1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GADTs #-}
-- | Utility types used within the constraint solver
module GHC.Tc.Solver.Types (
-- Inert CDictCans
DictMap, emptyDictMap, findDictsByClass, addDict,
addDictsByClass, delDict, foldDicts, filterDicts, findDict,
dictsToBag, partitionDicts,
FunEqMap, emptyFunEqs, foldFunEqs, findFunEq, insertFunEq,
findFunEqsByTyCon,
TcAppMap, emptyTcAppMap, isEmptyTcAppMap,
insertTcApp, alterTcApp, filterTcAppMap,
tcAppMapToBag, foldTcAppMap,
EqualCtList, filterEqualCtList, addToEqualCtList
) where
import GHC.Prelude
import GHC.Tc.Types.Constraint
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcType
import GHC.Core.Class
import GHC.Core.Map.Type
import GHC.Core.Predicate
import GHC.Core.TyCon
import GHC.Core.TyCon.Env
import GHC.Data.Bag
import GHC.Data.Maybe
import GHC.Data.TrieMap
import GHC.Utils.Constants
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
{- *********************************************************************
* *
TcAppMap
* *
************************************************************************
Note [Use loose types in inert set]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Whenever we are looking up an inert dictionary (CDictCan) or function
equality (CEqCan), we use a TcAppMap, which uses the Unique of the
class/type family tycon and then a trie which maps the arguments. This
trie does *not* need to match the kinds of the arguments; this Note
explains why.
Consider the types ty0 = (T ty1 ty2 ty3 ty4) and ty0' = (T ty1' ty2' ty3' ty4'),
where ty4 and ty4' have different kinds. Let's further assume that both types
ty0 and ty0' are well-typed. Because the kind of T is closed, it must be that
one of the ty1..ty3 does not match ty1'..ty3' (and that the kind of the fourth
argument to T is dependent on whichever one changed). Since we are matching
all arguments, during the inert-set lookup, we know that ty1..ty3 do indeed
match ty1'..ty3'. Therefore, the kind of ty4 and ty4' must match, too --
without ever looking at it.
Accordingly, we use LooseTypeMap, which skips the kind check when looking
up a type. I (Richard E) believe this is just an optimization, and that
looking at kinds would be harmless.
-}
type TcAppMap a = DTyConEnv (ListMap LooseTypeMap a)
-- Indexed by tycon then the arg types, using "loose" matching, where
-- we don't require kind equality. This allows, for example, (a |> co)
-- to match (a).
-- See Note [Use loose types in inert set]
-- Used for types and classes; hence UniqDFM
-- See Note [foldTM determinism] in GHC.Data.TrieMap for why we use DTyConEnv here
isEmptyTcAppMap :: TcAppMap a -> Bool
isEmptyTcAppMap m = isEmptyDTyConEnv m
emptyTcAppMap :: TcAppMap a
emptyTcAppMap = emptyDTyConEnv
findTcApp :: TcAppMap a -> TyCon -> [Type] -> Maybe a
findTcApp m tc tys = do { tys_map <- lookupDTyConEnv m tc
; lookupTM tys tys_map }
delTcApp :: TcAppMap a -> TyCon -> [Type] -> TcAppMap a
delTcApp m tc tys = adjustDTyConEnv (deleteTM tys) m tc
insertTcApp :: TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertTcApp m tc tys ct = alterDTyConEnv alter_tm m tc
where
alter_tm mb_tm = Just (insertTM tys ct (mb_tm `orElse` emptyTM))
alterTcApp :: forall a. TcAppMap a -> TyCon -> [Type] -> XT a -> TcAppMap a
alterTcApp m tc tys upd = alterDTyConEnv alter_tm m tc
where
alter_tm :: Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm m_elt = Just (alterTM tys upd (m_elt `orElse` emptyTM))
filterTcAppMap :: forall a. (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap f m = mapMaybeDTyConEnv one_tycon m
where
one_tycon :: ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
one_tycon tm
| isEmptyTM filtered_tm = Nothing
| otherwise = Just filtered_tm
where
filtered_tm = filterTM f tm
tcAppMapToBag :: TcAppMap a -> Bag a
tcAppMapToBag m = foldTcAppMap consBag m emptyBag
foldTcAppMap :: (a -> b -> b) -> TcAppMap a -> b -> b
foldTcAppMap k m z = foldDTyConEnv (foldTM k) z m
{- *********************************************************************
* *
DictMap
* *
********************************************************************* -}
type DictMap a = TcAppMap a
emptyDictMap :: DictMap a
emptyDictMap = emptyTcAppMap
findDict :: DictMap a -> CtLoc -> Class -> [Type] -> Maybe a
findDict m loc cls tys
| hasIPSuperClasses cls tys -- See Note [Tuples hiding implicit parameters]
= Nothing
| Just {} <- isCallStackPred cls tys
, isPushCallStackOrigin (ctLocOrigin loc)
= Nothing -- See Note [Solving CallStack constraints]
| otherwise
= findTcApp m (classTyCon cls) tys
findDictsByClass :: DictMap a -> Class -> Bag a
findDictsByClass m cls
| Just tm <- lookupDTyConEnv m (classTyCon cls) = foldTM consBag tm emptyBag
| otherwise = emptyBag
delDict :: DictMap a -> Class -> [Type] -> DictMap a
delDict m cls tys = delTcApp m (classTyCon cls) tys
addDict :: DictMap a -> Class -> [Type] -> a -> DictMap a
addDict m cls tys item = insertTcApp m (classTyCon cls) tys item
addDictsByClass :: DictMap Ct -> Class -> Bag Ct -> DictMap Ct
addDictsByClass m cls items
= extendDTyConEnv m (classTyCon cls) (foldr add emptyTM items)
where
add ct@(CDictCan { cc_tyargs = tys }) tm = insertTM tys ct tm
add ct _ = pprPanic "addDictsByClass" (ppr ct)
filterDicts :: (Ct -> Bool) -> DictMap Ct -> DictMap Ct
filterDicts f m = filterTcAppMap f m
partitionDicts :: (Ct -> Bool) -> DictMap Ct -> (Bag Ct, DictMap Ct)
partitionDicts f m = foldTcAppMap k m (emptyBag, emptyDictMap)
where
k ct (yeses, noes) | f ct = (ct `consBag` yeses, noes)
| otherwise = (yeses, add ct noes)
add ct@(CDictCan { cc_class = cls, cc_tyargs = tys }) m
= addDict m cls tys ct
add ct _ = pprPanic "partitionDicts" (ppr ct)
dictsToBag :: DictMap a -> Bag a
dictsToBag = tcAppMapToBag
foldDicts :: (a -> b -> b) -> DictMap a -> b -> b
foldDicts = foldTcAppMap
{- Note [Tuples hiding implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f,g :: (?x::Int, C a) => a -> a
f v = let ?x = 4 in g v
The call to 'g' gives rise to a Wanted constraint (?x::Int, C a).
We must /not/ solve this from the Given (?x::Int, C a), because of
the intervening binding for (?x::Int). #14218.
We deal with this by arranging that we always fail when looking up a
tuple constraint that hides an implicit parameter. Note that this applies
* both to the inert_dicts (lookupInertDict)
* and to the solved_dicts (looukpSolvedDict)
An alternative would be not to extend these sets with such tuple
constraints, but it seemed more direct to deal with the lookup.
Note [Solving CallStack constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also Note [Overview of implicit CallStacks] in GHc.Tc.Types.Evidence.
Suppose f :: HasCallStack => blah. Then
* Each call to 'f' gives rise to
[W] s1 :: IP "callStack" CallStack -- CtOrigin = OccurrenceOf f
with a CtOrigin that says "OccurrenceOf f".
Remember that HasCallStack is just shorthand for
IP "callStack" CallStack
See Note [Overview of implicit CallStacks] in GHC.Tc.Types.Evidence
* We cannonicalise such constraints, in GHC.Tc.Solver.Canonical.canClassNC, by
pushing the call-site info on the stack, and changing the CtOrigin
to record that has been done.
Bind: s1 = pushCallStack <site-info> s2
[W] s2 :: IP "callStack" CallStack -- CtOrigin = IPOccOrigin
* Then, and only then, we can solve the constraint from an enclosing
Given.
So we must be careful /not/ to solve 's1' from the Givens. Again,
we ensure this by arranging that findDict always misses when looking
up such constraints.
-}
{- *********************************************************************
* *
FunEqMap
* *
********************************************************************* -}
type FunEqMap a = TcAppMap a -- A map whose key is a (TyCon, [Type]) pair
emptyFunEqs :: TcAppMap a
emptyFunEqs = emptyTcAppMap
findFunEq :: FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq m tc tys = findTcApp m tc tys
findFunEqsByTyCon :: FunEqMap a -> TyCon -> [a]
-- Get inert function equation constraints that have the given tycon
-- in their head. Not that the constraints remain in the inert set.
-- We use this to check for wanted interactions with built-in type-function
-- constructors.
findFunEqsByTyCon m tc
| Just tm <- lookupDTyConEnv m tc = foldTM (:) tm []
| otherwise = []
foldFunEqs :: (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs = foldTcAppMap
insertFunEq :: FunEqMap a -> TyCon -> [Type] -> a -> FunEqMap a
insertFunEq m tc tys val = insertTcApp m tc tys val
{- *********************************************************************
* *
EqualCtList
* *
********************************************************************* -}
{-
Note [EqualCtList invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* All are equalities
* All these equalities have the same LHS
* No element of the list can rewrite any other
Accordingly, this list is either empty, contains one element, or
contains a Given representational equality and a Wanted nominal one.
-}
type EqualCtList = [Ct]
-- See Note [EqualCtList invariants]
addToEqualCtList :: Ct -> EqualCtList -> EqualCtList
-- See Note [EqualCtList invariants]
addToEqualCtList ct old_eqs
| debugIsOn
= case ct of
CEqCan { cc_lhs = TyVarLHS tv } ->
assert (all (shares_lhs tv) old_eqs) $
assertPpr (null bad_prs)
(vcat [ text "bad_prs" <+> ppr bad_prs
, text "ct:old_eqs" <+> ppr (ct : old_eqs) ]) $
(ct : old_eqs)
_ -> pprPanic "addToEqualCtList not CEqCan" (ppr ct)
| otherwise
= ct : old_eqs
where
shares_lhs tv (CEqCan { cc_lhs = TyVarLHS old_tv }) = tv == old_tv
shares_lhs _ _ = False
bad_prs = filter is_bad_pair (distinctPairs (ct : old_eqs))
is_bad_pair (ct1,ct2) = ctFlavourRole ct1 `eqCanRewriteFR` ctFlavourRole ct2
distinctPairs :: [a] -> [(a,a)]
-- distinctPairs [x1,...xn] is the list of all pairs [ ...(xi, xj)...]
-- where i /= j
-- NB: does not return pairs (xi,xi), which would be stupid in the
-- context of addToEqualCtList (#22645)
distinctPairs [] = []
distinctPairs (x:xs) = concatMap (\y -> [(x,y),(y,x)]) xs ++ distinctPairs xs
-- returns Nothing when the new list is empty, to keep the environments smaller
filterEqualCtList :: (Ct -> Bool) -> EqualCtList -> Maybe EqualCtList
filterEqualCtList pred cts
| null new_list
= Nothing
| otherwise
= Just new_list
where
new_list = filter pred cts
|