1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1993-1998
This module defines interface types and binders
-}
{-# LANGUAGE FlexibleInstances #-}
-- FlexibleInstances for Binary (DefMethSpec IfaceType)
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE LambdaCase #-}
module GHC.Iface.Type (
IfExtName, IfLclName,
IfaceType(..), IfacePredType, IfaceKind, IfaceCoercion(..),
IfaceMCoercion(..),
IfaceUnivCoProv(..),
IfaceMult,
IfaceTyCon(..),
IfaceTyConInfo(..), mkIfaceTyConInfo,
IfaceTyConSort(..),
IfaceTyLit(..), IfaceAppArgs(..),
IfaceContext, IfaceBndr(..), IfaceOneShot(..), IfaceLamBndr,
IfaceTvBndr, IfaceIdBndr, IfaceTyConBinder,
IfaceForAllSpecBndr,
IfaceForAllBndr, ForAllTyFlag(..), FunTyFlag(..), ShowForAllFlag(..),
mkIfaceForAllTvBndr,
mkIfaceTyConKind,
ifaceForAllSpecToBndrs, ifaceForAllSpecToBndr,
ifForAllBndrVar, ifForAllBndrName, ifaceBndrName,
ifTyConBinderVar, ifTyConBinderName,
-- Equality testing
isIfaceLiftedTypeKind,
-- Conversion from IfaceAppArgs to IfaceTypes/ForAllTyFlags
appArgsIfaceTypes, appArgsIfaceTypesForAllTyFlags,
-- Printing
SuppressBndrSig(..),
UseBndrParens(..),
PrintExplicitKinds(..),
pprIfaceType, pprParendIfaceType, pprPrecIfaceType,
pprIfaceContext, pprIfaceContextArr,
pprIfaceIdBndr, pprIfaceLamBndr, pprIfaceTvBndr, pprIfaceTyConBinders,
pprIfaceBndrs, pprIfaceAppArgs, pprParendIfaceAppArgs,
pprIfaceForAllPart, pprIfaceForAllPartMust, pprIfaceForAll,
pprIfaceSigmaType, pprIfaceTyLit,
pprIfaceCoercion, pprParendIfaceCoercion,
splitIfaceSigmaTy, pprIfaceTypeApp, pprUserIfaceForAll,
pprIfaceCoTcApp, pprTyTcApp, pprIfacePrefixApp,
isIfaceRhoType,
suppressIfaceInvisibles,
stripIfaceInvisVars,
stripInvisArgs,
mkIfaceTySubst, substIfaceTyVar, substIfaceAppArgs, inDomIfaceTySubst,
many_ty, pprTypeArrow
) where
import GHC.Prelude
import {-# SOURCE #-} GHC.Builtin.Types
( coercibleTyCon, heqTyCon
, constraintKindTyConName
, tupleTyConName
, tupleDataConName
, manyDataConTyCon
, liftedRepTyCon, liftedDataConTyCon )
import GHC.Core.Type ( isRuntimeRepTy, isMultiplicityTy, isLevityTy, funTyFlagTyCon )
import GHC.Core.TyCo.Rep( CoSel )
import GHC.Core.TyCo.Compare( eqForAllVis )
import GHC.Core.TyCon hiding ( pprPromotionQuote )
import GHC.Core.Coercion.Axiom
import GHC.Types.Var
import GHC.Builtin.Names
import {-# SOURCE #-} GHC.Builtin.Types ( liftedTypeKindTyConName )
import GHC.Types.Name
import GHC.Types.Basic
import GHC.Utils.Binary
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Utils.Misc
import GHC.Utils.Panic
import {-# SOURCE #-} GHC.Tc.Utils.TcType ( isMetaTyVar, isTyConableTyVar )
import Data.Maybe( isJust )
import qualified Data.Semigroup as Semi
import Control.DeepSeq
{-
************************************************************************
* *
Local (nested) binders
* *
************************************************************************
-}
type IfLclName = FastString -- A local name in iface syntax
type IfExtName = Name -- An External or WiredIn Name can appear in Iface syntax
-- (However Internal or System Names never should)
data IfaceBndr -- Local (non-top-level) binders
= IfaceIdBndr {-# UNPACK #-} !IfaceIdBndr
| IfaceTvBndr {-# UNPACK #-} !IfaceTvBndr
type IfaceIdBndr = (IfaceType, IfLclName, IfaceType)
type IfaceTvBndr = (IfLclName, IfaceKind)
ifaceTvBndrName :: IfaceTvBndr -> IfLclName
ifaceTvBndrName (n,_) = n
ifaceIdBndrName :: IfaceIdBndr -> IfLclName
ifaceIdBndrName (_,n,_) = n
ifaceBndrName :: IfaceBndr -> IfLclName
ifaceBndrName (IfaceTvBndr bndr) = ifaceTvBndrName bndr
ifaceBndrName (IfaceIdBndr bndr) = ifaceIdBndrName bndr
ifaceBndrType :: IfaceBndr -> IfaceType
ifaceBndrType (IfaceIdBndr (_, _, t)) = t
ifaceBndrType (IfaceTvBndr (_, t)) = t
type IfaceLamBndr = (IfaceBndr, IfaceOneShot)
data IfaceOneShot -- See Note [Preserve OneShotInfo] in "GHC.Core.Tidy"
= IfaceNoOneShot -- and Note [The oneShot function] in "GHC.Types.Id.Make"
| IfaceOneShot
instance Outputable IfaceOneShot where
ppr IfaceNoOneShot = text "NoOneShotInfo"
ppr IfaceOneShot = text "OneShot"
{-
%************************************************************************
%* *
IfaceType
%* *
%************************************************************************
-}
-------------------------------
type IfaceKind = IfaceType
-- | A kind of universal type, used for types and kinds.
--
-- Any time a 'Type' is pretty-printed, it is first converted to an 'IfaceType'
-- before being printed. See Note [Pretty printing via Iface syntax] in "GHC.Types.TyThing.Ppr"
data IfaceType
= IfaceFreeTyVar TyVar -- See Note [Free tyvars in IfaceType]
| IfaceTyVar IfLclName -- Type/coercion variable only, not tycon
| IfaceLitTy IfaceTyLit
| IfaceAppTy IfaceType IfaceAppArgs
-- See Note [Suppressing invisible arguments] for
-- an explanation of why the second field isn't
-- IfaceType, analogous to AppTy.
| IfaceFunTy FunTyFlag IfaceMult IfaceType IfaceType
| IfaceForAllTy IfaceForAllBndr IfaceType
| IfaceTyConApp IfaceTyCon IfaceAppArgs -- Not necessarily saturated
-- Includes newtypes, synonyms, tuples
| IfaceCastTy IfaceType IfaceCoercion
| IfaceCoercionTy IfaceCoercion
| IfaceTupleTy -- Saturated tuples (unsaturated ones use IfaceTyConApp)
TupleSort -- What sort of tuple?
PromotionFlag -- A bit like IfaceTyCon
IfaceAppArgs -- arity = length args
-- For promoted data cons, the kind args are omitted
-- Why have this? Only for efficiency: IfaceTupleTy can omit the
-- type arguments, as they can be recreated when deserializing.
-- In an experiment, removing IfaceTupleTy resulted in a 0.75% regression
-- in interface file size (in GHC's boot libraries).
-- See !3987.
type IfaceMult = IfaceType
type IfacePredType = IfaceType
type IfaceContext = [IfacePredType]
data IfaceTyLit
= IfaceNumTyLit Integer
| IfaceStrTyLit FastString
| IfaceCharTyLit Char
deriving (Eq)
type IfaceTyConBinder = VarBndr IfaceBndr TyConBndrVis
type IfaceForAllBndr = VarBndr IfaceBndr ForAllTyFlag
type IfaceForAllSpecBndr = VarBndr IfaceBndr Specificity
-- | Make an 'IfaceForAllBndr' from an 'IfaceTvBndr'.
mkIfaceForAllTvBndr :: ForAllTyFlag -> IfaceTvBndr -> IfaceForAllBndr
mkIfaceForAllTvBndr vis var = Bndr (IfaceTvBndr var) vis
-- | Build the 'tyConKind' from the binders and the result kind.
-- Keep in sync with 'mkTyConKind' in "GHC.Core.TyCon".
mkIfaceTyConKind :: [IfaceTyConBinder] -> IfaceKind -> IfaceKind
mkIfaceTyConKind bndrs res_kind = foldr mk res_kind bndrs
where
mk :: IfaceTyConBinder -> IfaceKind -> IfaceKind
mk (Bndr tv (AnonTCB af)) k = IfaceFunTy af many_ty (ifaceBndrType tv) k
mk (Bndr tv (NamedTCB vis)) k = IfaceForAllTy (Bndr tv vis) k
ifaceForAllSpecToBndrs :: [IfaceForAllSpecBndr] -> [IfaceForAllBndr]
ifaceForAllSpecToBndrs = map ifaceForAllSpecToBndr
ifaceForAllSpecToBndr :: IfaceForAllSpecBndr -> IfaceForAllBndr
ifaceForAllSpecToBndr (Bndr tv spec) = Bndr tv (Invisible spec)
-- | Stores the arguments in a type application as a list.
-- See @Note [Suppressing invisible arguments]@.
data IfaceAppArgs
= IA_Nil
| IA_Arg IfaceType -- The type argument
ForAllTyFlag -- The argument's visibility. We store this here so
-- that we can:
--
-- 1. Avoid pretty-printing invisible (i.e., specified
-- or inferred) arguments when
-- -fprint-explicit-kinds isn't enabled, or
-- 2. When -fprint-explicit-kinds *is*, enabled, print
-- specified arguments in @(...) and inferred
-- arguments in @{...}.
IfaceAppArgs -- The rest of the arguments
instance Semi.Semigroup IfaceAppArgs where
IA_Nil <> xs = xs
IA_Arg ty argf rest <> xs = IA_Arg ty argf (rest Semi.<> xs)
instance Monoid IfaceAppArgs where
mempty = IA_Nil
mappend = (Semi.<>)
-- Encodes type constructors, kind constructors,
-- coercion constructors, the lot.
-- We have to tag them in order to pretty print them
-- properly.
data IfaceTyCon = IfaceTyCon { ifaceTyConName :: IfExtName
, ifaceTyConInfo :: IfaceTyConInfo }
deriving (Eq)
-- | The various types of TyCons which have special, built-in syntax.
data IfaceTyConSort = IfaceNormalTyCon -- ^ a regular tycon
| IfaceTupleTyCon !Arity !TupleSort
-- ^ a tuple, e.g. @(a, b, c)@ or @(#a, b, c#)@.
-- The arity is the tuple width, not the tycon arity
-- (which is twice the width in the case of unboxed
-- tuples).
| IfaceSumTyCon !Arity
-- ^ an unboxed sum, e.g. @(# a | b | c #)@
| IfaceEqualityTyCon
-- ^ A heterogeneous equality TyCon
-- (i.e. eqPrimTyCon, eqReprPrimTyCon, heqTyCon)
-- that is actually being applied to two types
-- of the same kind. This affects pretty-printing
-- only: see Note [Equality predicates in IfaceType]
deriving (Eq)
instance Outputable IfaceTyConSort where
ppr IfaceNormalTyCon = text "normal"
ppr (IfaceTupleTyCon n sort) = ppr sort <> colon <> ppr n
ppr (IfaceSumTyCon n) = text "sum:" <> ppr n
ppr IfaceEqualityTyCon = text "equality"
{- Note [Free tyvars in IfaceType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Nowadays (since Nov 16, 2016) we pretty-print a Type by converting to
an IfaceType and pretty printing that. This eliminates a lot of
pretty-print duplication, and it matches what we do with pretty-
printing TyThings. See Note [Pretty printing via Iface syntax] in GHC.Types.TyThing.Ppr.
It works fine for closed types, but when printing debug traces (e.g.
when using -ddump-tc-trace) we print a lot of /open/ types. These
types are full of TcTyVars, and it's absolutely crucial to print them
in their full glory, with their unique, TcTyVarDetails etc.
So we simply embed a TyVar in IfaceType with the IfaceFreeTyVar constructor.
Note that:
* We never expect to serialise an IfaceFreeTyVar into an interface file, nor
to deserialise one. IfaceFreeTyVar is used only in the "convert to IfaceType
and then pretty-print" pipeline.
We do the same for covars, naturally.
Note [Equality predicates in IfaceType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC has several varieties of type equality (see Note [The equality types story]
in GHC.Builtin.Types.Prim for details). In an effort to avoid confusing users, we suppress
the differences during pretty printing unless certain flags are enabled.
Here is how each equality predicate* is printed in homogeneous and
heterogeneous contexts, depending on which combination of the
-fprint-explicit-kinds and -fprint-equality-relations flags is used:
--------------------------------------------------------------------------------------------
| Predicate | Neither flag | -fprint-explicit-kinds |
|-------------------------------|----------------------------|-----------------------------|
| a ~ b (homogeneous) | a ~ b | (a :: Type) ~ (b :: Type) |
| a ~~ b, homogeneously | a ~ b | (a :: Type) ~ (b :: Type) |
| a ~~ b, heterogeneously | a ~~ c | (a :: Type) ~~ (c :: k) |
| a ~# b, homogeneously | a ~ b | (a :: Type) ~ (b :: Type) |
| a ~# b, heterogeneously | a ~~ c | (a :: Type) ~~ (c :: k) |
| Coercible a b (homogeneous) | Coercible a b | Coercible @Type a b |
| a ~R# b, homogeneously | Coercible a b | Coercible @Type a b |
| a ~R# b, heterogeneously | a ~R# b | (a :: Type) ~R# (c :: k) |
|-------------------------------|----------------------------|-----------------------------|
| Predicate | -fprint-equality-relations | Both flags |
|-------------------------------|----------------------------|-----------------------------|
| a ~ b (homogeneous) | a ~ b | (a :: Type) ~ (b :: Type) |
| a ~~ b, homogeneously | a ~~ b | (a :: Type) ~~ (b :: Type) |
| a ~~ b, heterogeneously | a ~~ c | (a :: Type) ~~ (c :: k) |
| a ~# b, homogeneously | a ~# b | (a :: Type) ~# (b :: Type) |
| a ~# b, heterogeneously | a ~# c | (a :: Type) ~# (c :: k) |
| Coercible a b (homogeneous) | Coercible a b | Coercible @Type a b |
| a ~R# b, homogeneously | a ~R# b | (a :: Type) ~R# (b :: Type) |
| a ~R# b, heterogeneously | a ~R# b | (a :: Type) ~R# (c :: k) |
--------------------------------------------------------------------------------------------
(* There is no heterogeneous, representational, lifted equality counterpart
to (~~). There could be, but there seems to be no use for it.)
This table adheres to the following rules:
A. With -fprint-equality-relations, print the true equality relation.
B. Without -fprint-equality-relations:
i. If the equality is representational and homogeneous, use Coercible.
ii. Otherwise, if the equality is representational, use ~R#.
iii. If the equality is nominal and homogeneous, use ~.
iv. Otherwise, if the equality is nominal, use ~~.
C. With -fprint-explicit-kinds, print kinds on both sides of an infix operator,
as above; or print the kind with Coercible.
D. Without -fprint-explicit-kinds, don't print kinds.
A hetero-kinded equality is used homogeneously when it is applied to two
identical kinds. Unfortunately, determining this from an IfaceType isn't
possible since we can't see through type synonyms. Consequently, we need to
record whether this particular application is homogeneous in IfaceTyConSort
for the purposes of pretty-printing.
See Note [The equality types story] in GHC.Builtin.Types.Prim.
-}
data IfaceTyConInfo -- Used only to guide pretty-printing
= IfaceTyConInfo { ifaceTyConIsPromoted :: PromotionFlag
-- A PromotionFlag value of IsPromoted indicates
-- that the type constructor came from a data
-- constructor promoted by -XDataKinds, and thus
-- should be printed as 'D to distinguish it from
-- an existing type constructor D.
, ifaceTyConSort :: IfaceTyConSort }
deriving (Eq)
-- This smart constructor allows sharing of the two most common
-- cases. See #19194
mkIfaceTyConInfo :: PromotionFlag -> IfaceTyConSort -> IfaceTyConInfo
mkIfaceTyConInfo IsPromoted IfaceNormalTyCon = IfaceTyConInfo IsPromoted IfaceNormalTyCon
mkIfaceTyConInfo NotPromoted IfaceNormalTyCon = IfaceTyConInfo NotPromoted IfaceNormalTyCon
mkIfaceTyConInfo prom sort = IfaceTyConInfo prom sort
data IfaceMCoercion
= IfaceMRefl
| IfaceMCo IfaceCoercion
data IfaceCoercion
= IfaceReflCo IfaceType
| IfaceGReflCo Role IfaceType (IfaceMCoercion)
| IfaceFunCo Role IfaceCoercion IfaceCoercion IfaceCoercion
| IfaceTyConAppCo Role IfaceTyCon [IfaceCoercion]
| IfaceAppCo IfaceCoercion IfaceCoercion
| IfaceForAllCo IfaceBndr IfaceCoercion IfaceCoercion
| IfaceCoVarCo IfLclName
| IfaceAxiomInstCo IfExtName BranchIndex [IfaceCoercion]
| IfaceAxiomRuleCo IfLclName [IfaceCoercion]
-- There are only a fixed number of CoAxiomRules, so it suffices
-- to use an IfaceLclName to distinguish them.
-- See Note [Adding built-in type families] in GHC.Builtin.Types.Literals
| IfaceUnivCo IfaceUnivCoProv Role IfaceType IfaceType
| IfaceSymCo IfaceCoercion
| IfaceTransCo IfaceCoercion IfaceCoercion
| IfaceSelCo CoSel IfaceCoercion
| IfaceLRCo LeftOrRight IfaceCoercion
| IfaceInstCo IfaceCoercion IfaceCoercion
| IfaceKindCo IfaceCoercion
| IfaceSubCo IfaceCoercion
| IfaceFreeCoVar CoVar -- See Note [Free tyvars in IfaceType]
| IfaceHoleCo CoVar -- ^ See Note [Holes in IfaceCoercion]
data IfaceUnivCoProv
= IfacePhantomProv IfaceCoercion
| IfaceProofIrrelProv IfaceCoercion
| IfacePluginProv String
| IfaceCorePrepProv Bool -- See defn of CorePrepProv
{- Note [Holes in IfaceCoercion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When typechecking fails the typechecker will produce a HoleCo to stand
in place of the unproven assertion. While we generally don't want to
let these unproven assertions leak into interface files, we still need
to be able to pretty-print them as we use IfaceType's pretty-printer
to render Types. For this reason IfaceCoercion has a IfaceHoleCo
constructor; however, we fails when asked to serialize to a
IfaceHoleCo to ensure that they don't end up in an interface file.
%************************************************************************
%* *
Functions over IfaceTypes
* *
************************************************************************
-}
ifaceTyConHasKey :: IfaceTyCon -> Unique -> Bool
ifaceTyConHasKey tc key = ifaceTyConName tc `hasKey` key
-- | Returns true for Type or (TYPE LiftedRep)
isIfaceLiftedTypeKind :: IfaceKind -> Bool
isIfaceLiftedTypeKind (IfaceTyConApp tc args)
| tc `ifaceTyConHasKey` liftedTypeKindTyConKey
, IA_Nil <- args
= True -- Type
| tc `ifaceTyConHasKey` tYPETyConKey
, IA_Arg arg1 Required IA_Nil <- args
, isIfaceLiftedRep arg1
= True -- TYPE Lifted
isIfaceLiftedTypeKind _ = False
-- | Returns true for Constraint or (CONSTRAINT LiftedRep)
isIfaceConstraintKind :: IfaceKind -> Bool
isIfaceConstraintKind (IfaceTyConApp tc args)
| tc `ifaceTyConHasKey` constraintKindTyConKey
, IA_Nil <- args
= True -- Type
| tc `ifaceTyConHasKey` cONSTRAINTTyConKey
, IA_Arg arg1 Required IA_Nil <- args
, isIfaceLiftedRep arg1
= True -- TYPE Lifted
isIfaceConstraintKind _ = False
isIfaceLiftedRep :: IfaceKind -> Bool
-- Returns true for LiftedRep, or BoxedRep Lifted
isIfaceLiftedRep (IfaceTyConApp tc args)
| tc `ifaceTyConHasKey` liftedRepTyConKey
, IA_Nil <- args
= True -- LiftedRep
| tc `ifaceTyConHasKey` boxedRepDataConKey
, IA_Arg arg1 Required IA_Nil <- args
, isIfaceLifted arg1
= True -- TYPE Lifted
isIfaceLiftedRep _ = False
isIfaceLifted :: IfaceKind -> Bool
-- Returns true for Lifted
isIfaceLifted (IfaceTyConApp tc args)
| tc `ifaceTyConHasKey` liftedDataConKey
, IA_Nil <- args
= True
isIfaceLifted _ = False
splitIfaceSigmaTy :: IfaceType -> ([IfaceForAllBndr], [IfacePredType], IfaceType)
-- Mainly for printing purposes
--
-- Here we split nested IfaceSigmaTy properly.
--
-- @
-- forall t. T t => forall m a b. M m => (a -> m b) -> t a -> m (t b)
-- @
--
-- If you called @splitIfaceSigmaTy@ on this type:
--
-- @
-- ([t, m, a, b], [T t, M m], (a -> m b) -> t a -> m (t b))
-- @
splitIfaceSigmaTy ty
= case (bndrs, theta) of
([], []) -> (bndrs, theta, tau)
_ -> let (bndrs', theta', tau') = splitIfaceSigmaTy tau
in (bndrs ++ bndrs', theta ++ theta', tau')
where
(bndrs, rho) = split_foralls ty
(theta, tau) = split_rho rho
split_foralls (IfaceForAllTy bndr ty)
| isInvisibleForAllTyFlag (binderFlag bndr)
= case split_foralls ty of { (bndrs, rho) -> (bndr:bndrs, rho) }
split_foralls rho = ([], rho)
split_rho (IfaceFunTy af _ ty1 ty2)
| isInvisibleFunArg af
= case split_rho ty2 of { (ps, tau) -> (ty1:ps, tau) }
split_rho tau = ([], tau)
splitIfaceReqForallTy :: IfaceType -> ([IfaceForAllBndr], IfaceType)
splitIfaceReqForallTy (IfaceForAllTy bndr ty)
| isVisibleForAllTyFlag (binderFlag bndr)
= case splitIfaceReqForallTy ty of { (bndrs, rho) -> (bndr:bndrs, rho) }
splitIfaceReqForallTy rho = ([], rho)
suppressIfaceInvisibles :: PrintExplicitKinds -> [IfaceTyConBinder] -> [a] -> [a]
suppressIfaceInvisibles (PrintExplicitKinds True) _tys xs = xs
suppressIfaceInvisibles (PrintExplicitKinds False) tys xs = suppress tys xs
where
suppress _ [] = []
suppress [] a = a
suppress (k:ks) (x:xs)
| isInvisibleTyConBinder k = suppress ks xs
| otherwise = x : suppress ks xs
stripIfaceInvisVars :: PrintExplicitKinds -> [IfaceTyConBinder] -> [IfaceTyConBinder]
stripIfaceInvisVars (PrintExplicitKinds True) tyvars = tyvars
stripIfaceInvisVars (PrintExplicitKinds False) tyvars
= filterOut isInvisibleTyConBinder tyvars
-- | Extract an 'IfaceBndr' from an 'IfaceForAllBndr'.
ifForAllBndrVar :: IfaceForAllBndr -> IfaceBndr
ifForAllBndrVar = binderVar
-- | Extract the variable name from an 'IfaceForAllBndr'.
ifForAllBndrName :: IfaceForAllBndr -> IfLclName
ifForAllBndrName fab = ifaceBndrName (ifForAllBndrVar fab)
-- | Extract an 'IfaceBndr' from an 'IfaceTyConBinder'.
ifTyConBinderVar :: IfaceTyConBinder -> IfaceBndr
ifTyConBinderVar = binderVar
-- | Extract the variable name from an 'IfaceTyConBinder'.
ifTyConBinderName :: IfaceTyConBinder -> IfLclName
ifTyConBinderName tcb = ifaceBndrName (ifTyConBinderVar tcb)
ifTypeIsVarFree :: IfaceType -> Bool
-- Returns True if the type definitely has no variables at all
-- Just used to control pretty printing
ifTypeIsVarFree ty = go ty
where
go (IfaceTyVar {}) = False
go (IfaceFreeTyVar {}) = False
go (IfaceAppTy fun args) = go fun && go_args args
go (IfaceFunTy _ w arg res) = go w && go arg && go res
go (IfaceForAllTy {}) = False
go (IfaceTyConApp _ args) = go_args args
go (IfaceTupleTy _ _ args) = go_args args
go (IfaceLitTy _) = True
go (IfaceCastTy {}) = False -- Safe
go (IfaceCoercionTy {}) = False -- Safe
go_args IA_Nil = True
go_args (IA_Arg arg _ args) = go arg && go_args args
{- Note [Substitution on IfaceType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitutions on IfaceType are done only during pretty-printing to
construct the result type of a GADT, and does not deal with binders
(eg IfaceForAll), so it doesn't need fancy capture stuff. -}
type IfaceTySubst = FastStringEnv IfaceType -- Note [Substitution on IfaceType]
mkIfaceTySubst :: [(IfLclName,IfaceType)] -> IfaceTySubst
-- See Note [Substitution on IfaceType]
mkIfaceTySubst eq_spec = mkFsEnv eq_spec
inDomIfaceTySubst :: IfaceTySubst -> IfaceTvBndr -> Bool
-- See Note [Substitution on IfaceType]
inDomIfaceTySubst subst (fs, _) = isJust (lookupFsEnv subst fs)
substIfaceType :: IfaceTySubst -> IfaceType -> IfaceType
-- See Note [Substitution on IfaceType]
substIfaceType env ty
= go ty
where
go (IfaceFreeTyVar tv) = IfaceFreeTyVar tv
go (IfaceTyVar tv) = substIfaceTyVar env tv
go (IfaceAppTy t ts) = IfaceAppTy (go t) (substIfaceAppArgs env ts)
go (IfaceFunTy af w t1 t2) = IfaceFunTy af (go w) (go t1) (go t2)
go ty@(IfaceLitTy {}) = ty
go (IfaceTyConApp tc tys) = IfaceTyConApp tc (substIfaceAppArgs env tys)
go (IfaceTupleTy s i tys) = IfaceTupleTy s i (substIfaceAppArgs env tys)
go (IfaceForAllTy {}) = pprPanic "substIfaceType" (ppr ty)
go (IfaceCastTy ty co) = IfaceCastTy (go ty) (go_co co)
go (IfaceCoercionTy co) = IfaceCoercionTy (go_co co)
go_mco IfaceMRefl = IfaceMRefl
go_mco (IfaceMCo co) = IfaceMCo $ go_co co
go_co (IfaceReflCo ty) = IfaceReflCo (go ty)
go_co (IfaceGReflCo r ty mco) = IfaceGReflCo r (go ty) (go_mco mco)
go_co (IfaceFunCo r w c1 c2) = IfaceFunCo r (go_co w) (go_co c1) (go_co c2)
go_co (IfaceTyConAppCo r tc cos) = IfaceTyConAppCo r tc (go_cos cos)
go_co (IfaceAppCo c1 c2) = IfaceAppCo (go_co c1) (go_co c2)
go_co (IfaceForAllCo {}) = pprPanic "substIfaceCoercion" (ppr ty)
go_co (IfaceFreeCoVar cv) = IfaceFreeCoVar cv
go_co (IfaceCoVarCo cv) = IfaceCoVarCo cv
go_co (IfaceHoleCo cv) = IfaceHoleCo cv
go_co (IfaceAxiomInstCo a i cos) = IfaceAxiomInstCo a i (go_cos cos)
go_co (IfaceUnivCo prov r t1 t2) = IfaceUnivCo (go_prov prov) r (go t1) (go t2)
go_co (IfaceSymCo co) = IfaceSymCo (go_co co)
go_co (IfaceTransCo co1 co2) = IfaceTransCo (go_co co1) (go_co co2)
go_co (IfaceSelCo n co) = IfaceSelCo n (go_co co)
go_co (IfaceLRCo lr co) = IfaceLRCo lr (go_co co)
go_co (IfaceInstCo c1 c2) = IfaceInstCo (go_co c1) (go_co c2)
go_co (IfaceKindCo co) = IfaceKindCo (go_co co)
go_co (IfaceSubCo co) = IfaceSubCo (go_co co)
go_co (IfaceAxiomRuleCo n cos) = IfaceAxiomRuleCo n (go_cos cos)
go_cos = map go_co
go_prov (IfacePhantomProv co) = IfacePhantomProv (go_co co)
go_prov (IfaceProofIrrelProv co) = IfaceProofIrrelProv (go_co co)
go_prov co@(IfacePluginProv _) = co
go_prov co@(IfaceCorePrepProv _) = co
substIfaceAppArgs :: IfaceTySubst -> IfaceAppArgs -> IfaceAppArgs
substIfaceAppArgs env args
= go args
where
go IA_Nil = IA_Nil
go (IA_Arg ty arg tys) = IA_Arg (substIfaceType env ty) arg (go tys)
substIfaceTyVar :: IfaceTySubst -> IfLclName -> IfaceType
substIfaceTyVar env tv
| Just ty <- lookupFsEnv env tv = ty
| otherwise = IfaceTyVar tv
{-
************************************************************************
* *
Functions over IfaceAppArgs
* *
************************************************************************
-}
stripInvisArgs :: PrintExplicitKinds -> IfaceAppArgs -> IfaceAppArgs
stripInvisArgs (PrintExplicitKinds True) tys = tys
stripInvisArgs (PrintExplicitKinds False) tys = suppress_invis tys
where
suppress_invis c
= case c of
IA_Nil -> IA_Nil
IA_Arg t argf ts
| isVisibleForAllTyFlag argf
-> IA_Arg t argf $ suppress_invis ts
-- Keep recursing through the remainder of the arguments, as it's
-- possible that there are remaining invisible ones.
-- See the "In type declarations" section of Note [VarBndrs,
-- ForAllTyBinders, TyConBinders, and visibility] in GHC.Core.TyCo.Rep.
| otherwise
-> suppress_invis ts
appArgsIfaceTypes :: IfaceAppArgs -> [IfaceType]
appArgsIfaceTypes IA_Nil = []
appArgsIfaceTypes (IA_Arg t _ ts) = t : appArgsIfaceTypes ts
appArgsIfaceTypesForAllTyFlags :: IfaceAppArgs -> [(IfaceType, ForAllTyFlag)]
appArgsIfaceTypesForAllTyFlags IA_Nil = []
appArgsIfaceTypesForAllTyFlags (IA_Arg t a ts)
= (t, a) : appArgsIfaceTypesForAllTyFlags ts
ifaceVisAppArgsLength :: IfaceAppArgs -> Int
ifaceVisAppArgsLength = go 0
where
go !n IA_Nil = n
go n (IA_Arg _ argf rest)
| isVisibleForAllTyFlag argf = go (n+1) rest
| otherwise = go n rest
{-
Note [Suppressing invisible arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use the IfaceAppArgs data type to specify which of the arguments to a type
should be displayed when pretty-printing, under the control of
-fprint-explicit-kinds.
See also Type.filterOutInvisibleTypes.
For example, given
T :: forall k. (k->*) -> k -> * -- Ordinary kind polymorphism
'Just :: forall k. k -> 'Maybe k -- Promoted
we want
T * Tree Int prints as T Tree Int
'Just * prints as Just *
For type constructors (IfaceTyConApp), IfaceAppArgs is a quite natural fit,
since the corresponding Core constructor:
data Type
= ...
| TyConApp TyCon [Type]
Already puts all of its arguments into a list. So when converting a Type to an
IfaceType (see toIfaceAppArgsX in GHC.Core.ToIface), we simply use the kind of
the TyCon (which is cached) to guide the process of converting the argument
Types into an IfaceAppArgs list.
We also want this behavior for IfaceAppTy, since given:
data Proxy (a :: k)
f :: forall (t :: forall a. a -> Type). Proxy Type (t Bool True)
We want to print the return type as `Proxy (t True)` without the use of
-fprint-explicit-kinds (#15330). Accomplishing this is trickier than in the
tycon case, because the corresponding Core constructor for IfaceAppTy:
data Type
= ...
| AppTy Type Type
Only stores one argument at a time. Therefore, when converting an AppTy to an
IfaceAppTy (in toIfaceTypeX in GHC.CoreToIface), we:
1. Flatten the chain of AppTys down as much as possible
2. Use typeKind to determine the function Type's kind
3. Use this kind to guide the process of converting the argument Types into an
IfaceAppArgs list.
By flattening the arguments like this, we obtain two benefits:
(a) We can reuse the same machinery to pretty-print IfaceTyConApp arguments as
we do IfaceTyApp arguments, which means that we only need to implement the
logic to filter out invisible arguments once.
(b) Unlike for tycons, finding the kind of a type in general (through typeKind)
is not a constant-time operation, so by flattening the arguments first, we
decrease the number of times we have to call typeKind.
Note [Pretty-printing invisible arguments]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note [Suppressing invisible arguments] is all about how to avoid printing
invisible arguments when the -fprint-explicit-kinds flag is disables. Well,
what about when it's enabled? Then we can and should print invisible kind
arguments, and this Note explains how we do it.
As two running examples, consider the following code:
{-# LANGUAGE PolyKinds #-}
data T1 a
data T2 (a :: k)
When displaying these types (with -fprint-explicit-kinds on), we could just
do the following:
T1 k a
T2 k a
That certainly gets the job done. But it lacks a crucial piece of information:
is the `k` argument inferred or specified? To communicate this, we use visible
kind application syntax to distinguish the two cases:
T1 @{k} a
T2 @k a
Here, @{k} indicates that `k` is an inferred argument, and @k indicates that
`k` is a specified argument. (See
Note [VarBndrs, ForAllTyBinders, TyConBinders, and visibility] in GHC.Core.TyCo.Rep for
a lengthier explanation on what "inferred" and "specified" mean.)
************************************************************************
* *
Pretty-printing
* *
************************************************************************
-}
if_print_coercions :: SDoc -- ^ if printing coercions
-> SDoc -- ^ otherwise
-> SDoc
if_print_coercions yes no
= sdocOption sdocPrintExplicitCoercions $ \print_co ->
getPprStyle $ \style ->
getPprDebug $ \debug ->
if print_co || dumpStyle style || debug
then yes
else no
pprIfaceInfixApp :: PprPrec -> SDoc -> SDoc -> SDoc -> SDoc
pprIfaceInfixApp ctxt_prec pp_tc pp_ty1 pp_ty2
= maybeParen ctxt_prec opPrec $
sep [pp_ty1, pp_tc <+> pp_ty2]
pprIfacePrefixApp :: PprPrec -> SDoc -> [SDoc] -> SDoc
pprIfacePrefixApp ctxt_prec pp_fun pp_tys
| null pp_tys = pp_fun
| otherwise = maybeParen ctxt_prec appPrec $
hang pp_fun 2 (sep pp_tys)
isIfaceRhoType :: IfaceType -> Bool
isIfaceRhoType (IfaceForAllTy _ _) = False
isIfaceRhoType (IfaceFunTy af _ _ _) = isVisibleFunArg af
isIfaceRhoType _ = True
-- ----------------------------- Printing binders ------------------------------------
instance Outputable IfaceBndr where
ppr (IfaceIdBndr bndr) = pprIfaceIdBndr bndr
ppr (IfaceTvBndr bndr) = char '@' <> pprIfaceTvBndr bndr (SuppressBndrSig False)
(UseBndrParens False)
pprIfaceBndrs :: [IfaceBndr] -> SDoc
pprIfaceBndrs bs = sep (map ppr bs)
pprIfaceLamBndr :: IfaceLamBndr -> SDoc
pprIfaceLamBndr (b, IfaceNoOneShot) = ppr b
pprIfaceLamBndr (b, IfaceOneShot) = ppr b <> text "[OneShot]"
pprIfaceIdBndr :: IfaceIdBndr -> SDoc
pprIfaceIdBndr (w, name, ty) = parens (ppr name <> brackets (ppr w) <+> dcolon <+> ppr ty)
{- Note [Suppressing binder signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When printing the binders in a 'forall', we want to keep the kind annotations:
forall (a :: k). blah
^^^^
good
On the other hand, when we print the binders of a data declaration in :info,
the kind information would be redundant due to the standalone kind signature:
type F :: Symbol -> Type
type F (s :: Symbol) = blah
^^^^^^^^^
redundant
Here we'd like to omit the kind annotation:
type F :: Symbol -> Type
type F s = blah
Note [Printing type abbreviations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Normally, we pretty-print
`TYPE 'LiftedRep` as `Type` (or `*`)
`CONSTRAINT 'LiftedRep` as `Constraint`
`FUN 'Many` as `(->)`.
This way, error messages don't refer to representation polymorphism
or linearity if it is not necessary. Normally we'd would represent
these types using their synonyms (see GHC.Core.Type
Note [Using synonyms to compress types]), but in the :kind! GHCi
command we specifically expand synonyms (see GHC.Tc.Module.tcRnExpr).
So here in the pretty-printing we effectively collapse back Type
and Constraint to their synonym forms. A bit confusing!
However, when printing the definition of Type, Constraint or (->) with :info,
this would give confusing output: `type (->) = (->)` (#18594).
Solution: detect when we are in :info and disable displaying the synonym
with the SDoc option sdocPrintTypeAbbreviations.
If you are creating a similar synonym, make sure it is listed in pprIfaceDecl,
see reference to this Note.
If there will be a need, in the future we could expose it as a flag
-fprint-type-abbreviations or even three separate flags controlling
TYPE 'LiftedRep, CONSTRAINT 'LiftedRep and FUN 'Many.
-}
-- | Do we want to suppress kind annotations on binders?
-- See Note [Suppressing binder signatures]
newtype SuppressBndrSig = SuppressBndrSig Bool
newtype UseBndrParens = UseBndrParens Bool
newtype PrintExplicitKinds = PrintExplicitKinds Bool
pprIfaceTvBndr :: IfaceTvBndr -> SuppressBndrSig -> UseBndrParens -> SDoc
pprIfaceTvBndr (tv, ki) (SuppressBndrSig suppress_sig) (UseBndrParens use_parens)
| suppress_sig = ppr tv
| isIfaceLiftedTypeKind ki = ppr tv
| otherwise = maybe_parens (ppr tv <+> dcolon <+> ppr ki)
where
maybe_parens | use_parens = parens
| otherwise = id
pprIfaceTyConBinders :: SuppressBndrSig -> [IfaceTyConBinder] -> SDoc
pprIfaceTyConBinders suppress_sig = sep . map go
where
go :: IfaceTyConBinder -> SDoc
go (Bndr (IfaceIdBndr bndr) _) = pprIfaceIdBndr bndr
go (Bndr (IfaceTvBndr bndr) vis) =
-- See Note [Pretty-printing invisible arguments]
case vis of
AnonTCB af
| isVisibleFunArg af -> ppr_bndr (UseBndrParens True)
| otherwise -> char '@' <> braces (ppr_bndr (UseBndrParens False))
-- The above case is rare. (See Note [AnonTCB with constraint arg]
-- in GHC.Core.TyCon.)
-- Should we print these differently?
NamedTCB Required -> ppr_bndr (UseBndrParens True)
NamedTCB Specified -> char '@' <> ppr_bndr (UseBndrParens True)
NamedTCB Inferred -> char '@' <> braces (ppr_bndr (UseBndrParens False))
where
ppr_bndr = pprIfaceTvBndr bndr suppress_sig
instance Binary IfaceBndr where
put_ bh (IfaceIdBndr aa) = do
putByte bh 0
put_ bh aa
put_ bh (IfaceTvBndr ab) = do
putByte bh 1
put_ bh ab
get bh = do
h <- getByte bh
case h of
0 -> do aa <- get bh
return (IfaceIdBndr aa)
_ -> do ab <- get bh
return (IfaceTvBndr ab)
instance Binary IfaceOneShot where
put_ bh IfaceNoOneShot =
putByte bh 0
put_ bh IfaceOneShot =
putByte bh 1
get bh = do
h <- getByte bh
case h of
0 -> return IfaceNoOneShot
_ -> return IfaceOneShot
-- ----------------------------- Printing IfaceType ------------------------------------
---------------------------------
instance Outputable IfaceType where
ppr ty = pprIfaceType ty
pprIfaceType, pprParendIfaceType :: IfaceType -> SDoc
pprIfaceType = pprPrecIfaceType topPrec
pprParendIfaceType = pprPrecIfaceType appPrec
pprPrecIfaceType :: PprPrec -> IfaceType -> SDoc
-- We still need `hideNonStandardTypes`, since the `pprPrecIfaceType` may be
-- called from other places, besides `:type` and `:info`.
pprPrecIfaceType prec ty =
hideNonStandardTypes (ppr_ty prec) ty
pprTypeArrow :: FunTyFlag -> IfaceMult -> SDoc
pprTypeArrow af mult
= pprArrow (mb_conc, pprPrecIfaceType) af mult
where
mb_conc (IfaceTyConApp tc _) = Just tc
mb_conc _ = Nothing
pprArrow :: (a -> Maybe IfaceTyCon, PprPrec -> a -> SDoc)
-> FunTyFlag -> a -> SDoc
-- Prints a thin arrow (->) with its multiplicity
-- Used for both FunTy and FunCo, hence higher order arguments
pprArrow (mb_conc, ppr_mult) af mult
| isFUNArg af
= case mb_conc mult of
Just tc | tc `ifaceTyConHasKey` manyDataConKey -> arrow
| tc `ifaceTyConHasKey` oneDataConKey -> lollipop
_ -> text "%" <> ppr_mult appPrec mult <+> arrow
| otherwise
= ppr (funTyFlagTyCon af)
ppr_ty :: PprPrec -> IfaceType -> SDoc
ppr_ty ctxt_prec ty
| not (isIfaceRhoType ty) = ppr_sigma ShowForAllMust ctxt_prec ty
ppr_ty _ (IfaceForAllTy {}) = panic "ppr_ty" -- Covered by not.isIfaceRhoType
ppr_ty _ (IfaceFreeTyVar tyvar) = ppr tyvar -- This is the main reason for IfaceFreeTyVar!
ppr_ty _ (IfaceTyVar tyvar) = ppr tyvar -- See Note [Free tyvars in IfaceType]
ppr_ty ctxt_prec (IfaceTyConApp tc tys) = pprTyTcApp ctxt_prec tc tys
ppr_ty ctxt_prec (IfaceTupleTy i p tys) = pprTuple ctxt_prec i p tys -- always fully saturated
ppr_ty _ (IfaceLitTy n) = pprIfaceTyLit n
-- Function types
ppr_ty ctxt_prec ty@(IfaceFunTy af w ty1 ty2) -- Should be a visible argument
= assertPpr (isVisibleFunArg af) (ppr ty) $ -- Ensured by isIfaceRhoType above
-- We want to print a chain of arrows in a column
-- type1
-- -> type2
-- -> type3
maybeParen ctxt_prec funPrec $
sep [ppr_ty funPrec ty1, sep (ppr_fun_tail w ty2)]
where
ppr_fun_tail wthis (IfaceFunTy af wnext ty1 ty2)
| isVisibleFunArg af
= (pprTypeArrow af wthis <+> ppr_ty funPrec ty1) : ppr_fun_tail wnext ty2
ppr_fun_tail wthis other_ty
= [pprTypeArrow af wthis <+> pprIfaceType other_ty]
ppr_ty ctxt_prec (IfaceAppTy t ts)
= if_print_coercions
ppr_app_ty
ppr_app_ty_no_casts
where
ppr_app_ty =
sdocOption sdocPrintExplicitKinds $ \print_kinds ->
let tys_wo_kinds = appArgsIfaceTypesForAllTyFlags $ stripInvisArgs
(PrintExplicitKinds print_kinds) ts
in pprIfacePrefixApp ctxt_prec
(ppr_ty funPrec t)
(map (ppr_app_arg appPrec) tys_wo_kinds)
-- Strip any casts from the head of the application
ppr_app_ty_no_casts =
case t of
IfaceCastTy head _ -> ppr_ty ctxt_prec (mk_app_tys head ts)
_ -> ppr_app_ty
mk_app_tys :: IfaceType -> IfaceAppArgs -> IfaceType
mk_app_tys (IfaceTyConApp tc tys1) tys2 =
IfaceTyConApp tc (tys1 `mappend` tys2)
mk_app_tys t1 tys2 = IfaceAppTy t1 tys2
ppr_ty ctxt_prec (IfaceCastTy ty co)
= if_print_coercions
(parens (ppr_ty topPrec ty <+> text "|>" <+> ppr co))
(ppr_ty ctxt_prec ty)
ppr_ty ctxt_prec (IfaceCoercionTy co)
= if_print_coercions
(ppr_co ctxt_prec co)
(text "<>")
{- Note [Defaulting RuntimeRep variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RuntimeRep variables are considered by many (most?) users to be little
more than syntactic noise. When the notion was introduced there was a
significant and understandable push-back from those with pedagogy in
mind, which argued that RuntimeRep variables would throw a wrench into
nearly any teach approach since they appear in even the lowly ($)
function's type,
($) :: forall (w :: RuntimeRep) a (b :: TYPE w). (a -> b) -> a -> b
which is significantly less readable than its non RuntimeRep-polymorphic type of
($) :: (a -> b) -> a -> b
Moreover, unboxed types don't appear all that often in run-of-the-mill
Haskell programs, so it makes little sense to make all users pay this
syntactic overhead.
For this reason it was decided that we would hide RuntimeRep variables
for now (see #11549). We do this by defaulting all type variables of
kind RuntimeRep to LiftedRep.
Likewise, we default all Multiplicity variables to Many.
This is done in a pass right before pretty-printing
(defaultIfaceTyVarsOfKind, controlled by
-fprint-explicit-runtime-reps and -XLinearTypes)
This applies to /quantified/ variables like 'w' above. What about
variables that are /free/ in the type being printed, which certainly
happens in error messages. Suppose (#16074, #19361) we are reporting a
mismatch between skolems
(a :: RuntimeRep) ~ (b :: RuntimeRep)
or
(m :: Multiplicity) ~ Many
We certainly don't want to say "Can't match LiftedRep with LiftedRep" or
"Can't match Many with Many"!
But if we are printing the type
(forall (a :: TYPE r). blah)
we do want to turn that (free) r into LiftedRep, so it prints as
(forall a. blah)
We use isMetaTyVar to distinguish between those two situations:
metavariables are converted, skolem variables are not.
There's one exception though: TyVarTv metavariables should not be defaulted,
as they appear during kind-checking of "newtype T :: TYPE r where..."
(test T18357a). Therefore, we additionally test for isTyConableTyVar.
-}
-- | Default 'RuntimeRep' variables to 'LiftedRep',
-- 'Levity' variables to 'Lifted', and 'Multiplicity'
-- variables to 'Many'. For example:
--
-- @
-- ($) :: forall (r :: GHC.Types.RuntimeRep) a (b :: TYPE r).
-- (a -> b) -> a -> b
-- Just :: forall (k :: Multiplicity) a. a % k -> Maybe a
-- @
--
-- turns in to,
--
-- @ ($) :: forall a (b :: *). (a -> b) -> a -> b @
-- @ Just :: forall a . a -> Maybe a @
--
-- We do this to prevent RuntimeRep, Levity and Multiplicity variables from
-- incurring a significant syntactic overhead in otherwise simple
-- type signatures (e.g. ($)). See Note [Defaulting RuntimeRep variables]
-- and #11549 for further discussion.
defaultIfaceTyVarsOfKind :: Bool -- ^ default 'RuntimeRep'/'Levity' variables?
-> Bool -- ^ default 'Multiplicity' variables?
-> IfaceType -> IfaceType
defaultIfaceTyVarsOfKind def_rep def_mult ty = go emptyFsEnv ty
where
go :: FastStringEnv IfaceType -- Set of enclosing forall-ed RuntimeRep/Levity/Multiplicity variables
-> IfaceType
-> IfaceType
go subs (IfaceForAllTy (Bndr (IfaceTvBndr (var, var_kind)) argf) ty)
| isInvisibleForAllTyFlag argf -- Don't default *visible* quantification
-- or we get the mess in #13963
, Just substituted_ty <- check_substitution var_kind
= let subs' = extendFsEnv subs var substituted_ty
-- Record that we should replace it with LiftedRep/Lifted/Many,
-- and recurse, discarding the forall
in go subs' ty
go subs (IfaceForAllTy bndr ty)
= IfaceForAllTy (go_ifacebndr subs bndr) (go subs ty)
go subs ty@(IfaceTyVar tv) = case lookupFsEnv subs tv of
Just s -> s
Nothing -> ty
go _ ty@(IfaceFreeTyVar tv)
-- See Note [Defaulting RuntimeRep variables], about free vars
| def_rep
, GHC.Core.Type.isRuntimeRepTy (tyVarKind tv)
, isMetaTyVar tv
, isTyConableTyVar tv
= liftedRep_ty
| def_rep
, GHC.Core.Type.isLevityTy (tyVarKind tv)
, isMetaTyVar tv
, isTyConableTyVar tv
= lifted_ty
| def_mult
, GHC.Core.Type.isMultiplicityTy (tyVarKind tv)
, isMetaTyVar tv
, isTyConableTyVar tv
= many_ty
| otherwise
= ty
go subs (IfaceTyConApp tc tc_args)
= IfaceTyConApp tc (go_args subs tc_args)
go subs (IfaceTupleTy sort is_prom tc_args)
= IfaceTupleTy sort is_prom (go_args subs tc_args)
go subs (IfaceFunTy af w arg res)
= IfaceFunTy af (go subs w) (go subs arg) (go subs res)
go subs (IfaceAppTy t ts)
= IfaceAppTy (go subs t) (go_args subs ts)
go subs (IfaceCastTy x co)
= IfaceCastTy (go subs x) co
go _ ty@(IfaceLitTy {}) = ty
go _ ty@(IfaceCoercionTy {}) = ty
go_ifacebndr :: FastStringEnv IfaceType -> IfaceForAllBndr -> IfaceForAllBndr
go_ifacebndr subs (Bndr (IfaceIdBndr (w, n, t)) argf)
= Bndr (IfaceIdBndr (w, n, go subs t)) argf
go_ifacebndr subs (Bndr (IfaceTvBndr (n, t)) argf)
= Bndr (IfaceTvBndr (n, go subs t)) argf
go_args :: FastStringEnv IfaceType -> IfaceAppArgs -> IfaceAppArgs
go_args _ IA_Nil = IA_Nil
go_args subs (IA_Arg ty argf args)
= IA_Arg (go subs ty) argf (go_args subs args)
check_substitution :: IfaceType -> Maybe IfaceType
check_substitution (IfaceTyConApp tc _)
| def_rep
, tc `ifaceTyConHasKey` runtimeRepTyConKey
= Just liftedRep_ty
| def_rep
, tc `ifaceTyConHasKey` levityTyConKey
= Just lifted_ty
| def_mult
, tc `ifaceTyConHasKey` multiplicityTyConKey
= Just many_ty
check_substitution _ = Nothing
-- | The type ('BoxedRep 'Lifted), also known as LiftedRep.
liftedRep_ty :: IfaceType
liftedRep_ty =
IfaceTyConApp liftedRep IA_Nil
where
liftedRep :: IfaceTyCon
liftedRep = IfaceTyCon tc_name (mkIfaceTyConInfo NotPromoted IfaceNormalTyCon)
where tc_name = getName liftedRepTyCon
-- | The type 'Lifted :: Levity'.
lifted_ty :: IfaceType
lifted_ty =
IfaceTyConApp (IfaceTyCon dc_name (mkIfaceTyConInfo IsPromoted IfaceNormalTyCon))
IA_Nil
where dc_name = getName liftedDataConTyCon
-- | The type 'Many :: Multiplicity'.
many_ty :: IfaceType
many_ty = IfaceTyConApp (IfaceTyCon dc_name (mkIfaceTyConInfo IsPromoted IfaceNormalTyCon))
IA_Nil
where dc_name = getName manyDataConTyCon
hideNonStandardTypes :: (IfaceType -> SDoc) -> IfaceType -> SDoc
hideNonStandardTypes f ty
= sdocOption sdocPrintExplicitRuntimeReps $ \printExplicitRuntimeReps ->
sdocOption sdocLinearTypes $ \linearTypes ->
getPprStyle $ \sty ->
let def_rep = not printExplicitRuntimeReps
def_mult = not linearTypes
in if userStyle sty
then f (defaultIfaceTyVarsOfKind def_rep def_mult ty)
else f ty
instance Outputable IfaceAppArgs where
ppr tca = pprIfaceAppArgs tca
pprIfaceAppArgs, pprParendIfaceAppArgs :: IfaceAppArgs -> SDoc
pprIfaceAppArgs = ppr_app_args topPrec
pprParendIfaceAppArgs = ppr_app_args appPrec
ppr_app_args :: PprPrec -> IfaceAppArgs -> SDoc
ppr_app_args ctx_prec = go
where
go :: IfaceAppArgs -> SDoc
go IA_Nil = empty
go (IA_Arg t argf ts) = ppr_app_arg ctx_prec (t, argf) <+> go ts
-- See Note [Pretty-printing invisible arguments]
ppr_app_arg :: PprPrec -> (IfaceType, ForAllTyFlag) -> SDoc
ppr_app_arg ctx_prec (t, argf) =
sdocOption sdocPrintExplicitKinds $ \print_kinds ->
case argf of
Required -> ppr_ty ctx_prec t
Specified | print_kinds
-> char '@' <> ppr_ty appPrec t
Inferred | print_kinds
-> char '@' <> braces (ppr_ty topPrec t)
_ -> empty
-------------------
pprIfaceForAllPart :: [IfaceForAllBndr] -> [IfacePredType] -> SDoc -> SDoc
pprIfaceForAllPart tvs ctxt sdoc
= ppr_iface_forall_part ShowForAllWhen tvs ctxt sdoc
-- | Like 'pprIfaceForAllPart', but always uses an explicit @forall@.
pprIfaceForAllPartMust :: [IfaceForAllBndr] -> [IfacePredType] -> SDoc -> SDoc
pprIfaceForAllPartMust tvs ctxt sdoc
= ppr_iface_forall_part ShowForAllMust tvs ctxt sdoc
pprIfaceForAllCoPart :: [(IfLclName, IfaceCoercion)] -> SDoc -> SDoc
pprIfaceForAllCoPart tvs sdoc
= sep [ pprIfaceForAllCo tvs, sdoc ]
ppr_iface_forall_part :: ShowForAllFlag
-> [IfaceForAllBndr] -> [IfacePredType] -> SDoc -> SDoc
ppr_iface_forall_part show_forall tvs ctxt sdoc
= sep [ case show_forall of
ShowForAllMust -> pprIfaceForAll tvs
ShowForAllWhen -> pprUserIfaceForAll tvs
, pprIfaceContextArr ctxt
, sdoc]
-- | Render the "forall ... ." or "forall ... ->" bit of a type.
pprIfaceForAll :: [IfaceForAllBndr] -> SDoc
pprIfaceForAll [] = empty
pprIfaceForAll bndrs@(Bndr _ vis : _)
= sep [ add_separator (forAllLit <+> fsep docs)
, pprIfaceForAll bndrs' ]
where
(bndrs', docs) = ppr_itv_bndrs bndrs vis
add_separator stuff = case vis of
Required -> stuff <+> arrow
_inv -> stuff <> dot
-- | Render the ... in @(forall ... .)@ or @(forall ... ->)@.
-- Returns both the list of not-yet-rendered binders and the doc.
-- No anonymous binders here!
ppr_itv_bndrs :: [IfaceForAllBndr]
-> ForAllTyFlag -- ^ visibility of the first binder in the list
-> ([IfaceForAllBndr], [SDoc])
ppr_itv_bndrs all_bndrs@(bndr@(Bndr _ vis) : bndrs) vis1
| vis `eqForAllVis` vis1 = let (bndrs', doc) = ppr_itv_bndrs bndrs vis1 in
(bndrs', pprIfaceForAllBndr bndr : doc)
| otherwise = (all_bndrs, [])
ppr_itv_bndrs [] _ = ([], [])
pprIfaceForAllCo :: [(IfLclName, IfaceCoercion)] -> SDoc
pprIfaceForAllCo [] = empty
pprIfaceForAllCo tvs = text "forall" <+> pprIfaceForAllCoBndrs tvs <> dot
pprIfaceForAllCoBndrs :: [(IfLclName, IfaceCoercion)] -> SDoc
pprIfaceForAllCoBndrs bndrs = hsep $ map pprIfaceForAllCoBndr bndrs
pprIfaceForAllBndr :: IfaceForAllBndr -> SDoc
pprIfaceForAllBndr bndr =
case bndr of
Bndr (IfaceTvBndr tv) Inferred ->
braces $ pprIfaceTvBndr tv suppress_sig (UseBndrParens False)
Bndr (IfaceTvBndr tv) _ ->
pprIfaceTvBndr tv suppress_sig (UseBndrParens True)
Bndr (IfaceIdBndr idv) _ -> pprIfaceIdBndr idv
where
-- See Note [Suppressing binder signatures]
suppress_sig = SuppressBndrSig False
pprIfaceForAllCoBndr :: (IfLclName, IfaceCoercion) -> SDoc
pprIfaceForAllCoBndr (tv, kind_co)
= parens (ppr tv <+> dcolon <+> pprIfaceCoercion kind_co)
-- | Show forall flag
--
-- Unconditionally show the forall quantifier with ('ShowForAllMust')
-- or when ('ShowForAllWhen') the names used are free in the binder
-- or when compiling with -fprint-explicit-foralls.
data ShowForAllFlag = ShowForAllMust | ShowForAllWhen
pprIfaceSigmaType :: ShowForAllFlag -> IfaceType -> SDoc
pprIfaceSigmaType show_forall ty
= hideNonStandardTypes (ppr_sigma show_forall topPrec) ty
ppr_sigma :: ShowForAllFlag -> PprPrec -> IfaceType -> SDoc
ppr_sigma show_forall ctxt_prec iface_ty
= maybeParen ctxt_prec funPrec $
let (invis_tvs, theta, tau) = splitIfaceSigmaTy iface_ty
(req_tvs, tau') = splitIfaceReqForallTy tau
-- splitIfaceSigmaTy is recursive, so it will gather the binders after
-- the theta, i.e. forall a. theta => forall b. tau
-- will give you ([a,b], theta, tau).
--
-- This isn't right when it comes to visible forall (see
-- testsuite/tests/polykinds/T18522-ppr),
-- so we split off required binders separately,
-- using splitIfaceReqForallTy.
--
-- An alternative solution would be to make splitIfaceSigmaTy
-- non-recursive (see #18458).
-- Then it could handle both invisible and required binders, and
-- splitIfaceReqForallTy wouldn't be necessary here.
in ppr_iface_forall_part show_forall invis_tvs theta $
sep [pprIfaceForAll req_tvs, ppr tau']
pprUserIfaceForAll :: [IfaceForAllBndr] -> SDoc
pprUserIfaceForAll tvs
= sdocOption sdocPrintExplicitForalls $ \print_foralls ->
-- See Note [When to print foralls] in this module.
ppWhen (any tv_has_kind_var tvs
|| any tv_is_required tvs
|| print_foralls) $
pprIfaceForAll tvs
where
tv_has_kind_var (Bndr (IfaceTvBndr (_,kind)) _)
= not (ifTypeIsVarFree kind)
tv_has_kind_var _ = False
tv_is_required = isVisibleForAllTyFlag . binderFlag
{-
Note [When to print foralls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We opt to explicitly pretty-print `forall`s if any of the following
criteria are met:
1. -fprint-explicit-foralls is on.
2. A bound type variable has a polymorphic kind. E.g.,
forall k (a::k). Proxy a -> Proxy a
Since a's kind mentions a variable k, we print the foralls.
3. A bound type variable is a visible argument (#14238).
Suppose we are printing the kind of:
T :: forall k -> k -> Type
The "forall k ->" notation means that this kind argument is required.
That is, it must be supplied at uses of T. E.g.,
f :: T (Type->Type) Monad -> Int
So we print an explicit "T :: forall k -> k -> Type",
because omitting it and printing "T :: k -> Type" would be
utterly misleading.
See Note [VarBndrs, ForAllTyBinders, TyConBinders, and visibility]
in GHC.Core.TyCo.Rep.
N.B. Until now (Aug 2018) we didn't check anything for coercion variables.
Note [Printing foralls in type family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We use the same criteria as in Note [When to print foralls] to determine
whether a type family instance should be pretty-printed with an explicit
`forall`. Example:
type family Foo (a :: k) :: k where
Foo Maybe = []
Foo (a :: Type) = Int
Foo a = a
Without -fprint-explicit-foralls enabled, this will be pretty-printed as:
type family Foo (a :: k) :: k where
Foo Maybe = []
Foo a = Int
forall k (a :: k). Foo a = a
Note that only the third equation has an explicit forall, since it has a type
variable with a non-Type kind. (If -fprint-explicit-foralls were enabled, then
the second equation would be preceded with `forall a.`.)
There is one tricky point in the implementation: what visibility
do we give the type variables in a type family instance? Type family instances
only store type *variables*, not type variable *binders*, and only the latter
has visibility information. We opt to default the visibility of each of these
type variables to Specified because users can't ever instantiate these
variables manually, so the choice of visibility is only relevant to
pretty-printing. (This is why the `k` in `forall k (a :: k). ...` above is
printed the way it is, even though it wasn't written explicitly in the
original source code.)
We adopt the same strategy for data family instances. Example:
data family DF (a :: k)
data instance DF '[a, b] = DFList
That data family instance is pretty-printed as:
data instance forall j (a :: j) (b :: j). DF '[a, b] = DFList
This is despite that the representation tycon for this data instance (call it
$DF:List) actually has different visibilities for its binders.
However, the visibilities of these binders are utterly irrelevant to the
programmer, who cares only about the specificity of variables in `DF`'s type,
not $DF:List's type. Therefore, we opt to pretty-print all variables in data
family instances as Specified.
Note [Printing promoted type constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this GHCi session (#14343)
> _ :: Proxy '[ 'True ]
error:
Found hole: _ :: Proxy '['True]
This would be bad, because the '[' looks like a character literal.
A similar issue arises if the element is a character literal (#22488)
ghci> type T = '[ 'x' ]
ghci> :kind! T
T :: [Char]
= '['x']
Solution: in type-level lists and tuples, add a leading space
if the first element is printed with a single quote.
-}
-------------------
-- See equivalent function in "GHC.Core.TyCo.Rep"
pprIfaceTyList :: PprPrec -> IfaceType -> IfaceType -> SDoc
-- Given a type-level list (t1 ': t2), see if we can print
-- it in list notation [t1, ...].
-- Precondition: Opt_PrintExplicitKinds is off
pprIfaceTyList ctxt_prec ty1 ty2
= case gather ty2 of
(arg_tys, Nothing)
->
sdocWithContext $ \ctx ->
let
items = ty1:arg_tys
eos = isListEmptyOrSingleton items
ticked = promTick (sdocStyle ctx) (PromotedItemListSyntax eos)
(preBracket, postBracket) =
if ticked
then (char '\'', spaceIfSingleQuote)
else (empty, id)
in
preBracket <> brackets (postBracket (fsep
(punctuate comma (map (ppr_ty topPrec) items))))
(arg_tys, Just tl)
-> maybeParen ctxt_prec funPrec $ hang (ppr_ty funPrec ty1)
2 (fsep [ colon <+> ppr_ty funPrec ty | ty <- arg_tys ++ [tl]])
where
gather :: IfaceType -> ([IfaceType], Maybe IfaceType)
-- (gather ty) = (tys, Nothing) means ty is a list [t1, .., tn]
-- = (tys, Just tl) means ty is of form t1:t2:...tn:tl
gather (IfaceTyConApp tc tys)
| tc `ifaceTyConHasKey` consDataConKey
, IA_Arg _ argf (IA_Arg ty1 Required (IA_Arg ty2 Required IA_Nil)) <- tys
, isInvisibleForAllTyFlag argf
, (args, tl) <- gather ty2
= (ty1:args, tl)
| tc `ifaceTyConHasKey` nilDataConKey
= ([], Nothing)
gather ty = ([], Just ty)
pprIfaceTypeApp :: PprPrec -> IfaceTyCon -> IfaceAppArgs -> SDoc
pprIfaceTypeApp prec tc args = pprTyTcApp prec tc args
pprTyTcApp :: PprPrec -> IfaceTyCon -> IfaceAppArgs -> SDoc
pprTyTcApp ctxt_prec tc tys =
sdocOption sdocPrintExplicitKinds $ \print_kinds ->
sdocOption sdocPrintTypeAbbreviations $ \print_type_abbreviations ->
getPprDebug $ \debug ->
if | ifaceTyConName tc `hasKey` ipClassKey
, IA_Arg (IfaceLitTy (IfaceStrTyLit n))
Required (IA_Arg ty Required IA_Nil) <- tys
-> maybeParen ctxt_prec funPrec
$ char '?' <> ftext n <> text "::" <> ppr_ty topPrec ty
| IfaceTupleTyCon arity sort <- ifaceTyConSort info
, not debug
, arity == ifaceVisAppArgsLength tys
-> pprTuple ctxt_prec sort (ifaceTyConIsPromoted info) tys
-- NB: pprTuple requires a saturated tuple.
| IfaceSumTyCon arity <- ifaceTyConSort info
, not debug
, arity == ifaceVisAppArgsLength tys
-> pprSum (ifaceTyConIsPromoted info) tys
-- NB: pprSum requires a saturated unboxed sum.
| tc `ifaceTyConHasKey` consDataConKey
, False <- print_kinds
, IA_Arg _ argf (IA_Arg ty1 Required (IA_Arg ty2 Required IA_Nil)) <- tys
, isInvisibleForAllTyFlag argf
-> pprIfaceTyList ctxt_prec ty1 ty2
| isIfaceLiftedTypeKind (IfaceTyConApp tc tys)
, print_type_abbreviations -- See Note [Printing type abbreviations]
-> ppr_kind_type ctxt_prec
| isIfaceConstraintKind (IfaceTyConApp tc tys)
, print_type_abbreviations -- See Note [Printing type abbreviations]
-> pprPrefixOcc constraintKindTyConName
| tc `ifaceTyConHasKey` fUNTyConKey
, IA_Arg (IfaceTyConApp rep IA_Nil) Required args <- tys
, rep `ifaceTyConHasKey` manyDataConKey
, print_type_abbreviations -- See Note [Printing type abbreviations]
-> pprIfacePrefixApp ctxt_prec (parens arrow) (map (ppr_app_arg appPrec) $
appArgsIfaceTypesForAllTyFlags $
stripInvisArgs (PrintExplicitKinds print_kinds) args)
-- Use appArgsIfaceTypesForAllTyFlags to print invisible arguments
-- correctly (#19310)
| tc `ifaceTyConHasKey` errorMessageTypeErrorFamKey
, not debug
-- Suppress detail unless you _really_ want to see
-> text "(TypeError ...)"
| Just doc <- ppr_equality ctxt_prec tc (appArgsIfaceTypes tys)
-> doc
| otherwise
-> ppr_iface_tc_app ppr_app_arg ctxt_prec tc $
appArgsIfaceTypesForAllTyFlags $ stripInvisArgs (PrintExplicitKinds print_kinds) tys
where
info = ifaceTyConInfo tc
ppr_kind_type :: PprPrec -> SDoc
ppr_kind_type ctxt_prec = sdocOption sdocStarIsType $ \case
False -> pprPrefixOcc liftedTypeKindTyConName
True -> maybeParen ctxt_prec starPrec $
unicodeSyntax (char '★') (char '*')
-- | Pretty-print a type-level equality.
-- Returns (Just doc) if the argument is a /saturated/ application
-- of eqTyCon (~)
-- eqPrimTyCon (~#)
-- eqReprPrimTyCon (~R#)
-- heqTyCon (~~)
--
-- See Note [Equality predicates in IfaceType]
-- and Note [The equality types story] in GHC.Builtin.Types.Prim
ppr_equality :: PprPrec -> IfaceTyCon -> [IfaceType] -> Maybe SDoc
ppr_equality ctxt_prec tc args
| hetero_eq_tc
, [k1, k2, t1, t2] <- args
= Just $ print_equality (k1, k2, t1, t2)
| hom_eq_tc
, [k, t1, t2] <- args
= Just $ print_equality (k, k, t1, t2)
| otherwise
= Nothing
where
homogeneous = tc_name `hasKey` eqTyConKey -- (~)
|| hetero_tc_used_homogeneously
where
hetero_tc_used_homogeneously
= case ifaceTyConSort $ ifaceTyConInfo tc of
IfaceEqualityTyCon -> True
_other -> False
-- True <=> a heterogeneous equality whose arguments
-- are (in this case) of the same kind
tc_name = ifaceTyConName tc
pp = ppr_ty
hom_eq_tc = tc_name `hasKey` eqTyConKey -- (~)
hetero_eq_tc = tc_name `hasKey` eqPrimTyConKey -- (~#)
|| tc_name `hasKey` eqReprPrimTyConKey -- (~R#)
|| tc_name `hasKey` heqTyConKey -- (~~)
nominal_eq_tc = tc_name `hasKey` heqTyConKey -- (~~)
|| tc_name `hasKey` eqPrimTyConKey -- (~#)
print_equality args =
sdocOption sdocPrintExplicitKinds $ \print_kinds ->
sdocOption sdocPrintEqualityRelations $ \print_eqs ->
getPprStyle $ \style ->
getPprDebug $ \debug ->
print_equality' args print_kinds
(print_eqs || dumpStyle style || debug)
print_equality' (ki1, ki2, ty1, ty2) print_kinds print_eqs
| -- If -fprint-equality-relations is on, just print the original TyCon
print_eqs
= ppr_infix_eq (ppr tc)
| -- Homogeneous use of heterogeneous equality (ty1 ~~ ty2)
-- or unlifted equality (ty1 ~# ty2)
nominal_eq_tc, homogeneous
= ppr_infix_eq (text "~")
| -- Heterogeneous use of unlifted equality (ty1 ~# ty2)
not homogeneous
= ppr_infix_eq (ppr heqTyCon)
| -- Homogeneous use of representational unlifted equality (ty1 ~R# ty2)
tc_name `hasKey` eqReprPrimTyConKey, homogeneous
= let ki | print_kinds = [pp appPrec ki1]
| otherwise = []
in pprIfacePrefixApp ctxt_prec (ppr coercibleTyCon)
(ki ++ [pp appPrec ty1, pp appPrec ty2])
-- The other cases work as you'd expect
| otherwise
= ppr_infix_eq (ppr tc)
where
ppr_infix_eq :: SDoc -> SDoc
ppr_infix_eq eq_op = pprIfaceInfixApp ctxt_prec eq_op
(pp_ty_ki ty1 ki1) (pp_ty_ki ty2 ki2)
where
pp_ty_ki ty ki
| print_kinds
= parens (pp topPrec ty <+> dcolon <+> pp opPrec ki)
| otherwise
= pp opPrec ty
pprIfaceCoTcApp :: PprPrec -> IfaceTyCon -> [IfaceCoercion] -> SDoc
pprIfaceCoTcApp ctxt_prec tc tys =
ppr_iface_tc_app (\prec (co, _) -> ppr_co prec co) ctxt_prec tc
(map (, Required) tys)
-- We are trying to re-use ppr_iface_tc_app here, which requires its
-- arguments to be accompanied by visibilities. But visibility is
-- irrelevant when printing coercions, so just default everything to
-- Required.
-- | Pretty-prints an application of a type constructor to some arguments
-- (whose visibilities are known). This is polymorphic (over @a@) since we use
-- this function to pretty-print two different things:
--
-- 1. Types (from `pprTyTcApp'`)
--
-- 2. Coercions (from 'pprIfaceCoTcApp')
ppr_iface_tc_app :: (PprPrec -> (a, ForAllTyFlag) -> SDoc)
-> PprPrec -> IfaceTyCon -> [(a, ForAllTyFlag)] -> SDoc
ppr_iface_tc_app pp ctxt_prec tc tys =
sdocOption sdocListTuplePuns $ \listTuplePuns ->
if | listTuplePuns, tc `ifaceTyConHasKey` listTyConKey, [ty] <- tys
-> brackets (pp topPrec ty)
| tc `ifaceTyConHasKey` liftedTypeKindTyConKey
-> ppr_kind_type ctxt_prec
| not (isSymOcc (nameOccName (ifaceTyConName tc)))
-> pprIfacePrefixApp ctxt_prec (ppr tc) (map (pp appPrec) tys)
| [ ty1@(_, Required), ty2@(_, Required) ] <- tys
-- Infix, two visible arguments (we know nothing of precedence though).
-- Don't apply this special case if one of the arguments is invisible,
-- lest we print something like (@LiftedRep -> @LiftedRep) (#15941).
-> pprIfaceInfixApp ctxt_prec (ppr tc) (pp opPrec ty1) (pp opPrec ty2)
| otherwise
-> pprIfacePrefixApp ctxt_prec (parens (ppr tc)) (map (pp appPrec) tys)
-- | Pretty-print an unboxed sum type. The sum should be saturated:
-- as many visible arguments as the arity of the sum.
--
-- NB: this always strips off the invisible 'RuntimeRep' arguments,
-- even with `-fprint-explicit-runtime-reps` and `-fprint-explicit-kinds`.
pprSum :: PromotionFlag -> IfaceAppArgs -> SDoc
pprSum is_promoted args
= -- drop the RuntimeRep vars.
-- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
let tys = appArgsIfaceTypes args
args' = drop (length tys `div` 2) tys
in pprPromotionQuoteI is_promoted
<> sumParens (pprWithBars (ppr_ty topPrec) args')
-- | Pretty-print a tuple type (boxed tuple, constraint tuple, unboxed tuple).
-- The tuple should be saturated: as many visible arguments as the arity of
-- the tuple.
--
-- NB: this always strips off the invisible 'RuntimeRep' arguments,
-- even with `-fprint-explicit-runtime-reps` and `-fprint-explicit-kinds`.
pprTuple :: PprPrec -> TupleSort -> PromotionFlag -> IfaceAppArgs -> SDoc
pprTuple ctxt_prec sort promoted args =
case promoted of
IsPromoted
-> let tys = appArgsIfaceTypes args
args' = drop (length tys `div` 2) tys
in ppr_tuple_app args' $
pprPromotionQuoteI IsPromoted <>
tupleParens sort (spaceIfSingleQuote (pprWithCommas pprIfaceType args'))
NotPromoted
| ConstraintTuple <- sort
, IA_Nil <- args
-> maybeParen ctxt_prec sigPrec $
text "() :: Constraint"
| otherwise
-> -- drop the RuntimeRep vars.
-- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
let tys = appArgsIfaceTypes args
args' = case sort of
UnboxedTuple -> drop (length tys `div` 2) tys
_ -> tys
in
ppr_tuple_app args' $
pprPromotionQuoteI promoted <>
tupleParens sort (pprWithCommas pprIfaceType args')
where
ppr_tuple_app :: [IfaceType] -> SDoc -> SDoc
ppr_tuple_app args_wo_runtime_reps ppr_args_w_parens
-- Special-case unary boxed tuples so that they are pretty-printed as
-- `Solo x`, not `(x)`
| [_] <- args_wo_runtime_reps
, BoxedTuple <- sort
= let solo_tc_info = mkIfaceTyConInfo promoted IfaceNormalTyCon
tupleName = case promoted of
IsPromoted -> tupleDataConName (tupleSortBoxity sort)
NotPromoted -> tupleTyConName sort
solo_tc = IfaceTyCon (tupleName 1) solo_tc_info in
pprPrecIfaceType ctxt_prec $ IfaceTyConApp solo_tc args
| otherwise
= ppr_args_w_parens
pprIfaceTyLit :: IfaceTyLit -> SDoc
pprIfaceTyLit (IfaceNumTyLit n) = integer n
pprIfaceTyLit (IfaceStrTyLit n) = text (show n)
pprIfaceTyLit (IfaceCharTyLit c) = text (show c)
pprIfaceCoercion, pprParendIfaceCoercion :: IfaceCoercion -> SDoc
pprIfaceCoercion = ppr_co topPrec
pprParendIfaceCoercion = ppr_co appPrec
ppr_co :: PprPrec -> IfaceCoercion -> SDoc
ppr_co _ (IfaceReflCo ty) = angleBrackets (ppr ty) <> ppr_role Nominal
ppr_co _ (IfaceGReflCo r ty IfaceMRefl)
= angleBrackets (ppr ty) <> ppr_role r
ppr_co ctxt_prec (IfaceGReflCo r ty (IfaceMCo co))
= ppr_special_co ctxt_prec
(text "GRefl" <+> ppr r <+> pprParendIfaceType ty) [co]
ppr_co ctxt_prec (IfaceFunCo r co_mult co1 co2)
= maybeParen ctxt_prec funPrec $
sep (ppr_co funPrec co1 : ppr_fun_tail co_mult co2)
where
ppr_fun_tail co_mult1 (IfaceFunCo r co_mult2 co1 co2)
= (ppr_arrow co_mult1 <> ppr_role r <+> ppr_co funPrec co1)
: ppr_fun_tail co_mult2 co2
ppr_fun_tail co_mult1 other_co
= [ppr_arrow co_mult1 <> ppr_role r <+> pprIfaceCoercion other_co]
ppr_arrow = pprArrow (mb_conc, ppr_co) visArgTypeLike
mb_conc (IfaceTyConAppCo _ tc _) = Just tc
mb_conc _ = Nothing
ppr_co _ (IfaceTyConAppCo r tc cos)
= parens (pprIfaceCoTcApp topPrec tc cos) <> ppr_role r
ppr_co ctxt_prec (IfaceAppCo co1 co2)
= maybeParen ctxt_prec appPrec $
ppr_co funPrec co1 <+> pprParendIfaceCoercion co2
ppr_co ctxt_prec co@(IfaceForAllCo {})
= maybeParen ctxt_prec funPrec $
pprIfaceForAllCoPart tvs (pprIfaceCoercion inner_co)
where
(tvs, inner_co) = split_co co
split_co (IfaceForAllCo (IfaceTvBndr (name, _)) kind_co co')
= let (tvs, co'') = split_co co' in ((name,kind_co):tvs,co'')
split_co (IfaceForAllCo (IfaceIdBndr (_, name, _)) kind_co co')
= let (tvs, co'') = split_co co' in ((name,kind_co):tvs,co'')
split_co co' = ([], co')
-- Why these three? See Note [Free tyvars in IfaceType]
ppr_co _ (IfaceFreeCoVar covar) = ppr covar
ppr_co _ (IfaceCoVarCo covar) = ppr covar
ppr_co _ (IfaceHoleCo covar) = braces (ppr covar)
ppr_co _ (IfaceUnivCo prov role ty1 ty2)
= text "Univ" <> (parens $
sep [ ppr role <+> pprIfaceUnivCoProv prov
, dcolon <+> ppr ty1 <> comma <+> ppr ty2 ])
ppr_co ctxt_prec (IfaceInstCo co ty)
= maybeParen ctxt_prec appPrec $
text "Inst" <+> pprParendIfaceCoercion co
<+> pprParendIfaceCoercion ty
ppr_co ctxt_prec (IfaceAxiomRuleCo tc cos)
= maybeParen ctxt_prec appPrec $ ppr tc <+> parens (interpp'SP cos)
ppr_co ctxt_prec (IfaceAxiomInstCo n i cos)
= ppr_special_co ctxt_prec (ppr n <> brackets (ppr i)) cos
ppr_co ctxt_prec (IfaceSymCo co)
= ppr_special_co ctxt_prec (text "Sym") [co]
ppr_co ctxt_prec (IfaceTransCo co1 co2)
-- chain nested TransCo
= let ppr_trans (IfaceTransCo c1 c2) = semi <+> ppr_co topPrec c1 : ppr_trans c2
ppr_trans c = [semi <+> ppr_co opPrec c]
in maybeParen ctxt_prec opPrec $
vcat (ppr_co topPrec co1 : ppr_trans co2)
ppr_co ctxt_prec (IfaceSelCo d co)
= ppr_special_co ctxt_prec (text "SelCo:" <> ppr d) [co]
ppr_co ctxt_prec (IfaceLRCo lr co)
= ppr_special_co ctxt_prec (ppr lr) [co]
ppr_co ctxt_prec (IfaceSubCo co)
= ppr_special_co ctxt_prec (text "Sub") [co]
ppr_co ctxt_prec (IfaceKindCo co)
= ppr_special_co ctxt_prec (text "Kind") [co]
ppr_special_co :: PprPrec -> SDoc -> [IfaceCoercion] -> SDoc
ppr_special_co ctxt_prec doc cos
= maybeParen ctxt_prec appPrec
(sep [doc, nest 4 (sep (map pprParendIfaceCoercion cos))])
ppr_role :: Role -> SDoc
ppr_role r = underscore <> pp_role
where pp_role = case r of
Nominal -> char 'N'
Representational -> char 'R'
Phantom -> char 'P'
------------------
pprIfaceUnivCoProv :: IfaceUnivCoProv -> SDoc
pprIfaceUnivCoProv (IfacePhantomProv co)
= text "phantom" <+> pprParendIfaceCoercion co
pprIfaceUnivCoProv (IfaceProofIrrelProv co)
= text "irrel" <+> pprParendIfaceCoercion co
pprIfaceUnivCoProv (IfacePluginProv s)
= text "plugin" <+> doubleQuotes (text s)
pprIfaceUnivCoProv (IfaceCorePrepProv _)
= text "CorePrep"
-------------------
instance Outputable IfaceTyCon where
ppr tc = pprPromotionQuote tc <> ppr (ifaceTyConName tc)
instance Outputable IfaceTyConInfo where
ppr (IfaceTyConInfo { ifaceTyConIsPromoted = prom
, ifaceTyConSort = sort })
= angleBrackets $ ppr prom <> comma <+> ppr sort
pprPromotionQuote :: IfaceTyCon -> SDoc
pprPromotionQuote tc =
getPprStyle $ \sty ->
let
name = getOccName (ifaceTyConName tc)
ticked =
case ifaceTyConIsPromoted (ifaceTyConInfo tc) of
NotPromoted -> False
IsPromoted -> promTick sty (PromotedItemDataCon name)
in
if ticked
then char '\''
else empty
pprPromotionQuoteI :: PromotionFlag -> SDoc
pprPromotionQuoteI NotPromoted = empty
pprPromotionQuoteI IsPromoted = char '\''
instance Outputable IfaceCoercion where
ppr = pprIfaceCoercion
instance Binary IfaceTyCon where
put_ bh (IfaceTyCon n i) = put_ bh n >> put_ bh i
get bh = do n <- get bh
i <- get bh
return (IfaceTyCon n i)
instance Binary IfaceTyConSort where
put_ bh IfaceNormalTyCon = putByte bh 0
put_ bh (IfaceTupleTyCon arity sort) = putByte bh 1 >> put_ bh arity >> put_ bh sort
put_ bh (IfaceSumTyCon arity) = putByte bh 2 >> put_ bh arity
put_ bh IfaceEqualityTyCon = putByte bh 3
get bh = do
n <- getByte bh
case n of
0 -> return IfaceNormalTyCon
1 -> IfaceTupleTyCon <$> get bh <*> get bh
2 -> IfaceSumTyCon <$> get bh
_ -> return IfaceEqualityTyCon
instance Binary IfaceTyConInfo where
put_ bh (IfaceTyConInfo i s) = put_ bh i >> put_ bh s
get bh = mkIfaceTyConInfo <$> get bh <*> get bh
instance Outputable IfaceTyLit where
ppr = pprIfaceTyLit
instance Binary IfaceTyLit where
put_ bh (IfaceNumTyLit n) = putByte bh 1 >> put_ bh n
put_ bh (IfaceStrTyLit n) = putByte bh 2 >> put_ bh n
put_ bh (IfaceCharTyLit n) = putByte bh 3 >> put_ bh n
get bh =
do tag <- getByte bh
case tag of
1 -> do { n <- get bh
; return (IfaceNumTyLit n) }
2 -> do { n <- get bh
; return (IfaceStrTyLit n) }
3 -> do { n <- get bh
; return (IfaceCharTyLit n) }
_ -> panic ("get IfaceTyLit " ++ show tag)
instance Binary IfaceAppArgs where
put_ bh tk =
case tk of
IA_Arg t a ts -> putByte bh 0 >> put_ bh t >> put_ bh a >> put_ bh ts
IA_Nil -> putByte bh 1
get bh =
do c <- getByte bh
case c of
0 -> do
t <- get bh
a <- get bh
ts <- get bh
return $! IA_Arg t a ts
1 -> return IA_Nil
_ -> panic ("get IfaceAppArgs " ++ show c)
-------------------
-- Some notes about printing contexts
--
-- In the event that we are printing a singleton context (e.g. @Eq a@) we can
-- omit parentheses. However, we must take care to set the precedence correctly
-- to opPrec, since something like @a :~: b@ must be parenthesized (see
-- #9658).
--
-- When printing a larger context we use 'fsep' instead of 'sep' so that
-- the context doesn't get displayed as a giant column. Rather than,
-- instance (Eq a,
-- Eq b,
-- Eq c,
-- Eq d,
-- Eq e,
-- Eq f,
-- Eq g,
-- Eq h,
-- Eq i,
-- Eq j,
-- Eq k,
-- Eq l) =>
-- Eq (a, b, c, d, e, f, g, h, i, j, k, l)
--
-- we want
--
-- instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i,
-- Eq j, Eq k, Eq l) =>
-- Eq (a, b, c, d, e, f, g, h, i, j, k, l)
-- | Prints "(C a, D b) =>", including the arrow.
-- Used when we want to print a context in a type, so we
-- use 'funPrec' to decide whether to parenthesise a singleton
-- predicate; e.g. Num a => a -> a
pprIfaceContextArr :: [IfacePredType] -> SDoc
pprIfaceContextArr [] = empty
pprIfaceContextArr [pred] = ppr_ty funPrec pred <+> darrow
pprIfaceContextArr preds = ppr_parend_preds preds <+> darrow
-- | Prints a context or @()@ if empty
-- You give it the context precedence
pprIfaceContext :: PprPrec -> [IfacePredType] -> SDoc
pprIfaceContext _ [] = text "()"
pprIfaceContext prec [pred] = ppr_ty prec pred
pprIfaceContext _ preds = ppr_parend_preds preds
ppr_parend_preds :: [IfacePredType] -> SDoc
ppr_parend_preds preds = parens (fsep (punctuate comma (map ppr preds)))
instance Binary IfaceType where
put_ _ (IfaceFreeTyVar tv)
= pprPanic "Can't serialise IfaceFreeTyVar" (ppr tv)
put_ bh (IfaceForAllTy aa ab) = do
putByte bh 0
put_ bh aa
put_ bh ab
put_ bh (IfaceTyVar ad) = do
putByte bh 1
put_ bh ad
put_ bh (IfaceAppTy ae af) = do
putByte bh 2
put_ bh ae
put_ bh af
put_ bh (IfaceFunTy af aw ag ah) = do
putByte bh 3
put_ bh af
put_ bh aw
put_ bh ag
put_ bh ah
put_ bh (IfaceTyConApp tc tys)
= do { putByte bh 5; put_ bh tc; put_ bh tys }
put_ bh (IfaceCastTy a b)
= do { putByte bh 6; put_ bh a; put_ bh b }
put_ bh (IfaceCoercionTy a)
= do { putByte bh 7; put_ bh a }
put_ bh (IfaceTupleTy s i tys)
= do { putByte bh 8; put_ bh s; put_ bh i; put_ bh tys }
put_ bh (IfaceLitTy n)
= do { putByte bh 9; put_ bh n }
get bh = do
h <- getByte bh
case h of
0 -> do aa <- get bh
ab <- get bh
return (IfaceForAllTy aa ab)
1 -> do ad <- get bh
return (IfaceTyVar ad)
2 -> do ae <- get bh
af <- get bh
return (IfaceAppTy ae af)
3 -> do af <- get bh
aw <- get bh
ag <- get bh
ah <- get bh
return (IfaceFunTy af aw ag ah)
5 -> do { tc <- get bh; tys <- get bh
; return (IfaceTyConApp tc tys) }
6 -> do { a <- get bh; b <- get bh
; return (IfaceCastTy a b) }
7 -> do { a <- get bh
; return (IfaceCoercionTy a) }
8 -> do { s <- get bh; i <- get bh; tys <- get bh
; return (IfaceTupleTy s i tys) }
_ -> do n <- get bh
return (IfaceLitTy n)
instance Binary IfaceMCoercion where
put_ bh IfaceMRefl =
putByte bh 1
put_ bh (IfaceMCo co) = do
putByte bh 2
put_ bh co
get bh = do
tag <- getByte bh
case tag of
1 -> return IfaceMRefl
2 -> do a <- get bh
return $ IfaceMCo a
_ -> panic ("get IfaceMCoercion " ++ show tag)
instance Binary IfaceCoercion where
put_ bh (IfaceReflCo a) = do
putByte bh 1
put_ bh a
put_ bh (IfaceGReflCo a b c) = do
putByte bh 2
put_ bh a
put_ bh b
put_ bh c
put_ bh (IfaceFunCo a w b c) = do
putByte bh 3
put_ bh a
put_ bh w
put_ bh b
put_ bh c
put_ bh (IfaceTyConAppCo a b c) = do
putByte bh 4
put_ bh a
put_ bh b
put_ bh c
put_ bh (IfaceAppCo a b) = do
putByte bh 5
put_ bh a
put_ bh b
put_ bh (IfaceForAllCo a b c) = do
putByte bh 6
put_ bh a
put_ bh b
put_ bh c
put_ bh (IfaceCoVarCo a) = do
putByte bh 7
put_ bh a
put_ bh (IfaceAxiomInstCo a b c) = do
putByte bh 8
put_ bh a
put_ bh b
put_ bh c
put_ bh (IfaceUnivCo a b c d) = do
putByte bh 9
put_ bh a
put_ bh b
put_ bh c
put_ bh d
put_ bh (IfaceSymCo a) = do
putByte bh 10
put_ bh a
put_ bh (IfaceTransCo a b) = do
putByte bh 11
put_ bh a
put_ bh b
put_ bh (IfaceSelCo a b) = do
putByte bh 12
put_ bh a
put_ bh b
put_ bh (IfaceLRCo a b) = do
putByte bh 13
put_ bh a
put_ bh b
put_ bh (IfaceInstCo a b) = do
putByte bh 14
put_ bh a
put_ bh b
put_ bh (IfaceKindCo a) = do
putByte bh 15
put_ bh a
put_ bh (IfaceSubCo a) = do
putByte bh 16
put_ bh a
put_ bh (IfaceAxiomRuleCo a b) = do
putByte bh 17
put_ bh a
put_ bh b
put_ _ (IfaceFreeCoVar cv)
= pprPanic "Can't serialise IfaceFreeCoVar" (ppr cv)
put_ _ (IfaceHoleCo cv)
= pprPanic "Can't serialise IfaceHoleCo" (ppr cv)
-- See Note [Holes in IfaceCoercion]
get bh = do
tag <- getByte bh
case tag of
1 -> do a <- get bh
return $ IfaceReflCo a
2 -> do a <- get bh
b <- get bh
c <- get bh
return $ IfaceGReflCo a b c
3 -> do a <- get bh
w <- get bh
b <- get bh
c <- get bh
return $ IfaceFunCo a w b c
4 -> do a <- get bh
b <- get bh
c <- get bh
return $ IfaceTyConAppCo a b c
5 -> do a <- get bh
b <- get bh
return $ IfaceAppCo a b
6 -> do a <- get bh
b <- get bh
c <- get bh
return $ IfaceForAllCo a b c
7 -> do a <- get bh
return $ IfaceCoVarCo a
8 -> do a <- get bh
b <- get bh
c <- get bh
return $ IfaceAxiomInstCo a b c
9 -> do a <- get bh
b <- get bh
c <- get bh
d <- get bh
return $ IfaceUnivCo a b c d
10-> do a <- get bh
return $ IfaceSymCo a
11-> do a <- get bh
b <- get bh
return $ IfaceTransCo a b
12-> do a <- get bh
b <- get bh
return $ IfaceSelCo a b
13-> do a <- get bh
b <- get bh
return $ IfaceLRCo a b
14-> do a <- get bh
b <- get bh
return $ IfaceInstCo a b
15-> do a <- get bh
return $ IfaceKindCo a
16-> do a <- get bh
return $ IfaceSubCo a
17-> do a <- get bh
b <- get bh
return $ IfaceAxiomRuleCo a b
_ -> panic ("get IfaceCoercion " ++ show tag)
instance Binary IfaceUnivCoProv where
put_ bh (IfacePhantomProv a) = do
putByte bh 1
put_ bh a
put_ bh (IfaceProofIrrelProv a) = do
putByte bh 2
put_ bh a
put_ bh (IfacePluginProv a) = do
putByte bh 3
put_ bh a
put_ bh (IfaceCorePrepProv a) = do
putByte bh 4
put_ bh a
get bh = do
tag <- getByte bh
case tag of
1 -> do a <- get bh
return $ IfacePhantomProv a
2 -> do a <- get bh
return $ IfaceProofIrrelProv a
3 -> do a <- get bh
return $ IfacePluginProv a
4 -> do a <- get bh
return (IfaceCorePrepProv a)
_ -> panic ("get IfaceUnivCoProv " ++ show tag)
instance Binary (DefMethSpec IfaceType) where
put_ bh VanillaDM = putByte bh 0
put_ bh (GenericDM t) = putByte bh 1 >> put_ bh t
get bh = do
h <- getByte bh
case h of
0 -> return VanillaDM
_ -> do { t <- get bh; return (GenericDM t) }
instance NFData IfaceType where
rnf = \case
IfaceFreeTyVar f1 -> f1 `seq` ()
IfaceTyVar f1 -> rnf f1
IfaceLitTy f1 -> rnf f1
IfaceAppTy f1 f2 -> rnf f1 `seq` rnf f2
IfaceFunTy f1 f2 f3 f4 -> f1 `seq` rnf f2 `seq` rnf f3 `seq` rnf f4
IfaceForAllTy f1 f2 -> f1 `seq` rnf f2
IfaceTyConApp f1 f2 -> rnf f1 `seq` rnf f2
IfaceCastTy f1 f2 -> rnf f1 `seq` rnf f2
IfaceCoercionTy f1 -> rnf f1
IfaceTupleTy f1 f2 f3 -> f1 `seq` f2 `seq` rnf f3
instance NFData IfaceTyLit where
rnf = \case
IfaceNumTyLit f1 -> rnf f1
IfaceStrTyLit f1 -> rnf f1
IfaceCharTyLit f1 -> rnf f1
instance NFData IfaceCoercion where
rnf = \case
IfaceReflCo f1 -> rnf f1
IfaceGReflCo f1 f2 f3 -> f1 `seq` rnf f2 `seq` rnf f3
IfaceFunCo f1 f2 f3 f4 -> f1 `seq` rnf f2 `seq` rnf f3 `seq` rnf f4
IfaceTyConAppCo f1 f2 f3 -> f1 `seq` rnf f2 `seq` rnf f3
IfaceAppCo f1 f2 -> rnf f1 `seq` rnf f2
IfaceForAllCo f1 f2 f3 -> rnf f1 `seq` rnf f2 `seq` rnf f3
IfaceCoVarCo f1 -> rnf f1
IfaceAxiomInstCo f1 f2 f3 -> rnf f1 `seq` rnf f2 `seq` rnf f3
IfaceAxiomRuleCo f1 f2 -> rnf f1 `seq` rnf f2
IfaceUnivCo f1 f2 f3 f4 -> rnf f1 `seq` f2 `seq` rnf f3 `seq` rnf f4
IfaceSymCo f1 -> rnf f1
IfaceTransCo f1 f2 -> rnf f1 `seq` rnf f2
IfaceSelCo f1 f2 -> rnf f1 `seq` rnf f2
IfaceLRCo f1 f2 -> f1 `seq` rnf f2
IfaceInstCo f1 f2 -> rnf f1 `seq` rnf f2
IfaceKindCo f1 -> rnf f1
IfaceSubCo f1 -> rnf f1
IfaceFreeCoVar f1 -> f1 `seq` ()
IfaceHoleCo f1 -> f1 `seq` ()
instance NFData IfaceUnivCoProv where
rnf x = seq x ()
instance NFData IfaceMCoercion where
rnf x = seq x ()
instance NFData IfaceOneShot where
rnf x = seq x ()
instance NFData IfaceTyConSort where
rnf = \case
IfaceNormalTyCon -> ()
IfaceTupleTyCon arity sort -> rnf arity `seq` sort `seq` ()
IfaceSumTyCon arity -> rnf arity
IfaceEqualityTyCon -> ()
instance NFData IfaceTyConInfo where
rnf (IfaceTyConInfo f s) = f `seq` rnf s
instance NFData IfaceTyCon where
rnf (IfaceTyCon nm info) = rnf nm `seq` rnf info
instance NFData IfaceBndr where
rnf = \case
IfaceIdBndr id_bndr -> rnf id_bndr
IfaceTvBndr tv_bndr -> rnf tv_bndr
instance NFData IfaceAppArgs where
rnf = \case
IA_Nil -> ()
IA_Arg f1 f2 f3 -> rnf f1 `seq` f2 `seq` rnf f3
|