifted;
but also if the local letrec generated by desugaring AbsBinds would be.
E.g.
f :: Num a => (# a, a #)
g :: Num a => a -> a
f = ...g...
g = ...g...
The top-level bindings for f,g are not unlifted (because of the Num a =>),
but the local, recursive, monomorphic bindings are:
t = /\a \(d:Num a).
letrec fm :: (# a, a #) = ...g...
gm :: a -> a = ...f...
in (fm, gm)
Here the binding for 'fm' is illegal. So generally we check the abe_mono types.
BUT we have a special case when abs_sig is true;
see Note [The abs_sig field of AbsBinds] in GHC.Hs.Binds
-}
----------------- Bindings --------------------------
-- | Should we treat this as an unlifted bind? This will be true for any
-- bind that binds an unlifted variable, but we must be careful around
-- AbsBinds. See Note [Unlifted id check in isUnliftedHsBind]. For usage
-- information, see Note [Strict binds checks] is GHC.HsToCore.Binds.
isUnliftedHsBind :: HsBind GhcTc -> Bool -- works only over typechecked binds
isUnliftedHsBind bind
| XHsBindsLR (AbsBinds { abs_exports = exports, abs_sig = has_sig }) <- bind
= if has_sig
then any (is_unlifted_id . abe_poly) exports
else any (is_unlifted_id . abe_mono) exports
-- If has_sig is True we will never generate a binding for abe_mono,
-- so we don't need to worry about it being unlifted. The abe_poly
-- binding might not be: e.g. forall a. Num a => (# a, a #)
| otherwise
= any is_unlifted_id (collectHsBindBinders CollNoDictBinders bind)
where
is_unlifted_id id = isUnliftedType (idType id)
-- bindings always have a fixed RuntimeRep, so it's OK
-- to call isUnliftedType here
-- | Is a binding a strict variable or pattern bind (e.g. @!x = ...@)?
isBangedHsBind :: HsBind GhcTc -> Bool
isBangedHsBind (XHsBindsLR (AbsBinds { abs_binds = binds }))
= anyBag (isBangedHsBind . unLoc) binds
isBangedHsBind (FunBind {fun_matches = matches})
| [L _ match] <- unLoc $ mg_alts matches
, FunRhs{mc_strictness = SrcStrict} <- m_ctxt match
= True
isBangedHsBind (PatBind {pat_lhs = pat})
= isBangedLPat pat
isBangedHsBind _
= False
collectLocalBinders :: CollectPass (GhcPass idL)
=> CollectFlag (GhcPass idL)
-> HsLocalBindsLR (GhcPass idL) (GhcPass idR)
-> [IdP (GhcPass idL)]
collectLocalBinders flag = \case
HsValBinds _ binds -> collectHsIdBinders flag binds
-- No pattern synonyms here
HsIPBinds {} -> []
EmptyLocalBinds _ -> []
collectHsIdBinders :: CollectPass (GhcPass idL)
=> CollectFlag (GhcPass idL)
-> HsValBindsLR (GhcPass idL) (GhcPass idR)
-> [IdP (GhcPass idL)]
-- ^ Collect 'Id' binders only, or 'Id's + pattern synonyms, respectively
collectHsIdBinders flag = collect_hs_val_binders True flag
collectHsValBinders :: CollectPass (GhcPass idL)
=> CollectFlag (GhcPass idL)
-> HsValBindsLR (GhcPass idL) idR
-> [IdP (GhcPass idL)]
collectHsValBinders flag = collect_hs_val_binders False flag
collectHsBindBinders :: CollectPass p
=> CollectFlag p
-> HsBindLR p idR
-> [IdP p]
-- ^ Collect both 'Id's and pattern-synonym binders
collectHsBindBinders flag b = collect_bind False flag b []
collectHsBindsBinders :: CollectPass p
=> CollectFlag p
-> LHsBindsLR p idR
-> [IdP p]
collectHsBindsBinders flag binds = collect_binds False flag binds []
collectHsBindListBinders :: forall p idR. CollectPass p
=> CollectFlag p
-> [LHsBindLR p idR]
-> [IdP p]
-- ^ Same as 'collectHsBindsBinders', but works over a list of bindings
collectHsBindListBinders flag = foldr (collect_bind False flag . unXRec @p) []
collect_hs_val_binders :: CollectPass (GhcPass idL)
=> Bool
-> CollectFlag (GhcPass idL)
-> HsValBindsLR (GhcPass idL) idR
-> [IdP (GhcPass idL)]
collect_hs_val_binders ps flag = \case
ValBinds _ binds _ -> collect_binds ps flag binds []
XValBindsLR (NValBinds binds _) -> collect_out_binds ps flag binds
collect_out_binds :: forall p. CollectPass p
=> Bool
-> CollectFlag p
-> [(RecFlag, LHsBinds p)]
-> [IdP p]
collect_out_binds ps flag = foldr (collect_binds ps flag . snd) []
collect_binds :: forall p idR. CollectPass p
=> Bool
-> CollectFlag p
-> LHsBindsLR p idR
-> [IdP p]
-> [IdP p]
-- ^ Collect 'Id's, or 'Id's + pattern synonyms, depending on boolean flag
collect_binds ps flag binds acc = foldr (collect_bind ps flag . unXRec @p) acc binds
collect_bind :: forall p idR. CollectPass p
=> Bool
-> CollectFlag p
-> HsBindLR p idR
-> [IdP p]
-> [IdP p]
collect_bind _ _ (FunBind { fun_id = f }) acc = unXRec @p f : acc
collect_bind _ flag (PatBind { pat_lhs = p }) acc = collect_lpat flag p acc
collect_bind _ _ (VarBind { var_id = f }) acc = f : acc
collect_bind omitPatSyn _ (PatSynBind _ (PSB { psb_id = ps })) acc
| omitPatSyn = acc
| otherwise = unXRec @p ps : acc
collect_bind _ _ (PatSynBind _ (XPatSynBind _)) acc = acc
collect_bind _ _ (XHsBindsLR b) acc = collectXXHsBindsLR @p @idR b acc
collectMethodBinders :: forall idL idR. UnXRec idL => LHsBindsLR idL idR -> [LIdP idL]
-- ^ Used exclusively for the bindings of an instance decl which are all
-- 'FunBinds'
collectMethodBinders binds = foldr (get . unXRec @idL) [] binds
where
get (FunBind { fun_id = f }) fs = f : fs
get _ fs = fs
-- Someone else complains about non-FunBinds
----------------- Statements --------------------------
--
collectLStmtsBinders
:: CollectPass (GhcPass idL)
=> CollectFlag (GhcPass idL)
-> [LStmtLR (GhcPass idL) (GhcPass idR) body]
-> [IdP (GhcPass idL)]
collectLStmtsBinders flag = concatMap (collectLStmtBinders flag)
collectStmtsBinders
:: CollectPass (GhcPass idL)
=> CollectFlag (GhcPass idL)
-> [StmtLR (GhcPass idL) (GhcPass idR) body]
-> [IdP (GhcPass idL)]
collectStmtsBinders flag = concatMap (collectStmtBinders flag)
collectLStmtBinders
:: CollectPass (GhcPass idL)
=> CollectFlag (GhcPass idL)
-> LStmtLR (GhcPass idL) (GhcPass idR) body
-> [IdP (GhcPass idL)]
collectLStmtBinders flag = collectStmtBinders flag . unLoc
collectStmtBinders
:: CollectPass (GhcPass idL)
=> CollectFlag (GhcPass idL)
-> StmtLR (GhcPass idL) (GhcPass idR) body
-> [IdP (GhcPass idL)]
-- Id Binders for a Stmt... [but what about pattern-sig type vars]?
collectStmtBinders flag = \case
BindStmt _ pat _ -> collectPatBinders flag pat
LetStmt _ binds -> collectLocalBinders flag binds
BodyStmt {} -> []
LastStmt {} -> []
ParStmt _ xs _ _ -> collectLStmtsBinders flag [s | ParStmtBlock _ ss _ _ <- xs, s <- ss]
TransStmt { trS_stmts = stmts } -> collectLStmtsBinders flag stmts
RecStmt { recS_stmts = L _ ss } -> collectLStmtsBinders flag ss
ApplicativeStmt _ args _ -> concatMap collectArgBinders args
where
collectArgBinders = \case
(_, ApplicativeArgOne { app_arg_pattern = pat }) -> collectPatBinders flag pat
(_, ApplicativeArgMany { bv_pattern = pat }) -> collectPatBinders flag pat
----------------- Patterns --------------------------
collectPatBinders
:: CollectPass p
=> CollectFlag p
-> LPat p
-> [IdP p]
collectPatBinders flag pat = collect_lpat flag pat []
collectPatsBinders
:: CollectPass p
=> CollectFlag p
-> [LPat p]
-> [IdP p]
collectPatsBinders flag pats = foldr (collect_lpat flag) [] pats
-------------
-- | Indicate if evidence binders have to be collected.
--
-- This type is used as a boolean (should we collect evidence binders or not?)
-- but also to pass an evidence that the AST has been typechecked when we do
-- want to collect evidence binders, otherwise these binders are not available.
--
-- See Note [Dictionary binders in ConPatOut]
data CollectFlag p where
-- | Don't collect evidence binders
CollNoDictBinders :: CollectFlag p
-- | Collect evidence binders
CollWithDictBinders :: CollectFlag GhcTc
collect_lpat :: forall p. CollectPass p
=> CollectFlag p
-> LPat p
-> [IdP p]
-> [IdP p]
collect_lpat flag pat bndrs = collect_pat flag (unXRec @p pat) bndrs
collect_pat :: forall p. CollectPass p
=> CollectFlag p
-> Pat p
-> [IdP p]
-> [IdP p]
collect_pat flag pat bndrs = case pat of
VarPat _ var -> unXRec @p var : bndrs
WildPat _ -> bndrs
LazyPat _ pat -> collect_lpat flag pat bndrs
BangPat _ pat -> collect_lpat flag pat bndrs
AsPat _ a _ pat -> unXRec @p a : collect_lpat flag pat bndrs
ViewPat _ _ pat -> collect_lpat flag pat bndrs
ParPat _ _ pat _ -> collect_lpat flag pat bndrs
ListPat _ pats -> foldr (collect_lpat flag) bndrs pats
TuplePat _ pats _ -> foldr (collect_lpat flag) bndrs pats
SumPat _ pat _ _ -> collect_lpat flag pat bndrs
LitPat _ _ -> bndrs
NPat {} -> bndrs
NPlusKPat _ n _ _ _ _ -> unXRec @p n : bndrs
SigPat _ pat _ -> collect_lpat flag pat bndrs
XPat ext -> collectXXPat @p flag ext bndrs
SplicePat ext _ -> collectXSplicePat @p flag ext bndrs
-- See Note [Dictionary binders in ConPatOut]
ConPat {pat_args=ps} -> case flag of
CollNoDictBinders -> foldr (collect_lpat flag) bndrs (hsConPatArgs ps)
CollWithDictBinders -> foldr (collect_lpat flag) bndrs (hsConPatArgs ps)
++ collectEvBinders (cpt_binds (pat_con_ext pat))
collectEvBinders :: TcEvBinds -> [Id]
collectEvBinders (EvBinds bs) = foldr add_ev_bndr [] bs
collectEvBinders (TcEvBinds {}) = panic "ToDo: collectEvBinders"
add_ev_bndr :: EvBind -> [Id] -> [Id]
add_ev_bndr (EvBind { eb_lhs = b }) bs | isId b = b:bs
| otherwise = bs
-- A worry: what about coercion variable binders??
-- | This class specifies how to collect variable identifiers from extension patterns in the given pass.
-- Consumers of the GHC API that define their own passes should feel free to implement instances in order
-- to make use of functions which depend on it.
--
-- In particular, Haddock already makes use of this, with an instance for its 'DocNameI' pass so that
-- it can reuse the code in GHC for collecting binders.
class UnXRec p => CollectPass p where
collectXXPat :: CollectFlag p -> XXPat p -> [IdP p] -> [IdP p]
collectXXHsBindsLR :: forall pR. XXHsBindsLR p pR -> [IdP p] -> [IdP p]
collectXSplicePat :: CollectFlag p -> XSplicePat p -> [IdP p] -> [IdP p]
instance IsPass p => CollectPass (GhcPass p) where
collectXXPat flag ext =
case ghcPass @p of
GhcPs -> dataConCantHappen ext
GhcRn
| HsPatExpanded _ pat <- ext
-> collect_pat flag pat
GhcTc -> case ext of
CoPat _ pat _ -> collect_pat flag pat
ExpansionPat _ pat -> collect_pat flag pat
collectXXHsBindsLR ext =
case ghcPass @p of
GhcPs -> dataConCantHappen ext
GhcRn -> dataConCantHappen ext
GhcTc -> case ext of
AbsBinds { abs_exports = dbinds } -> (map abe_poly dbinds ++)
-- I don't think we want the binders from the abe_binds
-- binding (hence see AbsBinds) is in zonking in GHC.Tc.Utils.Zonk
collectXSplicePat flag ext =
case ghcPass @p of
GhcPs -> id
GhcRn | (HsUntypedSpliceTop _ pat) <- ext -> collect_pat flag pat
GhcRn | (HsUntypedSpliceNested _) <- ext -> id
GhcTc -> dataConCantHappen ext
{-
Note [Dictionary binders in ConPatOut]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Should we collect dictionary binders in ConPatOut? It depends! Use CollectFlag
to choose.
1. Pre-typechecker there are no ConPatOuts. Use CollNoDictBinders flag.
2. In the desugarer, most of the time we don't want to collect evidence binders,
so we also use CollNoDictBinders flag.
Example of why it matters:
In a lazy pattern, for example f ~(C x y) = ..., we want to generate bindings
for x,y but not for dictionaries bound by C.
(The type checker ensures they would not be used.)
Here's the problem. Consider
data T a where
C :: Num a => a -> Int -> T a
f ~(C (n+1) m) = (n,m)
Here, the pattern (C (n+1)) binds a hidden dictionary (d::Num a),
and *also* uses that dictionary to match the (n+1) pattern. Yet, the
variables bound by the lazy pattern are n,m, *not* the dictionary d.
So in mkSelectorBinds in GHC.HsToCore.Utils, we want just m,n as the
variables bound.
So in this case, we do *not* gather (a) dictionary and (b) dictionary
bindings as binders of a ConPatOut pattern.
3. On the other hand, desugaring of arrows needs evidence bindings and uses
CollWithDictBinders flag.
Consider
h :: (ArrowChoice a, Arrow a) => Int -> a (Int,Int) Int
h x = proc (y,z) -> case compare x y of
GT -> returnA -< z+x
The type checker turns the case into
case compare x y of
GT { $dNum_123 = $dNum_Int } -> returnA -< (+) $dNum_123 z x
That is, it attaches the $dNum_123 binding to a ConPatOut in scope.
During desugaring, evidence binders must be collected because their sets are
intersected with free variable sets of subsequent commands to create
(minimal) command environments. Failing to do it properly leads to bugs
(e.g., #18950).
Note: attaching evidence binders to existing ConPatOut may be suboptimal for
arrows. In the example above we would prefer to generate:
case compare x y of
GT -> returnA -< let $dNum_123 = $dNum_Int in (+) $dNum_123 z x
So that the evidence isn't passed into the command environment. This issue
doesn't arise with desugaring of non-arrow code because the simplifier can
freely float and inline let-expressions created for evidence binders. But
with arrow desugaring, the simplifier would have to see through the command
environment tuple which is more complicated.
-}
hsGroupBinders :: HsGroup GhcRn -> [Name]
hsGroupBinders (HsGroup { hs_valds = val_decls, hs_tyclds = tycl_decls,
hs_fords = foreign_decls })
= collectHsValBinders CollNoDictBinders val_decls
++ hsTyClForeignBinders tycl_decls foreign_decls
hsTyClForeignBinders :: [TyClGroup GhcRn]
-> [LForeignDecl GhcRn]
-> [Name]
-- We need to look at instance declarations too,
-- because their associated types may bind data constructors
hsTyClForeignBinders tycl_decls foreign_decls
= map unLoc (hsForeignDeclsBinders foreign_decls)
++ getSelectorNames
(foldMap (foldMap hsLTyClDeclBinders . group_tyclds) tycl_decls
`mappend`
foldMap (foldMap hsLInstDeclBinders . group_instds) tycl_decls)
where
getSelectorNames :: ([LocatedA Name], [LFieldOcc GhcRn]) -> [Name]
getSelectorNames (ns, fs) = map unLoc ns ++ map (foExt . unLoc) fs
-------------------
hsLTyClDeclBinders :: IsPass p
=> LocatedA (TyClDecl (GhcPass p))
-> ([LocatedA (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
-- ^ Returns all the /binding/ names of the decl. The first one is
-- guaranteed to be the name of the decl. The first component
-- represents all binding names except record fields; the second
-- represents field occurrences. For record fields mentioned in
-- multiple constructors, the SrcLoc will be from the first occurrence.
--
-- Each returned (Located name) has a SrcSpan for the /whole/ declaration.
-- See Note [SrcSpan for binders]
hsLTyClDeclBinders (L loc (FamDecl { tcdFam = FamilyDecl
{ fdLName = (L _ name) } }))
= ([L loc name], [])
hsLTyClDeclBinders (L loc (SynDecl
{ tcdLName = (L _ name) }))
= ([L loc name], [])
hsLTyClDeclBinders (L loc (ClassDecl
{ tcdLName = (L _ cls_name)
, tcdSigs = sigs
, tcdATs = ats }))
= (L loc cls_name :
[ L fam_loc fam_name | (L fam_loc (FamilyDecl
{ fdLName = L _ fam_name })) <- ats ]
++
[ L mem_loc mem_name
| (L mem_loc (ClassOpSig _ False ns _)) <- sigs
, (L _ mem_name) <- ns ]
, [])
hsLTyClDeclBinders (L loc (DataDecl { tcdLName = (L _ name)
, tcdDataDefn = defn }))
= (\ (xs, ys) -> (L loc name : xs, ys)) $ hsDataDefnBinders defn
-------------------
hsForeignDeclsBinders :: forall p a. (UnXRec (GhcPass p), IsSrcSpanAnn p a)
=> [LForeignDecl (GhcPass p)] -> [LIdP (GhcPass p)]
-- ^ See Note [SrcSpan for binders]
hsForeignDeclsBinders foreign_decls
= [ L (noAnnSrcSpan (locA decl_loc)) n
| L decl_loc (ForeignImport { fd_name = L _ n })
<- foreign_decls]
-------------------
hsPatSynSelectors :: IsPass p => HsValBinds (GhcPass p) -> [FieldOcc (GhcPass p)]
-- ^ Collects record pattern-synonym selectors only; the pattern synonym
-- names are collected by 'collectHsValBinders'.
hsPatSynSelectors (ValBinds _ _ _) = panic "hsPatSynSelectors"
hsPatSynSelectors (XValBindsLR (NValBinds binds _))
= foldr addPatSynSelector [] . unionManyBags $ map snd binds
addPatSynSelector :: forall p. UnXRec p => LHsBind p -> [FieldOcc p] -> [FieldOcc p]
addPatSynSelector bind sels
| PatSynBind _ (PSB { psb_args = RecCon as }) <- unXRec @p bind
= map recordPatSynField as ++ sels
| otherwise = sels
getPatSynBinds :: forall id. UnXRec id
=> [(RecFlag, LHsBinds id)] -> [PatSynBind id id]
getPatSynBinds binds
= [ psb | (_, lbinds) <- binds
, (unXRec @id -> (PatSynBind _ psb)) <- bagToList lbinds ]
-------------------
hsLInstDeclBinders :: IsPass p
=> LInstDecl (GhcPass p)
-> ([LocatedA (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
hsLInstDeclBinders (L _ (ClsInstD
{ cid_inst = ClsInstDecl
{ cid_datafam_insts = dfis }}))
= foldMap (hsDataFamInstBinders . unLoc) dfis
hsLInstDeclBinders (L _ (DataFamInstD { dfid_inst = fi }))
= hsDataFamInstBinders fi
hsLInstDeclBinders (L _ (TyFamInstD {})) = mempty
-------------------
-- | the 'SrcLoc' returned are for the whole declarations, not just the names
hsDataFamInstBinders :: IsPass p
=> DataFamInstDecl (GhcPass p)
-> ([LocatedA (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
hsDataFamInstBinders (DataFamInstDecl { dfid_eqn = FamEqn { feqn_rhs = defn }})
= hsDataDefnBinders defn
-- There can't be repeated symbols because only data instances have binders
-------------------
-- | the 'SrcLoc' returned are for the whole declarations, not just the names
hsDataDefnBinders :: IsPass p
=> HsDataDefn (GhcPass p)
-> ([LocatedA (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
hsDataDefnBinders (HsDataDefn { dd_cons = cons })
= hsConDeclsBinders (toList cons)
-- See Note [Binders in family instances]
-------------------
type Seen p = [LFieldOcc (GhcPass p)] -> [LFieldOcc (GhcPass p)]
-- Filters out ones that have already been seen
hsConDeclsBinders :: forall p. IsPass p
=> [LConDecl (GhcPass p)]
-> ([LocatedA (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
-- See hsLTyClDeclBinders for what this does
-- The function is boringly complicated because of the records
-- And since we only have equality, we have to be a little careful
hsConDeclsBinders cons
= go id cons
where
go :: Seen p -> [LConDecl (GhcPass p)]
-> ([LocatedA (IdP (GhcPass p))], [LFieldOcc (GhcPass p)])
go _ [] = ([], [])
go remSeen (r:rs)
-- Don't re-mangle the location of field names, because we don't
-- have a record of the full location of the field declaration anyway
= let loc = getLoc r
in case unLoc r of
-- remove only the first occurrence of any seen field in order to
-- avoid circumventing detection of duplicate fields (#9156)
ConDeclGADT { con_names = names, con_g_args = args }
-> (toList (L loc . unLoc <$> names) ++ ns, flds ++ fs)
where
(remSeen', flds) = get_flds_gadt remSeen args
(ns, fs) = go remSeen' rs
ConDeclH98 { con_name = name, con_args = args }
-> ([L loc (unLoc name)] ++ ns, flds ++ fs)
where
(remSeen', flds) = get_flds_h98 remSeen args
(ns, fs) = go remSeen' rs
get_flds_h98 :: Seen p -> HsConDeclH98Details (GhcPass p)
-> (Seen p, [LFieldOcc (GhcPass p)])
get_flds_h98 remSeen (RecCon flds) = get_flds remSeen flds
get_flds_h98 remSeen _ = (remSeen, [])
get_flds_gadt :: Seen p -> HsConDeclGADTDetails (GhcPass p)
-> (Seen p, [LFieldOcc (GhcPass p)])
get_flds_gadt remSeen (RecConGADT flds _) = get_flds remSeen flds
get_flds_gadt remSeen _ = (remSeen, [])
get_flds :: Seen p -> LocatedL [LConDeclField (GhcPass p)]
-> (Seen p, [LFieldOcc (GhcPass p)])
get_flds remSeen flds = (remSeen', fld_names)
where
fld_names = remSeen (concatMap (cd_fld_names . unLoc) (unLoc flds))
remSeen' = foldr (.) remSeen
[deleteBy ((==) `on` unLoc . foLabel . unLoc) v
| v <- fld_names]
{-
Note [SrcSpan for binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~
When extracting the (Located RdrNme) for a binder, at least for the
main name (the TyCon of a type declaration etc), we want to give it
the @SrcSpan@ of the whole /declaration/, not just the name itself
(which is how it appears in the syntax tree). This SrcSpan (for the
entire declaration) is used as the SrcSpan for the Name that is
finally produced, and hence for error messages. (See #8607.)
Note [Binders in family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a type or data family instance declaration, the type
constructor is an *occurrence* not a binding site
type instance T Int = Int -> Int -- No binders
data instance S Bool = S1 | S2 -- Binders are S1,S2
************************************************************************
* *
Collecting binders the user did not write
* *
************************************************************************
The job of this family of functions is to run through binding sites and find the set of all Names
that were defined "implicitly", without being explicitly written by the user.
The main purpose is to find names introduced by record wildcards so that we can avoid
warning the user when they don't use those names (#4404)
Since the addition of -Wunused-record-wildcards, this function returns a pair
of [(SrcSpan, [Name])]. Each element of the list is one set of implicit
binders, the first component of the tuple is the document describes the possible
fix to the problem (by removing the ..).
This means there is some unfortunate coupling between this function and where it
is used but it's only used for one specific purpose in one place so it seemed
easier.
-}
lStmtsImplicits :: [LStmtLR GhcRn (GhcPass idR) (LocatedA (body (GhcPass idR)))]
-> [(SrcSpan, [Name])]
lStmtsImplicits = hs_lstmts
where
hs_lstmts :: [LStmtLR GhcRn (GhcPass idR) (LocatedA (body (GhcPass idR)))]
-> [(SrcSpan, [Name])]
hs_lstmts = concatMap (hs_stmt . unLoc)
hs_stmt :: StmtLR GhcRn (GhcPass idR) (LocatedA (body (GhcPass idR)))
-> [(SrcSpan, [Name])]
hs_stmt (BindStmt _ pat _) = lPatImplicits pat
hs_stmt (ApplicativeStmt _ args _) = concatMap do_arg args
where do_arg (_, ApplicativeArgOne { app_arg_pattern = pat }) = lPatImplicits pat
do_arg (_, ApplicativeArgMany { app_stmts = stmts }) = hs_lstmts stmts
hs_stmt (LetStmt _ binds) = hs_local_binds binds
hs_stmt (BodyStmt {}) = []
hs_stmt (LastStmt {}) = []
hs_stmt (ParStmt _ xs _ _) = hs_lstmts [s | ParStmtBlock _ ss _ _ <- xs
, s <- ss]
hs_stmt (TransStmt { trS_stmts = stmts }) = hs_lstmts stmts
hs_stmt (RecStmt { recS_stmts = L _ ss }) = hs_lstmts ss
hs_local_binds (HsValBinds _ val_binds) = hsValBindsImplicits val_binds
hs_local_binds (HsIPBinds {}) = []
hs_local_binds (EmptyLocalBinds _) = []
hsValBindsImplicits :: HsValBindsLR GhcRn (GhcPass idR) -> [(SrcSpan, [Name])]
hsValBindsImplicits (XValBindsLR (NValBinds binds _))
= concatMap (lhsBindsImplicits . snd) binds
hsValBindsImplicits (ValBinds _ binds _)
= lhsBindsImplicits binds
lhsBindsImplicits :: LHsBindsLR GhcRn idR -> [(SrcSpan, [Name])]
lhsBindsImplicits = foldBag (++) (lhs_bind . unLoc) []
where
lhs_bind (PatBind { pat_lhs = lpat }) = lPatImplicits lpat
lhs_bind _ = []
lPatImplicits :: LPat GhcRn -> [(SrcSpan, [Name])]
lPatImplicits = hs_lpat
where
hs_lpat lpat = hs_pat (unLoc lpat)
hs_lpats = foldr (\pat rest -> hs_lpat pat ++ rest) []
hs_pat (LazyPat _ pat) = hs_lpat pat
hs_pat (BangPat _ pat) = hs_lpat pat
hs_pat (AsPat _ _ _ pat) = hs_lpat pat
hs_pat (ViewPat _ _ pat) = hs_lpat pat
hs_pat (ParPat _ _ pat _) = hs_lpat pat
hs_pat (ListPat _ pats) = hs_lpats pats
hs_pat (TuplePat _ pats _) = hs_lpats pats
hs_pat (SigPat _ pat _) = hs_lpat pat
hs_pat (ConPat {pat_con=con, pat_args=ps}) = details con ps
hs_pat _ = []
details :: LocatedN Name -> HsConPatDetails GhcRn -> [(SrcSpan, [Name])]
details _ (PrefixCon _ ps) = hs_lpats ps
details n (RecCon fs) =
[(err_loc, collectPatsBinders CollNoDictBinders implicit_pats) | Just{} <- [rec_dotdot fs] ]
++ hs_lpats explicit_pats
where implicit_pats = map (hfbRHS . unLoc) implicit
explicit_pats = map (hfbRHS . unLoc) explicit
(explicit, implicit) = partitionEithers [if pat_explicit then Left fld else Right fld
| (i, fld) <- [0..] `zip` rec_flds fs
, let pat_explicit =
maybe True ((i<) . unRecFieldsDotDot . unLoc)
(rec_dotdot fs)]
err_loc = maybe (getLocA n) getLoc (rec_dotdot fs)
details _ (InfixCon p1 p2) = hs_lpat p1 ++ hs_lpat p2
|