1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
|
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
-- | Types used in the typechecker
--
-- This module provides the Type interface for front-end parts of the
-- compiler. These parts
--
-- * treat "source types" as opaque:
-- newtypes, and predicates are meaningful.
-- * look through usage types
--
module GHC.Tc.Utils.TcType (
--------------------------------
-- Types
TcType, TcSigmaType, TcTypeFRR, TcSigmaTypeFRR,
TcRhoType, TcTauType, TcPredType, TcThetaType,
TcTyVar, TcTyVarSet, TcDTyVarSet, TcTyCoVarSet, TcDTyCoVarSet,
TcKind, TcCoVar, TcTyCoVar, TcTyVarBinder, TcInvisTVBinder, TcReqTVBinder,
TcTyCon, MonoTcTyCon, PolyTcTyCon, TcTyConBinder, KnotTied,
ExpType(..), InferResult(..),
ExpTypeFRR, ExpSigmaType, ExpSigmaTypeFRR,
ExpRhoType,
mkCheckExpType,
SyntaxOpType(..), synKnownType, mkSynFunTys,
--------------------------------
-- TcLevel
TcLevel(..), topTcLevel, pushTcLevel, isTopTcLevel,
strictlyDeeperThan, deeperThanOrSame, sameDepthAs,
tcTypeLevel, tcTyVarLevel, maxTcLevel,
--------------------------------
-- MetaDetails
TcTyVarDetails(..), pprTcTyVarDetails, vanillaSkolemTvUnk,
MetaDetails(Flexi, Indirect), MetaInfo(..), skolemSkolInfo,
isImmutableTyVar, isSkolemTyVar, isMetaTyVar, isMetaTyVarTy, isTyVarTy,
tcIsTcTyVar, isTyVarTyVar, isOverlappableTyVar, isTyConableTyVar,
ConcreteTvOrigin(..), isConcreteTyVar_maybe, isConcreteTyVar,
isConcreteTyVarTy, isConcreteTyVarTy_maybe,
isAmbiguousTyVar, isCycleBreakerTyVar, metaTyVarRef, metaTyVarInfo,
isFlexi, isIndirect, isRuntimeUnkSkol,
metaTyVarTcLevel, setMetaTyVarTcLevel, metaTyVarTcLevel_maybe,
isTouchableMetaTyVar, isPromotableMetaTyVar,
findDupTyVarTvs, mkTyVarNamePairs,
--------------------------------
-- Builders
mkInfSigmaTy, mkSpecSigmaTy, mkSigmaTy, mkPhiTy, tcMkPhiTy,
tcMkDFunSigmaTy, tcMkDFunPhiTy,
--------------------------------
-- Splitters
getTyVar, getTyVar_maybe, getCastedTyVar_maybe,
tcSplitForAllTyVarBinder_maybe,
tcSplitForAllTyVars, tcSplitForAllInvisTyVars, tcSplitSomeForAllTyVars,
tcSplitForAllReqTVBinders, tcSplitForAllInvisTVBinders,
tcSplitPiTys, tcSplitPiTy_maybe, tcSplitForAllTyVarBinders,
tcSplitPhiTy, tcSplitPredFunTy_maybe,
tcSplitFunTy_maybe, tcSplitFunTys, tcFunArgTy, tcFunResultTy, tcFunResultTyN,
tcSplitFunTysN,
tcSplitTyConApp, tcSplitTyConApp_maybe,
tcTyConAppTyCon, tcTyConAppTyCon_maybe, tcTyConAppArgs,
tcSplitAppTy_maybe, tcSplitAppTy, tcSplitAppTys, tcSplitAppTyNoView_maybe,
tcSplitSigmaTy, tcSplitNestedSigmaTys,
---------------------------------
-- Predicates.
-- Again, newtypes are opaque
isSigmaTy, isRhoTy, isRhoExpTy, isOverloadedTy,
isFloatingPrimTy, isDoubleTy, isFloatTy, isIntTy, isWordTy, isStringTy,
isIntegerTy, isNaturalTy,
isBoolTy, isUnitTy, isCharTy,
isTauTy, isTauTyCon, tcIsTyVarTy,
isPredTy, isTyVarClassPred,
checkValidClsArgs, hasTyVarHead,
isRigidTy,
-- Re-exported from GHC.Core.TyCo.Compare
-- mainly just for back-compat reasons
eqType, eqTypes, nonDetCmpType, nonDetCmpTypes, eqTypeX,
pickyEqType, tcEqType, tcEqKind, tcEqTypeNoKindCheck, tcEqTypeVis,
tcEqTyConApps, eqForAllVis, eqVarBndrs,
---------------------------------
-- Misc type manipulators
deNoteType,
orphNamesOfType, orphNamesOfCo,
orphNamesOfTypes, orphNamesOfCoCon,
getDFunTyKey, evVarPred,
ambigTkvsOfTy,
---------------------------------
-- Predicate types
mkMinimalBySCs, transSuperClasses,
pickCapturedPreds,
immSuperClasses, boxEqPred,
isImprovementPred,
-- * Finding type instances
tcTyFamInsts, tcTyFamInstsAndVis, tcTyConAppTyFamInstsAndVis, isTyFamFree,
-- * Finding "exact" (non-dead) type variables
exactTyCoVarsOfType, exactTyCoVarsOfTypes,
anyRewritableTyVar, anyRewritableTyFamApp,
---------------------------------
-- Foreign import and export
IllegalForeignTypeReason(..),
TypeCannotBeMarshaledReason(..),
isFFIArgumentTy, -- :: DynFlags -> Safety -> Type -> Bool
isFFIImportResultTy, -- :: DynFlags -> Type -> Bool
isFFIExportResultTy, -- :: Type -> Bool
isFFIExternalTy, -- :: Type -> Bool
isFFIDynTy, -- :: Type -> Type -> Bool
isFFIPrimArgumentTy, -- :: DynFlags -> Type -> Bool
isFFIPrimResultTy, -- :: DynFlags -> Type -> Bool
isFFILabelTy, -- :: Type -> Bool
isFunPtrTy, -- :: Type -> Bool
tcSplitIOType_maybe, -- :: Type -> Maybe Type
---------------------------------
-- Patersons sizes
PatersonSize(..), PatersonSizeFailure(..),
ltPatersonSize,
pSizeZero, pSizeOne,
pSizeType, pSizeTypeX, pSizeTypes,
pSizeClassPred, pSizeClassPredX,
pSizeTyConApp,
noMoreTyVars, allDistinctTyVars,
TypeSize, sizeType, sizeTypes, scopedSort,
isTerminatingClass, isStuckTypeFamily,
--------------------------------
-- Reexported from Kind
Kind, liftedTypeKind, constraintKind,
isLiftedTypeKind, isUnliftedTypeKind, isTYPEorCONSTRAINT,
--------------------------------
-- Reexported from Type
Type, PredType, ThetaType, PiTyBinder,
ForAllTyFlag(..), FunTyFlag(..),
mkForAllTy, mkForAllTys, mkInvisForAllTys, mkTyCoInvForAllTys,
mkSpecForAllTys, mkTyCoInvForAllTy,
mkInfForAllTy, mkInfForAllTys,
mkVisFunTy, mkVisFunTyMany, mkVisFunTysMany,
mkScaledFunTys,
mkInvisFunTy, mkInvisFunTys,
mkTyConApp, mkAppTy, mkAppTys,
mkTyConTy, mkTyVarTy, mkTyVarTys,
mkTyCoVarTy, mkTyCoVarTys,
isClassPred, isEqPrimPred, isIPLikePred, isEqPred, isEqPredClass,
mkClassPred,
tcSplitQuantPredTy, tcSplitDFunTy, tcSplitDFunHead, tcSplitMethodTy,
isRuntimeRepVar, isFixedRuntimeRepKind,
isVisiblePiTyBinder, isInvisiblePiTyBinder,
-- Type substitutions
Subst(..), -- Representation visible to a few friends
TvSubstEnv, emptySubst, mkEmptySubst,
zipTvSubst,
mkTvSubstPrs, notElemSubst, unionSubst,
getTvSubstEnv, getSubstInScope, extendSubstInScope,
extendSubstInScopeList, extendSubstInScopeSet, extendTvSubstAndInScope,
Type.lookupTyVar, Type.extendTCvSubst, Type.substTyVarBndr,
Type.extendTvSubst,
isInScope, mkSubst, mkTvSubst, zipTyEnv, zipCoEnv,
Type.substTy, substTys, substScaledTys, substTyWith, substTyWithCoVars,
substTyAddInScope,
substTyUnchecked, substTysUnchecked, substScaledTyUnchecked,
substThetaUnchecked,
substTyWithUnchecked,
substCoUnchecked, substCoWithUnchecked,
substTheta,
isUnliftedType,
isUnboxedTupleType,
isPrimitiveType,
coreView,
tyCoVarsOfType, tyCoVarsOfTypes, closeOverKinds,
tyCoFVsOfType, tyCoFVsOfTypes,
tyCoVarsOfTypeDSet, tyCoVarsOfTypesDSet, closeOverKindsDSet,
tyCoVarsOfTypeList, tyCoVarsOfTypesList,
noFreeVarsOfType,
--------------------------------
pprKind, pprParendKind, pprSigmaType,
pprType, pprParendType, pprTypeApp,
pprTheta, pprParendTheta, pprThetaArrowTy, pprClassPred,
pprTCvBndr, pprTCvBndrs,
---------------------------------
-- argument visibility
tcTyConVisibilities, isNextTyConArgVisible, isNextArgVisible
) where
-- friends:
import GHC.Prelude
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Subst ( mkTvSubst, substTyWithCoVars )
import GHC.Core.TyCo.Compare
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Ppr
import GHC.Core.Class
import GHC.Types.Var
import GHC.Types.ForeignCall
import GHC.Types.Var.Set
import GHC.Core.Coercion
import GHC.Core.Type as Type
import GHC.Core.Predicate
import GHC.Types.RepType
import GHC.Core.TyCon
import {-# SOURCE #-} GHC.Tc.Types.Origin
( SkolemInfo, unkSkol
, FixedRuntimeRepOrigin, FixedRuntimeRepContext )
-- others:
import GHC.Driver.Session
import GHC.Core.FVs
import GHC.Types.Name as Name
-- We use this to make dictionaries for type literals.
-- Perhaps there's a better way to do this?
import GHC.Types.Name.Set
import GHC.Builtin.Names
import GHC.Builtin.Types ( coercibleClass, eqClass, heqClass, unitTyCon, unitTyConKey
, listTyCon, constraintKind )
import GHC.Types.Basic
import GHC.Utils.Misc
import GHC.Data.Maybe
import GHC.Data.List.SetOps ( getNth, findDupsEq )
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.Error( Validity'(..) )
import qualified GHC.LanguageExtensions as LangExt
import Data.IORef
import Data.List.NonEmpty( NonEmpty(..) )
import Data.List ( partition, nub, (\\) )
import GHC.Generics ( Generic )
{-
************************************************************************
* *
Types
* *
************************************************************************
The type checker divides the generic Type world into the
following more structured beasts:
sigma ::= forall tyvars. phi
-- A sigma type is a qualified type
--
-- Note that even if 'tyvars' is empty, theta
-- may not be: e.g. (?x::Int) => Int
-- Note that 'sigma' is in prenex form:
-- all the foralls are at the front.
-- A 'phi' type has no foralls to the right of
-- an arrow
phi :: theta => rho
rho ::= sigma -> rho
| tau
-- A 'tau' type has no quantification anywhere
-- Note that the args of a type constructor must be taus
tau ::= tyvar
| tycon tau_1 .. tau_n
| tau_1 tau_2
| tau_1 -> tau_2
-- In all cases, a (saturated) type synonym application is legal,
-- provided it expands to the required form.
Note [TcTyVars and TyVars in the typechecker]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The typechecker uses a lot of type variables with special properties,
notably being a unification variable with a mutable reference. These
use the 'TcTyVar' variant of Var.Var.
Note, though, that a /bound/ type variable can (and probably should)
be a TyVar. E.g
forall a. a -> a
Here 'a' is really just a deBruijn-number; it certainly does not have
a significant TcLevel (as every TcTyVar does). So a forall-bound type
variable should be TyVars; and hence a TyVar can appear free in a TcType.
The type checker and constraint solver can also encounter /free/ type
variables that use the 'TyVar' variant of Var.Var, for a couple of
reasons:
- When typechecking a class decl, say
class C (a :: k) where
foo :: T a -> Int
We have first kind-check the header; fix k and (a:k) to be
TyVars, bring 'k' and 'a' into scope, and kind check the
signature for 'foo'. In doing so we call solveEqualities to
solve any kind equalities in foo's signature. So the solver
may see free occurrences of 'k'.
See calls to tcExtendTyVarEnv for other places that ordinary
TyVars are bought into scope, and hence may show up in the types
and kinds generated by GHC.Tc.Gen.HsType.
- The pattern-match overlap checker calls the constraint solver,
long after TcTyVars have been zonked away
It's convenient to simply treat these TyVars as skolem constants,
which of course they are. We give them a level number of "outermost",
so they behave as global constants. Specifically:
* Var.tcTyVarDetails succeeds on a TyVar, returning
vanillaSkolemTv, as well as on a TcTyVar.
* tcIsTcTyVar returns True for both TyVar and TcTyVar variants
of Var.Var. The "tc" prefix means "a type variable that can be
encountered by the typechecker".
This is a bit of a change from an earlier era when we remorselessly
insisted on real TcTyVars in the type checker. But that seems
unnecessary (for skolems, TyVars are fine) and it's now very hard
to guarantee, with the advent of kind equalities.
Note [Coercion variables in free variable lists]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are several places in the GHC codebase where functions like
tyCoVarsOfType, tyCoVarsOfCt, et al. are used to compute the free type
variables of a type. The "Co" part of these functions' names shouldn't be
dismissed, as it is entirely possible that they will include coercion variables
in addition to type variables! As a result, there are some places in GHC.Tc.Utils.TcType
where we must take care to check that a variable is a _type_ variable (using
isTyVar) before calling tcTyVarDetails--a partial function that is not defined
for coercion variables--on the variable. Failing to do so led to
GHC #12785.
-}
-- See Note [TcTyVars and TyVars in the typechecker]
type TcCoVar = CoVar -- Used only during type inference
type TcType = Type -- A TcType can have mutable type variables
type TcTyCoVar = Var -- Either a TcTyVar or a CoVar
-- | A type which has a syntactically fixed RuntimeRep as per
-- Note [Fixed RuntimeRep] in GHC.Tc.Utils.Concrete.
type TcTypeFRR = TcType
-- TODO: consider making this a newtype.
type TcTyVarBinder = TyVarBinder
type TcInvisTVBinder = InvisTVBinder
type TcReqTVBinder = ReqTVBinder
-- See Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon]
type TcTyCon = TyCon
type MonoTcTyCon = TcTyCon
type PolyTcTyCon = TcTyCon
type TcTyConBinder = TyConBinder -- With skolem TcTyVars
-- These types do not have boxy type variables in them
type TcPredType = PredType
type TcThetaType = ThetaType
type TcSigmaType = TcType
-- | A 'TcSigmaTypeFRR' is a 'TcSigmaType' which has a syntactically
-- fixed 'RuntimeRep' in the sense of Note [Fixed RuntimeRep]
-- in GHC.Tc.Utils.Concrete.
--
-- In particular, this means that:
--
-- - 'GHC.Types.RepType.typePrimRep' does not panic,
-- - 'GHC.Core.typeLevity_maybe' does not return 'Nothing'.
--
-- This property is important in functions such as 'matchExpectedFunTys', where
-- we want to provide argument types which have a known runtime representation.
-- See Note [Return arguments with a fixed RuntimeRep.
type TcSigmaTypeFRR = TcSigmaType
-- TODO: consider making this a newtype.
type TcRhoType = TcType -- Note [TcRhoType]
type TcTauType = TcType
type TcKind = Kind
type TcTyVarSet = TyVarSet
type TcTyCoVarSet = TyCoVarSet
type TcDTyVarSet = DTyVarSet
type TcDTyCoVarSet = DTyCoVarSet
{- Note [TcTyCon, MonoTcTyCon, and PolyTcTyCon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See Note [How TcTyCons work] in GHC.Tc.TyCl
Invariants:
* TcTyCon: a TyCon built with the TcTyCon constructor
* TcTyConBinder: a TyConBinder with a TcTyVar inside (not a TyVar)
* TcTyCons contain TcTyVars
* MonoTcTyCon:
- Flag tcTyConIsPoly = False
- tyConScopedTyVars is important; maps a Name to a TyVarTv unification variable
The order is important: Specified then Required variables. E.g. in
data T a (b :: k) = ...
the order will be [k, a, b].
NB: There are no Inferred binders in tyConScopedTyVars; 'a' may
also be poly-kinded, but that kind variable will be added by
generaliseTcTyCon, in the passage to a PolyTcTyCon.
- tyConBinders are irrelevant; we just use tcTyConScopedTyVars
Well not /quite/ irrelevant: its length gives the number of Required binders,
and so allows up to distinguish between the Specified and Required elements of
tyConScopedTyVars.
* PolyTcTyCon:
- Flag tcTyConIsPoly = True; this is used only to short-cut zonking
- tyConBinders are still TcTyConBinders, but they are /skolem/ TcTyVars,
with fixed kinds, and accurate skolem info: no unification variables here
tyConBinders includes the Inferred binders if any
tyConBinders uses the Names from the original, renamed program.
- tcTyConScopedTyVars is irrelevant: just use (binderVars tyConBinders)
All the types have been swizzled back to use the original Names
See Note [tyConBinders and lexical scoping] in GHC.Core.TyCon
-}
{- *********************************************************************
* *
ExpType: an "expected type" in the type checker
* *
********************************************************************* -}
-- | An expected type to check against during type-checking.
-- See Note [ExpType] in "GHC.Tc.Utils.TcMType", where you'll also find manipulators.
data ExpType = Check TcType
| Infer !InferResult
data InferResult
= IR { ir_uniq :: Unique
-- ^ This 'Unique' is for debugging only
, ir_lvl :: TcLevel
-- ^ See Note [TcLevel of ExpType] in GHC.Tc.Utils.TcMType
, ir_frr :: Maybe FixedRuntimeRepContext
-- ^ See Note [FixedRuntimeRep context in ExpType] in GHC.Tc.Utils.TcMType
, ir_ref :: IORef (Maybe TcType) }
-- ^ The type that fills in this hole should be a @Type@,
-- that is, its kind should be @TYPE rr@ for some @rr :: RuntimeRep@.
--
-- Additionally, if the 'ir_frr' field is @Just frr_orig@ then
-- @rr@ must be concrete, in the sense of Note [Concrete types]
-- in GHC.Tc.Utils.Concrete.
type ExpSigmaType = ExpType
-- | An 'ExpType' which has a fixed RuntimeRep.
--
-- For a 'Check' 'ExpType', the stored 'TcType' must have
-- a fixed RuntimeRep. For an 'Infer' 'ExpType', the 'ir_frr'
-- field must be of the form @Just frr_orig@.
type ExpTypeFRR = ExpType
-- | Like 'TcSigmaTypeFRR', but for an expected type.
--
-- See 'ExpTypeFRR'.
type ExpSigmaTypeFRR = ExpTypeFRR
-- TODO: consider making this a newtype.
type ExpRhoType = ExpType
instance Outputable ExpType where
ppr (Check ty) = text "Check" <> braces (ppr ty)
ppr (Infer ir) = ppr ir
instance Outputable InferResult where
ppr (IR { ir_uniq = u, ir_lvl = lvl, ir_frr = mb_frr })
= text "Infer" <> mb_frr_text <> braces (ppr u <> comma <> ppr lvl)
where
mb_frr_text = case mb_frr of
Just _ -> text "FRR"
Nothing -> empty
-- | Make an 'ExpType' suitable for checking.
mkCheckExpType :: TcType -> ExpType
mkCheckExpType = Check
{- *********************************************************************
* *
SyntaxOpType
* *
********************************************************************* -}
-- | What to expect for an argument to a rebindable-syntax operator.
-- Quite like 'Type', but allows for holes to be filled in by tcSyntaxOp.
-- The callback called from tcSyntaxOp gets a list of types; the meaning
-- of these types is determined by a left-to-right depth-first traversal
-- of the 'SyntaxOpType' tree. So if you pass in
--
-- > SynAny `SynFun` (SynList `SynFun` SynType Int) `SynFun` SynAny
--
-- you'll get three types back: one for the first 'SynAny', the /element/
-- type of the list, and one for the last 'SynAny'. You don't get anything
-- for the 'SynType', because you've said positively that it should be an
-- Int, and so it shall be.
--
-- You'll also get three multiplicities back: one for each function arrow. See
-- also Note [Linear types] in Multiplicity.
--
-- This is defined here to avoid defining it in "GHC.Tc.Gen.Expr" boot file.
data SyntaxOpType
= SynAny -- ^ Any type
| SynRho -- ^ A rho type, skolemised or instantiated as appropriate
| SynList -- ^ A list type. You get back the element type of the list
| SynFun SyntaxOpType SyntaxOpType
-- ^ A function.
| SynType ExpType -- ^ A known type.
infixr 0 `SynFun`
-- | Like 'SynType' but accepts a regular TcType
synKnownType :: TcType -> SyntaxOpType
synKnownType = SynType . mkCheckExpType
-- | Like 'mkFunTys' but for 'SyntaxOpType'
mkSynFunTys :: [SyntaxOpType] -> ExpType -> SyntaxOpType
mkSynFunTys arg_tys res_ty = foldr SynFun (SynType res_ty) arg_tys
{-
Note [TcRhoType]
~~~~~~~~~~~~~~~~
A TcRhoType has no foralls or contexts at the top
NO forall a. a -> Int
NO Eq a => a -> a
YES a -> a
YES (forall a. a->a) -> Int
YES Int -> forall a. a -> Int
************************************************************************
* *
TyVarDetails, MetaDetails, MetaInfo
* *
************************************************************************
TyVarDetails gives extra info about type variables, used during type
checking. It's attached to mutable type variables only.
It's knot-tied back to "GHC.Types.Var". There is no reason in principle
why "GHC.Types.Var" shouldn't actually have the definition, but it "belongs" here.
Note [TyVars and TcTyVars during type checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Var type has constructors TyVar and TcTyVar. They are used
as follows:
* TcTyVar: used /only/ during type checking. Should never appear
afterwards. May contain a mutable field, in the MetaTv case.
* TyVar: is never seen by the constraint solver, except locally
inside a type like (forall a. [a] ->[a]), where 'a' is a TyVar.
We instantiate these with TcTyVars before exposing the type
to the constraint solver.
I have swithered about the latter invariant, excluding TyVars from the
constraint solver. It's not strictly essential, and indeed
(historically but still there) Var.tcTyVarDetails returns
vanillaSkolemTv for a TyVar.
But ultimately I want to separate Type from TcType, and in that case
we would need to enforce the separation.
Note [Keeping SkolemInfo inside a SkolemTv]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A SkolemTv contains a SkolemInfo, which describes the binding side of that
TcTyVar. This is very convenient to a consumer of a SkolemTv, but it is
a bit awkward for the /producer/. Why? Because sometimes we can't produce
the SkolemInfo until we have the TcTyVars!
Example: in `GHC.Tc.Utils.Unify.tcTopSkolemise` we create SkolemTvs whose
`SkolemInfo` is `SigSkol`, whose arguments in turn mention the newly-created
SkolemTvs. So we a RecrusiveDo idiom, like this:
rec { (wrap, tv_prs, given, rho_ty) <- skolemise skol_info expected_ty
; skol_info <- mkSkolemInfo (SigSkol ctxt expected_ty tv_prs) }
Note that the `skol_info` can't be created until we have the `tv_prs` returned
by `skolemise`. Note also that `skolemise` had better be lazy in `skol_info`.
All uses of this idiom should be flagged with a reference to this Note.
-}
-- A TyVarDetails is inside a TyVar
-- See Note [TyVars and TcTyVars during type checking]
data TcTyVarDetails
= SkolemTv -- A skolem
SkolemInfo -- See Note [Keeping SkolemInfo inside a SkolemTv]
TcLevel -- Level of the implication that binds it
-- See GHC.Tc.Utils.Unify Note [Deeper level on the left] for
-- how this level number is used
Bool -- True <=> this skolem type variable can be overlapped
-- when looking up instances
-- See Note [Binding when looking up instances] in GHC.Core.InstEnv
| RuntimeUnk -- Stands for an as-yet-unknown type in the GHCi
-- interactive context
| MetaTv { mtv_info :: MetaInfo
, mtv_ref :: IORef MetaDetails
, mtv_tclvl :: TcLevel } -- See Note [TcLevel invariants]
vanillaSkolemTvUnk :: HasCallStack => TcTyVarDetails
vanillaSkolemTvUnk = SkolemTv unkSkol topTcLevel False
instance Outputable TcTyVarDetails where
ppr = pprTcTyVarDetails
pprTcTyVarDetails :: TcTyVarDetails -> SDoc
-- For debugging
pprTcTyVarDetails (RuntimeUnk {}) = text "rt"
pprTcTyVarDetails (SkolemTv _sk lvl True) = text "ssk" <> colon <> ppr lvl
pprTcTyVarDetails (SkolemTv _sk lvl False) = text "sk" <> colon <> ppr lvl
pprTcTyVarDetails (MetaTv { mtv_info = info, mtv_tclvl = tclvl })
= ppr info <> colon <> ppr tclvl
-----------------------------
data MetaDetails
= Flexi -- Flexi type variables unify to become Indirects
| Indirect TcType
-- | What restrictions are on this metavariable around unification?
-- These are checked in GHC.Tc.Utils.Unify.startSolvingByUnification.
data MetaInfo
= TauTv -- ^ This MetaTv is an ordinary unification variable
-- A TauTv is always filled in with a tau-type, which
-- never contains any ForAlls.
| TyVarTv -- ^ A variant of TauTv, except that it should not be
-- unified with a type, only with a type variable
-- See Note [TyVarTv] in GHC.Tc.Utils.TcMType
| RuntimeUnkTv -- ^ A unification variable used in the GHCi debugger.
-- It /is/ allowed to unify with a polytype, unlike TauTv
| CycleBreakerTv -- Used to fix occurs-check problems in Givens
-- See Note [Type equality cycles] in
-- GHC.Tc.Solver.Canonical
| ConcreteTv ConcreteTvOrigin
-- ^ A unification variable that can only be unified
-- with a concrete type, in the sense of
-- Note [Concrete types] in GHC.Tc.Utils.Concrete.
-- See Note [ConcreteTv] in GHC.Tc.Utils.Concrete.
-- See also Note [The Concrete mechanism] in GHC.Tc.Utils.Concrete
-- for an overview of how this works in context.
instance Outputable MetaDetails where
ppr Flexi = text "Flexi"
ppr (Indirect ty) = text "Indirect" <+> ppr ty
instance Outputable MetaInfo where
ppr TauTv = text "tau"
ppr TyVarTv = text "tyv"
ppr RuntimeUnkTv = text "rutv"
ppr CycleBreakerTv = text "cbv"
ppr (ConcreteTv {}) = text "conc"
-- | What caused us to create a 'ConcreteTv' metavariable?
-- See Note [ConcreteTv] in GHC.Tc.Utils.Concrete.
data ConcreteTvOrigin
-- | A 'ConcreteTv' used to enforce the representation-polymorphism invariants.
--
-- See 'FixedRuntimeRepOrigin' for more information.
= ConcreteFRR FixedRuntimeRepOrigin
{- *********************************************************************
* *
Untouchable type variables
* *
********************************************************************* -}
newtype TcLevel = TcLevel Int deriving( Eq, Ord )
-- See Note [TcLevel invariants] for what this Int is
-- See also Note [TcLevel assignment]
{-
Note [TcLevel invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~
* Each unification variable (MetaTv)
and skolem (SkolemTv)
and each Implication
has a level number (of type TcLevel)
* INVARIANTS. In a tree of Implications,
(ImplicInv) The level number (ic_tclvl) of an Implication is
STRICTLY GREATER THAN that of its parent
(SkolInv) The level number of the skolems (ic_skols) of an
Implication is equal to the level of the implication
itself (ic_tclvl)
(GivenInv) The level number of a unification variable appearing
in the 'ic_given' of an implication I should be
STRICTLY LESS THAN the ic_tclvl of I
See Note [GivenInv]
(WantedInv) The level number of a unification variable appearing
in the 'ic_wanted' of an implication I should be
LESS THAN OR EQUAL TO the ic_tclvl of I
See Note [WantedInv]
The level of a MetaTyVar also governs its untouchability. See
Note [Unification preconditions] in GHC.Tc.Utils.Unify.
Note [TcLevel assignment]
~~~~~~~~~~~~~~~~~~~~~~~~~
We arrange the TcLevels like this
0 Top level
1 First-level implication constraints
2 Second-level implication constraints
...etc...
Note [GivenInv]
~~~~~~~~~~~~~~~
Invariant (GivenInv) is not essential, but it is easy to guarantee, and
it is a useful extra piece of structure. It ensures that the Givens of
an implication don't change because of unifications /at the same level/
caused by Wanteds. (Wanteds can also cause unifications at an outer
level, but that will iterate the entire implication; see GHC.Tc.Solver.Monad
Note [The Unification Level Flag].)
Givens can certainly contain meta-tyvars from /outer/ levels. E.g.
data T a where
MkT :: Eq a => a -> MkT a
f x = case x of MkT y -> y && True
Then we'll infer (x :: T alpha[1]). The Givens from the implication
arising from the pattern match will look like this:
forall[2] . Eq alpha[1] => (alpha[1] ~ Bool)
But if we unify alpha (which in this case we will), we'll iterate
the entire implication via Note [The Unification Level Flag] in
GHC.Tc.Solver.Monad. That isn't true of unifications at the /ambient/
level.
It would be entirely possible to weaken (GivenInv), to LESS THAN OR
EQUAL TO, but we'd need to think carefully about
- kick-out for Givens
- GHC.Tc.Solver.Monad.isOuterTyVar
But in fact (GivenInv) is automatically true, so we're adhering to
it for now. See #18929.
* If a tyvar tv has level n, then the levels of all variables free
in tv's kind are <= n. Consequence: if tv is untouchable, so are
all variables in tv's kind.
Note [WantedInv]
~~~~~~~~~~~~~~~~
Why is WantedInv important? Consider this implication, where
the constraint (C alpha[3]) disobeys WantedInv:
forall[2] a. blah => (C alpha[3])
(forall[3] b. alpha[3] ~ b)
We can unify alpha:=b in the inner implication, because 'alpha' is
touchable; but then 'b' has escaped its scope into the outer implication.
-}
maxTcLevel :: TcLevel -> TcLevel -> TcLevel
maxTcLevel (TcLevel a) (TcLevel b) = TcLevel (a `max` b)
topTcLevel :: TcLevel
-- See Note [TcLevel assignment]
topTcLevel = TcLevel 0 -- 0 = outermost level
isTopTcLevel :: TcLevel -> Bool
isTopTcLevel (TcLevel 0) = True
isTopTcLevel _ = False
pushTcLevel :: TcLevel -> TcLevel
-- See Note [TcLevel assignment]
pushTcLevel (TcLevel us) = TcLevel (us + 1)
strictlyDeeperThan :: TcLevel -> TcLevel -> Bool
strictlyDeeperThan (TcLevel tv_tclvl) (TcLevel ctxt_tclvl)
= tv_tclvl > ctxt_tclvl
deeperThanOrSame :: TcLevel -> TcLevel -> Bool
deeperThanOrSame (TcLevel tv_tclvl) (TcLevel ctxt_tclvl)
= tv_tclvl >= ctxt_tclvl
sameDepthAs :: TcLevel -> TcLevel -> Bool
sameDepthAs (TcLevel ctxt_tclvl) (TcLevel tv_tclvl)
= ctxt_tclvl == tv_tclvl -- NB: invariant ctxt_tclvl >= tv_tclvl
-- So <= would be equivalent
checkTcLevelInvariant :: TcLevel -> TcLevel -> Bool
-- Checks (WantedInv) from Note [TcLevel invariants]
checkTcLevelInvariant (TcLevel ctxt_tclvl) (TcLevel tv_tclvl)
= ctxt_tclvl >= tv_tclvl
-- Returns topTcLevel for non-TcTyVars
tcTyVarLevel :: TcTyVar -> TcLevel
tcTyVarLevel tv
= case tcTyVarDetails tv of
MetaTv { mtv_tclvl = tv_lvl } -> tv_lvl
SkolemTv _ tv_lvl _ -> tv_lvl
RuntimeUnk -> topTcLevel
tcTypeLevel :: TcType -> TcLevel
-- Max level of any free var of the type
tcTypeLevel ty
= nonDetStrictFoldDVarSet add topTcLevel (tyCoVarsOfTypeDSet ty)
-- It's safe to use a non-deterministic fold because `maxTcLevel` is
-- commutative.
where
add v lvl
| isTcTyVar v = lvl `maxTcLevel` tcTyVarLevel v
| otherwise = lvl
instance Outputable TcLevel where
ppr (TcLevel us) = ppr us
{- *********************************************************************
* *
Finding type family instances
* *
************************************************************************
-}
-- | Finds outermost type-family applications occurring in a type,
-- after expanding synonyms. In the list (F, tys) that is returned
-- we guarantee that tys matches F's arity. For example, given
-- type family F a :: * -> * (arity 1)
-- calling tcTyFamInsts on (Maybe (F Int Bool) will return
-- (F, [Int]), not (F, [Int,Bool])
--
-- This is important for its use in deciding termination of type
-- instances (see #11581). E.g.
-- type instance G [Int] = ...(F Int \<big type>)...
-- we don't need to take \<big type> into account when asking if
-- the calls on the RHS are smaller than the LHS
tcTyFamInsts :: Type -> [(TyCon, [Type])]
tcTyFamInsts = map (\(_,b,c) -> (b,c)) . tcTyFamInstsAndVis
-- | Like 'tcTyFamInsts', except that the output records whether the
-- type family and its arguments occur as an /invisible/ argument in
-- some type application. This information is useful because it helps GHC know
-- when to turn on @-fprint-explicit-kinds@ during error reporting so that
-- users can actually see the type family being mentioned.
--
-- As an example, consider:
--
-- @
-- class C a
-- data T (a :: k)
-- type family F a :: k
-- instance C (T @(F Int) (F Bool))
-- @
--
-- There are two occurrences of the type family `F` in that `C` instance, so
-- @'tcTyFamInstsAndVis' (C (T \@(F Int) (F Bool)))@ will return:
--
-- @
-- [ ('True', F, [Int])
-- , ('False', F, [Bool]) ]
-- @
--
-- @F Int@ is paired with 'True' since it appears as an /invisible/ argument
-- to @C@, whereas @F Bool@ is paired with 'False' since it appears an a
-- /visible/ argument to @C@.
--
-- See also @Note [Kind arguments in error messages]@ in "GHC.Tc.Errors".
tcTyFamInstsAndVis :: Type -> [(Bool, TyCon, [Type])]
tcTyFamInstsAndVis = tcTyFamInstsAndVisX False
tcTyFamInstsAndVisX
:: Bool -- ^ Is this an invisible argument to some type application?
-> Type -> [(Bool, TyCon, [Type])]
tcTyFamInstsAndVisX = go
where
go is_invis_arg ty
| Just exp_ty <- coreView ty = go is_invis_arg exp_ty
go _ (TyVarTy _) = []
go is_invis_arg (TyConApp tc tys)
| isTypeFamilyTyCon tc
= [(is_invis_arg, tc, take (tyConArity tc) tys)]
| otherwise
= tcTyConAppTyFamInstsAndVisX is_invis_arg tc tys
go _ (LitTy {}) = []
go is_invis_arg (ForAllTy bndr ty) = go is_invis_arg (binderType bndr)
++ go is_invis_arg ty
go is_invis_arg (FunTy _ w ty1 ty2) = go is_invis_arg w
++ go is_invis_arg ty1
++ go is_invis_arg ty2
go is_invis_arg ty@(AppTy _ _) =
let (ty_head, ty_args) = splitAppTys ty
ty_arg_flags = appTyForAllTyFlags ty_head ty_args
in go is_invis_arg ty_head
++ concat (zipWith (\flag -> go (isInvisibleForAllTyFlag flag))
ty_arg_flags ty_args)
go is_invis_arg (CastTy ty _) = go is_invis_arg ty
go _ (CoercionTy _) = [] -- don't count tyfams in coercions,
-- as they never get normalized,
-- anyway
-- | In an application of a 'TyCon' to some arguments, find the outermost
-- occurrences of type family applications within the arguments. This function
-- will not consider the 'TyCon' itself when checking for type family
-- applications.
--
-- See 'tcTyFamInstsAndVis' for more details on how this works (as this
-- function is called inside of 'tcTyFamInstsAndVis').
tcTyConAppTyFamInstsAndVis :: TyCon -> [Type] -> [(Bool, TyCon, [Type])]
tcTyConAppTyFamInstsAndVis = tcTyConAppTyFamInstsAndVisX False
tcTyConAppTyFamInstsAndVisX
:: Bool -- ^ Is this an invisible argument to some type application?
-> TyCon -> [Type] -> [(Bool, TyCon, [Type])]
tcTyConAppTyFamInstsAndVisX is_invis_arg tc tys =
let (invis_tys, vis_tys) = partitionInvisibleTypes tc tys
in concat $ map (tcTyFamInstsAndVisX True) invis_tys
++ map (tcTyFamInstsAndVisX is_invis_arg) vis_tys
isTyFamFree :: Type -> Bool
-- ^ Check that a type does not contain any type family applications.
isTyFamFree = null . tcTyFamInsts
any_rewritable :: EqRel -- Ambient role
-> (EqRel -> TcTyVar -> Bool) -- check tyvar
-> (EqRel -> TyCon -> [TcType] -> Bool) -- check type family
-> (TyCon -> Bool) -- expand type synonym?
-> TcType -> Bool
-- Checks every tyvar and tyconapp (not including FunTys) within a type,
-- ORing the results of the predicates above together
-- Do not look inside casts and coercions
-- See Note [anyRewritableTyVar must be role-aware]
--
-- This looks like it should use foldTyCo, but that function is
-- role-agnostic, and this one must be role-aware. We could make
-- foldTyCon role-aware, but that may slow down more common usages.
--
-- See Note [Rewritable] in GHC.Tc.Solver.InertSet for a specification for this function.
{-# INLINE any_rewritable #-} -- this allows specialization of predicates
any_rewritable role tv_pred tc_pred should_expand
= go role emptyVarSet
where
go_tv rl bvs tv | tv `elemVarSet` bvs = False
| otherwise = tv_pred rl tv
go rl bvs ty@(TyConApp tc tys)
| isTypeSynonymTyCon tc
, should_expand tc
, Just ty' <- coreView ty -- should always match
= go rl bvs ty'
| tc_pred rl tc tys
= True
| otherwise
= go_tc rl bvs tc tys
go rl bvs (TyVarTy tv) = go_tv rl bvs tv
go _ _ (LitTy {}) = False
go rl bvs (AppTy fun arg) = go rl bvs fun || go NomEq bvs arg
go rl bvs (FunTy _ w arg res) = go NomEq bvs arg_rep || go NomEq bvs res_rep ||
go rl bvs arg || go rl bvs res || go NomEq bvs w
where arg_rep = getRuntimeRep arg -- forgetting these causes #17024
res_rep = getRuntimeRep res
go rl bvs (ForAllTy tv ty) = go rl (bvs `extendVarSet` binderVar tv) ty
go rl bvs (CastTy ty _) = go rl bvs ty
go _ _ (CoercionTy _) = False
go_tc NomEq bvs _ tys = any (go NomEq bvs) tys
go_tc ReprEq bvs tc tys = any (go_arg bvs)
(tyConRoleListRepresentational tc `zip` tys)
go_arg bvs (Nominal, ty) = go NomEq bvs ty
go_arg bvs (Representational, ty) = go ReprEq bvs ty
go_arg _ (Phantom, _) = False -- We never rewrite with phantoms
anyRewritableTyVar :: EqRel -- Ambient role
-> (EqRel -> TcTyVar -> Bool) -- check tyvar
-> TcType -> Bool
-- See Note [Rewritable] in GHC.Tc.Solver.InertSet for a specification for this function.
anyRewritableTyVar role pred
= any_rewritable role pred
(\ _ _ _ -> False) -- no special check for tyconapps
-- (this False is ORed with other results, so it
-- really means "do nothing special"; the arguments
-- are still inspected)
(\ _ -> False) -- don't expand synonyms
-- NB: No need to expand synonyms, because we can find
-- all free variables of a synonym by looking at its
-- arguments
anyRewritableTyFamApp :: EqRel -- Ambient role
-> (EqRel -> TyCon -> [TcType] -> Bool) -- check tyconapp
-- should return True only for type family applications
-> TcType -> Bool
-- always ignores casts & coercions
-- See Note [Rewritable] in GHC.Tc.Solver.InertSet for a specification for this function.
anyRewritableTyFamApp role check_tyconapp
= any_rewritable role (\ _ _ -> False) check_tyconapp (not . isFamFreeTyCon)
{- Note [anyRewritableTyVar must be role-aware]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
anyRewritableTyVar is used during kick-out from the inert set,
to decide if, given a new equality (a ~ ty), we should kick out
a constraint C. Rather than gather free variables and see if 'a'
is among them, we instead pass in a predicate; this is just efficiency.
Moreover, consider
work item: [G] a ~R f b
inert item: [G] b ~R f a
We use anyRewritableTyVar to decide whether to kick out the inert item,
on the grounds that the work item might rewrite it. Well, 'a' is certainly
free in [G] b ~R f a. But because the role of a type variable ('f' in
this case) is nominal, the work item can't actually rewrite the inert item.
Moreover, if we were to kick out the inert item the exact same situation
would re-occur and we end up with an infinite loop in which each kicks
out the other (#14363).
-}
{- *********************************************************************
* *
The "exact" free variables of a type
* *
********************************************************************* -}
{- Note [Silly type synonym]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
type T a = Int
What are the free tyvars of (T x)? Empty, of course!
exactTyCoVarsOfType is used by the type checker to figure out exactly
which type variables are mentioned in a type. It only matters
occasionally -- see the calls to exactTyCoVarsOfType.
We place this function here in GHC.Tc.Utils.TcType, not in GHC.Core.TyCo.FVs,
because we want to "see" coreView (efficiency issue only).
-}
exactTyCoVarsOfType :: Type -> TyCoVarSet
exactTyCoVarsOfTypes :: [Type] -> TyCoVarSet
-- Find the free type variables (of any kind)
-- but *expand* type synonyms. See Note [Silly type synonym] above.
exactTyCoVarsOfType ty = runTyCoVars (exact_ty ty)
exactTyCoVarsOfTypes tys = runTyCoVars (exact_tys tys)
exact_ty :: Type -> Endo TyCoVarSet
exact_tys :: [Type] -> Endo TyCoVarSet
(exact_ty, exact_tys, _, _) = foldTyCo exactTcvFolder emptyVarSet
exactTcvFolder :: TyCoFolder TyCoVarSet (Endo TyCoVarSet)
exactTcvFolder = deepTcvFolder { tcf_view = coreView }
-- This is the key line
{-
************************************************************************
* *
Predicates
* *
************************************************************************
-}
tcIsTcTyVar :: TcTyVar -> Bool
-- See Note [TcTyVars and TyVars in the typechecker]
tcIsTcTyVar tv = isTyVar tv
isPromotableMetaTyVar :: TcTyVar -> Bool
-- True is this is a meta-tyvar that can be
-- promoted to an outer level
isPromotableMetaTyVar tv
| isTyVar tv -- See Note [Coercion variables in free variable lists]
, MetaTv { mtv_info = info } <- tcTyVarDetails tv
= isTouchableInfo info -- Can't promote cycle breakers
| otherwise
= False
isTouchableMetaTyVar :: TcLevel -> TcTyVar -> Bool
isTouchableMetaTyVar ctxt_tclvl tv
| isTyVar tv -- See Note [Coercion variables in free variable lists]
, MetaTv { mtv_tclvl = tv_tclvl, mtv_info = info } <- tcTyVarDetails tv
, isTouchableInfo info
= assertPpr (checkTcLevelInvariant ctxt_tclvl tv_tclvl)
(ppr tv $$ ppr tv_tclvl $$ ppr ctxt_tclvl) $
tv_tclvl `sameDepthAs` ctxt_tclvl
| otherwise = False
isImmutableTyVar :: TyVar -> Bool
isImmutableTyVar tv = isSkolemTyVar tv
isTyConableTyVar, isSkolemTyVar, isOverlappableTyVar,
isMetaTyVar, isAmbiguousTyVar, isCycleBreakerTyVar :: TcTyVar -> Bool
isTyConableTyVar tv
-- True of a meta-type variable that can be filled in
-- with a type constructor application; in particular,
-- not a TyVarTv
| isTyVar tv -- See Note [Coercion variables in free variable lists]
= case tcTyVarDetails tv of
MetaTv { mtv_info = TyVarTv } -> False
_ -> True
| otherwise = True
isSkolemTyVar tv
= assertPpr (tcIsTcTyVar tv) (ppr tv) $
case tcTyVarDetails tv of
MetaTv {} -> False
_other -> True
skolemSkolInfo :: TcTyVar -> SkolemInfo
skolemSkolInfo tv
= assert (isSkolemTyVar tv) $
case tcTyVarDetails tv of
SkolemTv skol_info _ _ -> skol_info
RuntimeUnk -> panic "RuntimeUnk"
MetaTv {} -> panic "skolemSkolInfo"
isOverlappableTyVar tv
| isTyVar tv -- See Note [Coercion variables in free variable lists]
= case tcTyVarDetails tv of
SkolemTv _ _ overlappable -> overlappable
_ -> False
| otherwise = False
isMetaTyVar tv
| isTyVar tv -- See Note [Coercion variables in free variable lists]
= case tcTyVarDetails tv of
MetaTv {} -> True
_ -> False
| otherwise = False
-- isAmbiguousTyVar is used only when reporting type errors
-- It picks out variables that are unbound, namely meta
-- type variables and the RuntimeUnk variables created by
-- GHC.Runtime.Heap.Inspect.zonkRTTIType. These are "ambiguous" in
-- the sense that they stand for an as-yet-unknown type
isAmbiguousTyVar tv
| isTyVar tv -- See Note [Coercion variables in free variable lists]
= case tcTyVarDetails tv of
MetaTv {} -> True
RuntimeUnk {} -> True
_ -> False
| otherwise = False
isCycleBreakerTyVar tv
| isTyVar tv -- See Note [Coercion variables in free variable lists]
, MetaTv { mtv_info = CycleBreakerTv } <- tcTyVarDetails tv
= True
| otherwise
= False
-- | Is this type variable a concrete type variable, i.e.
-- it is a metavariable with 'ConcreteTv' 'MetaInfo'?
--
-- Returns the 'ConcreteTvOrigin' stored in the type variable
-- if so, or 'Nothing' otherwise.
isConcreteTyVar_maybe :: TcTyVar -> Maybe ConcreteTvOrigin
isConcreteTyVar_maybe tv
| isTcTyVar tv
, MetaTv { mtv_info = ConcreteTv conc_orig } <- tcTyVarDetails tv
= Just conc_orig
| otherwise
= Nothing
-- | Is this type variable a concrete type variable, i.e.
-- it is a metavariable with 'ConcreteTv' 'MetaInfo'?
isConcreteTyVar :: TcTyVar -> Bool
isConcreteTyVar = isJust . isConcreteTyVar_maybe
-- | Is this type concrete type variable, i.e.
-- a metavariable with 'ConcreteTv' 'MetaInfo'?
isConcreteTyVarTy :: TcType -> Bool
isConcreteTyVarTy = isJust . isConcreteTyVarTy_maybe
-- | Is this type a concrete type variable? If so, return
-- the associated 'TcTyVar' and 'ConcreteTvOrigin'.
isConcreteTyVarTy_maybe :: TcType -> Maybe (TcTyVar, ConcreteTvOrigin)
isConcreteTyVarTy_maybe (TyVarTy tv) = (tv, ) <$> isConcreteTyVar_maybe tv
isConcreteTyVarTy_maybe _ = Nothing
isMetaTyVarTy :: TcType -> Bool
isMetaTyVarTy (TyVarTy tv) = isMetaTyVar tv
isMetaTyVarTy _ = False
metaTyVarInfo :: TcTyVar -> MetaInfo
metaTyVarInfo tv
= case tcTyVarDetails tv of
MetaTv { mtv_info = info } -> info
_ -> pprPanic "metaTyVarInfo" (ppr tv)
isTouchableInfo :: MetaInfo -> Bool
isTouchableInfo info
| CycleBreakerTv <- info = False
| otherwise = True
metaTyVarTcLevel :: TcTyVar -> TcLevel
metaTyVarTcLevel tv
= case tcTyVarDetails tv of
MetaTv { mtv_tclvl = tclvl } -> tclvl
_ -> pprPanic "metaTyVarTcLevel" (ppr tv)
metaTyVarTcLevel_maybe :: TcTyVar -> Maybe TcLevel
metaTyVarTcLevel_maybe tv
= case tcTyVarDetails tv of
MetaTv { mtv_tclvl = tclvl } -> Just tclvl
_ -> Nothing
metaTyVarRef :: TyVar -> IORef MetaDetails
metaTyVarRef tv
= case tcTyVarDetails tv of
MetaTv { mtv_ref = ref } -> ref
_ -> pprPanic "metaTyVarRef" (ppr tv)
setMetaTyVarTcLevel :: TcTyVar -> TcLevel -> TcTyVar
setMetaTyVarTcLevel tv tclvl
= case tcTyVarDetails tv of
details@(MetaTv {}) -> setTcTyVarDetails tv (details { mtv_tclvl = tclvl })
_ -> pprPanic "metaTyVarTcLevel" (ppr tv)
isTyVarTyVar :: Var -> Bool
isTyVarTyVar tv
= case tcTyVarDetails tv of
MetaTv { mtv_info = TyVarTv } -> True
_ -> False
isFlexi, isIndirect :: MetaDetails -> Bool
isFlexi Flexi = True
isFlexi _ = False
isIndirect (Indirect _) = True
isIndirect _ = False
isRuntimeUnkSkol :: TyVar -> Bool
-- Called only in GHC.Tc.Errors; see Note [Runtime skolems] there
isRuntimeUnkSkol x
| RuntimeUnk <- tcTyVarDetails x = True
| otherwise = False
mkTyVarNamePairs :: [TyVar] -> [(Name,TyVar)]
-- Just pair each TyVar with its own name
mkTyVarNamePairs tvs = [(tyVarName tv, tv) | tv <- tvs]
findDupTyVarTvs :: [(Name,TcTyVar)] -> [(Name,Name)]
-- If we have [...(x1,tv)...(x2,tv)...]
-- return (x1,x2) in the result list
findDupTyVarTvs prs
= concatMap mk_result_prs $
findDupsEq eq_snd prs
where
eq_snd (_,tv1) (_,tv2) = tv1 == tv2
mk_result_prs ((n1,_) :| xs) = map (\(n2,_) -> (n1,n2)) xs
-- | Returns the (kind, type) variables in a type that are
-- as-yet-unknown: metavariables and RuntimeUnks
ambigTkvsOfTy :: TcType -> ([Var],[Var])
ambigTkvsOfTy ty
= partition (`elemVarSet` dep_tkv_set) ambig_tkvs
where
tkvs = tyCoVarsOfTypeList ty
ambig_tkvs = filter isAmbiguousTyVar tkvs
dep_tkv_set = tyCoVarsOfTypes (map tyVarKind tkvs)
{-
************************************************************************
* *
Tau, sigma and rho
* *
************************************************************************
-}
-- | Make a sigma ty where all type variables are 'Inferred'. That is,
-- they cannot be used with visible type application.
mkInfSigmaTy :: HasDebugCallStack => [TyCoVar] -> [PredType] -> Type -> Type
mkInfSigmaTy tyvars theta ty = mkSigmaTy (mkForAllTyBinders Inferred tyvars) theta ty
-- | Make a sigma ty where all type variables are "specified". That is,
-- they can be used with visible type application
mkSpecSigmaTy :: HasDebugCallStack => [TyVar] -> [PredType] -> Type -> Type
mkSpecSigmaTy tyvars preds ty = mkSigmaTy (mkForAllTyBinders Specified tyvars) preds ty
mkSigmaTy :: HasDebugCallStack => [ForAllTyBinder] -> [PredType] -> Type -> Type
-- Result is TypeLike
mkSigmaTy bndrs theta tau = mkForAllTys bndrs (mkPhiTy theta tau)
tcMkDFunSigmaTy :: [TyVar] -> ThetaType -> Type -> Type
tcMkDFunSigmaTy tvs theta res_ty
= mkForAllTys (mkForAllTyBinders Specified tvs) $
tcMkDFunPhiTy theta res_ty
mkPhiTy :: HasDebugCallStack => [PredType] -> Type -> Type
-- Result type is TypeLike
mkPhiTy = mkInvisFunTys
tcMkPhiTy :: HasDebugCallStack => [PredType] -> Type -> Type
-- Like mkPhiTy, but with no assertion checks; it is called
-- by the type checker and the result kind may not be zonked yet
-- But the result kind is TypeLike
tcMkPhiTy tys ty = foldr (tcMkInvisFunTy TypeLike) ty tys
tcMkDFunPhiTy :: HasDebugCallStack => [PredType] -> Type -> Type
-- Just like tcMkPhiTy, but result type is ConstraintLike
tcMkDFunPhiTy preds res = foldr (tcMkInvisFunTy ConstraintLike) res preds
---------------
getDFunTyKey :: Type -> OccName -- Get some string from a type, to be used to
-- construct a dictionary function name
getDFunTyKey ty | Just ty' <- coreView ty = getDFunTyKey ty'
getDFunTyKey (TyVarTy tv) = getOccName tv
getDFunTyKey (TyConApp tc _) = getOccName tc
getDFunTyKey (LitTy x) = getDFunTyLitKey x
getDFunTyKey (AppTy fun _) = getDFunTyKey fun
getDFunTyKey (FunTy { ft_af = af }) = getOccName (funTyFlagTyCon af)
getDFunTyKey (ForAllTy _ t) = getDFunTyKey t
getDFunTyKey (CastTy ty _) = getDFunTyKey ty
getDFunTyKey t@(CoercionTy _) = pprPanic "getDFunTyKey" (ppr t)
getDFunTyLitKey :: TyLit -> OccName
getDFunTyLitKey (NumTyLit n) = mkOccName Name.varName (show n)
getDFunTyLitKey (StrTyLit n) = mkOccName Name.varName (show n) -- hm
getDFunTyLitKey (CharTyLit n) = mkOccName Name.varName (show n)
{-
************************************************************************
* *
Expanding and splitting
* *
************************************************************************
-}
-- | Splits a forall type into a list of 'PiTyVarBinder's and the inner type.
-- Always succeeds, even if it returns an empty list.
tcSplitPiTys :: Type -> ([PiTyVarBinder], Type)
tcSplitPiTys ty
= assert (all isTyBinder (fst sty) ) -- No CoVar binders here
sty
where sty = splitPiTys ty
-- | Splits a type into a PiTyVarBinder and a body, if possible.
tcSplitPiTy_maybe :: Type -> Maybe (PiTyVarBinder, Type)
tcSplitPiTy_maybe ty
= assert (isMaybeTyBinder sty) -- No CoVar binders here
sty
where
sty = splitPiTy_maybe ty
isMaybeTyBinder (Just (t,_)) = isTyBinder t
isMaybeTyBinder _ = True
tcSplitForAllTyVarBinder_maybe :: Type -> Maybe (TyVarBinder, Type)
tcSplitForAllTyVarBinder_maybe ty | Just ty' <- coreView ty = tcSplitForAllTyVarBinder_maybe ty'
tcSplitForAllTyVarBinder_maybe (ForAllTy tv ty) = assert (isTyVarBinder tv ) Just (tv, ty)
tcSplitForAllTyVarBinder_maybe _ = Nothing
-- | Like 'tcSplitPiTys', but splits off only named binders,
-- returning just the tyvars.
tcSplitForAllTyVars :: Type -> ([TyVar], Type)
tcSplitForAllTyVars ty
= assert (all isTyVar (fst sty) ) sty
where sty = splitForAllTyCoVars ty
-- | Like 'tcSplitForAllTyVars', but only splits 'ForAllTy's with 'Invisible'
-- type variable binders.
tcSplitForAllInvisTyVars :: Type -> ([TyVar], Type)
tcSplitForAllInvisTyVars ty = tcSplitSomeForAllTyVars isInvisibleForAllTyFlag ty
-- | Like 'tcSplitForAllTyVars', but only splits a 'ForAllTy' if @argf_pred argf@
-- is 'True', where @argf@ is the visibility of the @ForAllTy@'s binder and
-- @argf_pred@ is a predicate over visibilities provided as an argument to this
-- function.
tcSplitSomeForAllTyVars :: (ForAllTyFlag -> Bool) -> Type -> ([TyVar], Type)
tcSplitSomeForAllTyVars argf_pred ty
= split ty ty []
where
split _ (ForAllTy (Bndr tv argf) ty) tvs
| argf_pred argf = split ty ty (tv:tvs)
split orig_ty ty tvs | Just ty' <- coreView ty = split orig_ty ty' tvs
split orig_ty _ tvs = (reverse tvs, orig_ty)
-- | Like 'tcSplitForAllTyVars', but only splits 'ForAllTy's with 'Required' type
-- variable binders. All split tyvars are annotated with '()'.
tcSplitForAllReqTVBinders :: Type -> ([TcReqTVBinder], Type)
tcSplitForAllReqTVBinders ty = assert (all isTyVarBinder (fst sty) ) sty
where sty = splitForAllReqTyBinders ty
-- | Like 'tcSplitForAllTyVars', but only splits 'ForAllTy's with 'Invisible' type
-- variable binders. All split tyvars are annotated with their 'Specificity'.
tcSplitForAllInvisTVBinders :: Type -> ([TcInvisTVBinder], Type)
tcSplitForAllInvisTVBinders ty = assert (all (isTyVar . binderVar) (fst sty)) sty
where sty = splitForAllInvisTyBinders ty
-- | Like 'tcSplitForAllTyVars', but splits off only named binders.
tcSplitForAllTyVarBinders :: Type -> ([TyVarBinder], Type)
tcSplitForAllTyVarBinders ty = assert (all isTyVarBinder (fst sty)) sty
where sty = splitForAllForAllTyBinders ty
tcSplitPredFunTy_maybe :: Type -> Maybe (PredType, Type)
-- Split off the first predicate argument from a type
tcSplitPredFunTy_maybe ty
| Just ty' <- coreView ty = tcSplitPredFunTy_maybe ty'
tcSplitPredFunTy_maybe (FunTy { ft_af = af, ft_arg = arg, ft_res = res })
| isInvisibleFunArg af
= Just (arg, res)
tcSplitPredFunTy_maybe _
= Nothing
tcSplitPhiTy :: Type -> (ThetaType, Type)
tcSplitPhiTy ty
= split ty []
where
split ty ts
= case tcSplitPredFunTy_maybe ty of
Just (pred, ty) -> split ty (pred:ts)
Nothing -> (reverse ts, ty)
-- | Split a sigma type into its parts. This only splits /invisible/ type
-- variable binders, as these are the only forms of binder that the typechecker
-- will implicitly instantiate.
tcSplitSigmaTy :: Type -> ([TyVar], ThetaType, Type)
tcSplitSigmaTy ty = case tcSplitForAllInvisTyVars ty of
(tvs, rho) -> case tcSplitPhiTy rho of
(theta, tau) -> (tvs, theta, tau)
-- | Split a sigma type into its parts, going underneath as many arrows
-- and foralls as possible. See Note [tcSplitNestedSigmaTys]
tcSplitNestedSigmaTys :: Type -> ([TyVar], ThetaType, Type)
-- See Note [tcSplitNestedSigmaTys]
-- NB: This is basically a pure version of deeplyInstantiate (from Unify) that
-- doesn't compute an HsWrapper.
tcSplitNestedSigmaTys ty
-- If there's a forall, split it apart and try splitting the rho type
-- underneath it.
| (arg_tys, body_ty) <- tcSplitFunTys ty
, (tvs1, theta1, rho1) <- tcSplitSigmaTy body_ty
, not (null tvs1 && null theta1)
= let (tvs2, theta2, rho2) = tcSplitNestedSigmaTys rho1
in (tvs1 ++ tvs2, theta1 ++ theta2, mkScaledFunTys arg_tys rho2)
-- If there's no forall, we're done.
| otherwise = ([], [], ty)
{- Note [tcSplitNestedSigmaTys]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tcSplitNestedSigmaTys splits out all the /nested/ foralls and constraints,
including under function arrows. E.g. given this type synonym:
type Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t
then
tcSplitNestedSigmaTys (forall s t a b. C s t a b => Int -> Traversal s t a b)
will return
( [s,t,a,b,f]
, [C s t a b, Applicative f]
, Int -> (a -> f b) -> s -> f t)@.
This function is used in these places:
* Improving error messages in GHC.Tc.Gen.Head.addFunResCtxt
* Validity checking for default methods: GHC.Tc.TyCl.checkValidClass
* A couple of calls in the GHCi debugger: GHC.Runtime.Heap.Inspect
In other words, just in validity checking and error messages; hence
no wrappers or evidence generation.
Notice that tcSplitNestedSigmaTys even looks under function arrows;
doing so is the Right Thing even with simple subsumption, not just
with deep subsumption.
-}
-----------------------
tcTyConAppTyCon :: Type -> TyCon
tcTyConAppTyCon ty
= case tcTyConAppTyCon_maybe ty of
Just tc -> tc
Nothing -> pprPanic "tcTyConAppTyCon" (pprType ty)
-- | Like 'tcRepSplitTyConApp_maybe', but only returns the 'TyCon'.
tcTyConAppTyCon_maybe :: Type -> Maybe TyCon
tcTyConAppTyCon_maybe ty | Just ty' <- coreView ty = tcTyConAppTyCon_maybe ty'
tcTyConAppTyCon_maybe (TyConApp tc _) = Just tc
tcTyConAppTyCon_maybe (FunTy { ft_af = af }) = Just (funTyFlagTyCon af)
tcTyConAppTyCon_maybe _ = Nothing
tcTyConAppArgs :: Type -> [Type]
tcTyConAppArgs ty = case tcSplitTyConApp_maybe ty of
Just (_, args) -> args
Nothing -> pprPanic "tcTyConAppArgs" (pprType ty)
-----------------------
tcSplitFunTys :: Type -> ([Scaled Type], Type)
tcSplitFunTys ty = case tcSplitFunTy_maybe ty of
Nothing -> ([], ty)
Just (arg,res) -> (arg:args, res')
where
(args,res') = tcSplitFunTys res
tcSplitFunTy_maybe :: Type -> Maybe (Scaled Type, Type)
-- Only splits function (->) and (-=>), not (=>) or (==>)
tcSplitFunTy_maybe ty
| Just ty' <- coreView ty = tcSplitFunTy_maybe ty'
tcSplitFunTy_maybe (FunTy { ft_af = af, ft_mult = w, ft_arg = arg, ft_res = res })
| isVisibleFunArg af = Just (Scaled w arg, res)
tcSplitFunTy_maybe _ = Nothing
-- Note the isVisibleFunArg guard
-- Consider (?x::Int) => Bool
-- We don't want to treat this as a function type!
-- A concrete example is test tc230:
-- f :: () -> (?p :: ()) => () -> ()
--
-- g = f () ()
tcSplitFunTysN :: Arity -- n: Number of desired args
-> TcRhoType
-> Either Arity -- Number of missing arrows
([Scaled TcSigmaType],-- Arg types (always N types)
TcSigmaType) -- The rest of the type
-- ^ Split off exactly the specified number argument types
-- Returns
-- (Left m) if there are 'm' missing arrows in the type
-- (Right (tys,res)) if the type looks like t1 -> ... -> tn -> res
tcSplitFunTysN n ty
| n == 0
= Right ([], ty)
| Just (arg,res) <- tcSplitFunTy_maybe ty
= case tcSplitFunTysN (n-1) res of
Left m -> Left m
Right (args,body) -> Right (arg:args, body)
| otherwise
= Left n
tcSplitFunTy :: Type -> (Scaled Type, Type)
tcSplitFunTy ty = expectJust "tcSplitFunTy" (tcSplitFunTy_maybe ty)
tcFunArgTy :: Type -> Scaled Type
tcFunArgTy ty = fst (tcSplitFunTy ty)
tcFunResultTy :: Type -> Type
tcFunResultTy ty = snd (tcSplitFunTy ty)
-- | Strips off n *visible* arguments and returns the resulting type
tcFunResultTyN :: HasDebugCallStack => Arity -> Type -> Type
tcFunResultTyN n ty
| Right (_, res_ty) <- tcSplitFunTysN n ty
= res_ty
| otherwise
= pprPanic "tcFunResultTyN" (ppr n <+> ppr ty)
-----------------------
tcSplitAppTy_maybe :: Type -> Maybe (Type, Type)
tcSplitAppTy_maybe ty | Just ty' <- coreView ty = tcSplitAppTy_maybe ty'
tcSplitAppTy_maybe ty = tcSplitAppTyNoView_maybe ty
tcSplitAppTy :: Type -> (Type, Type)
tcSplitAppTy ty = case tcSplitAppTy_maybe ty of
Just stuff -> stuff
Nothing -> pprPanic "tcSplitAppTy" (pprType ty)
tcSplitAppTys :: Type -> (Type, [Type])
tcSplitAppTys ty
= go ty []
where
go ty args = case tcSplitAppTy_maybe ty of
Just (ty', arg) -> go ty' (arg:args)
Nothing -> (ty,args)
-----------------------
tcIsTyVarTy :: Type -> Bool
tcIsTyVarTy ty | Just ty' <- coreView ty = tcIsTyVarTy ty'
tcIsTyVarTy (CastTy ty _) = tcIsTyVarTy ty -- look through casts, as
-- this is only used for
-- e.g., FlexibleContexts
tcIsTyVarTy (TyVarTy _) = True
tcIsTyVarTy _ = False
-----------------------
tcSplitQuantPredTy :: Type -> ([TyVar], [Type], PredType)
-- Split up the type of a quantified predicate
-- forall tys, theta => head
-- NB splitFunTys, not tcSplitFunTys;
-- the latter specifically stops at PredTy arguments,
-- and we don't want to do that here
tcSplitQuantPredTy ty
= case tcSplitForAllInvisTyVars ty of { (tvs, rho) ->
case splitFunTys rho of { (theta, head) ->
(tvs, map scaledThing theta, head) }}
tcSplitDFunTy :: Type -> ([TyVar], [Type], Class, [Type])
-- Split the type of a dictionary function
tcSplitDFunTy ty
= case tcSplitQuantPredTy ty of { (tvs, theta, head) ->
case tcSplitDFunHead head of { (clas, tys) ->
(tvs, theta, clas, tys) }}
tcSplitDFunHead :: Type -> (Class, [Type])
tcSplitDFunHead = getClassPredTys
tcSplitMethodTy :: Type -> ([TyVar], PredType, Type)
-- A class method (selector) always has a type like
-- forall as. C as => blah
-- So if the class looks like
-- class C a where
-- op :: forall b. (Eq a, Ix b) => a -> b
-- the class method type looks like
-- op :: forall a. C a => forall b. (Eq a, Ix b) => a -> b
--
-- tcSplitMethodTy just peels off the outer forall and
-- that first predicate
tcSplitMethodTy ty
| (sel_tyvars,sel_rho) <- tcSplitForAllInvisTyVars ty
, Just (first_pred, local_meth_ty) <- tcSplitPredFunTy_maybe sel_rho
= (sel_tyvars, first_pred, local_meth_ty)
| otherwise
= pprPanic "tcSplitMethodTy" (ppr ty)
{- *********************************************************************
* *
Predicate types
* *
************************************************************************
Deconstructors and tests on predicate types
Note [Kind polymorphic type classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class C f where... -- C :: forall k. k -> Constraint
g :: forall (f::*). C f => f -> f
Here the (C f) in the signature is really (C * f), and we
don't want to complain that the * isn't a type variable!
-}
isTyVarClassPred :: PredType -> Bool
isTyVarClassPred ty = case getClassPredTys_maybe ty of
Just (_, tys) -> all isTyVarTy tys
_ -> False
-------------------------
checkValidClsArgs :: Bool -> Class -> [KindOrType] -> Bool
-- If the Bool is True (flexible contexts), return True (i.e. ok)
-- Otherwise, check that the type (not kind) args are all headed by a tyvar
-- E.g. (Eq a) accepted, (Eq (f a)) accepted, but (Eq Int) rejected
-- This function is here in GHC.Tc.Utils.TcType, rather than in GHC.Tc.Validity,
-- because it is called from GHC.Tc.Solver, which itself is imported by GHC.Tc.Validity
checkValidClsArgs flexible_contexts cls kts
| flexible_contexts = True
| otherwise = all hasTyVarHead tys
where
tys = filterOutInvisibleTypes (classTyCon cls) kts
hasTyVarHead :: Type -> Bool
-- Returns true of (a t1 .. tn), where 'a' is a type variable
hasTyVarHead ty -- Haskell 98 allows predicates of form
| tcIsTyVarTy ty = True -- C (a ty1 .. tyn)
| otherwise -- where a is a type variable
= case tcSplitAppTy_maybe ty of
Just (ty, _) -> hasTyVarHead ty
Nothing -> False
evVarPred :: EvVar -> PredType
evVarPred var = varType var
-- Historical note: I used to have an ASSERT here,
-- checking (isEvVarType (varType var)). But with something like
-- f :: c => _ -> _
-- we end up with (c :: kappa), and (kappa ~ Constraint). Until
-- we solve and zonk (which there is no particular reason to do for
-- partial signatures, (isEvVarType kappa) will return False. But
-- nothing is wrong. So I just removed the ASSERT.
---------------------------
boxEqPred :: EqRel -> Type -> Type -> Maybe (Class, [Type])
-- Given (t1 ~# t2) or (t1 ~R# t2) return the boxed version
-- (t1 ~ t2) or (t1 `Coercible` t2)
boxEqPred eq_rel ty1 ty2
= case eq_rel of
NomEq | homo_kind -> Just (eqClass, [k1, ty1, ty2])
| otherwise -> Just (heqClass, [k1, k2, ty1, ty2])
ReprEq | homo_kind -> Just (coercibleClass, [k1, ty1, ty2])
| otherwise -> Nothing -- Sigh: we do not have heterogeneous Coercible
-- so we can't abstract over it
-- Nothing fundamental: we could add it
where
k1 = typeKind ty1
k2 = typeKind ty2
homo_kind = k1 `tcEqType` k2
pickCapturedPreds
:: TyVarSet -- Quantifying over these
-> TcThetaType -- Proposed constraints to quantify
-> TcThetaType -- A subset that we can actually quantify
-- A simpler version of pickQuantifiablePreds, used to winnow down
-- the inferred constraints of a group of bindings, into those for
-- one particular identifier
pickCapturedPreds qtvs theta
= filter captured theta
where
captured pred = isIPLikePred pred || (tyCoVarsOfType pred `intersectsVarSet` qtvs)
-- Superclasses
type PredWithSCs a = (PredType, [PredType], a)
mkMinimalBySCs :: forall a. (a -> PredType) -> [a] -> [a]
-- Remove predicates that
--
-- - are the same as another predicate
--
-- - can be deduced from another by superclasses,
--
-- - are a reflexive equality (e.g * ~ *)
-- (see Note [Remove redundant provided dicts] in GHC.Tc.TyCl.PatSyn)
--
-- The result is a subset of the input.
-- The 'a' is just paired up with the PredType;
-- typically it might be a dictionary Id
mkMinimalBySCs get_pred xs = go preds_with_scs []
where
preds_with_scs :: [PredWithSCs a]
preds_with_scs = [ (pred, implicants pred, x)
| x <- xs
, let pred = get_pred x ]
go :: [PredWithSCs a] -- Work list
-> [PredWithSCs a] -- Accumulating result
-> [a]
go [] min_preds
= reverse (map thdOf3 min_preds)
-- The 'reverse' isn't strictly necessary, but it
-- means that the results are returned in the same
-- order as the input, which is generally saner
go (work_item@(p,_,_) : work_list) min_preds
| EqPred _ t1 t2 <- classifyPredType p
, t1 `tcEqType` t2 -- See GHC.Tc.TyCl.PatSyn
-- Note [Remove redundant provided dicts]
= go work_list min_preds
| p `in_cloud` work_list || p `in_cloud` min_preds
-- Why look at work-list too? Suppose work_item is Eq a,
-- and work-list contains Ord a
= go work_list min_preds
| otherwise
= go work_list (work_item : min_preds)
in_cloud :: PredType -> [PredWithSCs a] -> Bool
in_cloud p ps = or [ p `tcEqType` p' | (_, scs, _) <- ps, p' <- scs ]
implicants pred
= pred : eq_extras pred ++ transSuperClasses pred
-- Combine (a ~ b) and (b ~ a); no need to have both in one context
-- These can arise when dealing with partial type signatures (e.g. T14715)
eq_extras pred
= case classifyPredType pred of
EqPred r t1 t2 -> [mkPrimEqPredRole (eqRelRole r) t2 t1]
ClassPred cls [k1,k2,t1,t2]
| cls `hasKey` heqTyConKey -> [mkClassPred cls [k2, k1, t2, t1]]
ClassPred cls [k,t1,t2]
| cls `hasKey` eqTyConKey -> [mkClassPred cls [k, t2, t1]]
_ -> []
transSuperClasses :: PredType -> [PredType]
-- (transSuperClasses p) returns (p's superclasses) not including p
-- Stop if you encounter the same class again
-- See Note [Expanding superclasses]
transSuperClasses p
= go emptyNameSet p
where
go :: NameSet -> PredType -> [PredType]
go rec_clss p
| ClassPred cls tys <- classifyPredType p
, let cls_nm = className cls
, not (cls_nm `elemNameSet` rec_clss)
, let rec_clss' | isCTupleClass cls = rec_clss
| otherwise = rec_clss `extendNameSet` cls_nm
= [ p' | sc <- immSuperClasses cls tys
, p' <- sc : go rec_clss' sc ]
| otherwise
= []
immSuperClasses :: Class -> [Type] -> [PredType]
immSuperClasses cls tys
= substTheta (zipTvSubst tyvars tys) sc_theta
where
(tyvars,sc_theta,_,_) = classBigSig cls
isImprovementPred :: PredType -> Bool
-- Either it's an equality, or has some functional dependency
isImprovementPred ty
= case classifyPredType ty of
EqPred NomEq t1 t2 -> not (t1 `tcEqType` t2)
EqPred ReprEq _ _ -> False
ClassPred cls _ -> classHasFds cls
IrredPred {} -> True -- Might have equalities after reduction?
ForAllPred {} -> False
{- Note [Expanding superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we expand superclasses, we use the following algorithm:
transSuperClasses( C tys ) returns the transitive superclasses
of (C tys), not including C itself
For example
class C a b => D a b
class D b a => C a b
Then
transSuperClasses( Ord ty ) = [Eq ty]
transSuperClasses( C ta tb ) = [D tb ta, C tb ta]
Notice that in the recursive-superclass case we include C again at
the end of the chain. One could exclude C in this case, but
the code is more awkward and there seems no good reason to do so.
(However C.f. GHC.Tc.Solver.Canonical.mk_strict_superclasses, which /does/
appear to do so.)
The algorithm is expand( so_far, pred ):
1. If pred is not a class constraint, return empty set
Otherwise pred = C ts
2. If C is in so_far, return empty set (breaks loops)
3. Find the immediate superclasses constraints of (C ts)
4. For each such sc_pred, return (sc_pred : expand( so_far+C, D ss )
Notice that
* With normal Haskell-98 classes, the loop-detector will never bite,
so we'll get all the superclasses.
* We need the loop-breaker in case we have UndecidableSuperClasses on
* Since there is only a finite number of distinct classes, expansion
must terminate.
* The loop breaking is a bit conservative. Notably, a tuple class
could contain many times without threatening termination:
(Eq a, (Ord a, Ix a))
And this is try of any class that we can statically guarantee
as non-recursive (in some sense). For now, we just make a special
case for tuples. Something better would be cool.
See also GHC.Tc.TyCl.Utils.checkClassCycles.
************************************************************************
* *
Classifying types
* *
************************************************************************
-}
isSigmaTy :: TcType -> Bool
-- isSigmaTy returns true of any qualified type. It doesn't
-- *necessarily* have any foralls. E.g
-- f :: (?x::Int) => Int -> Int
isSigmaTy ty | Just ty' <- coreView ty = isSigmaTy ty'
isSigmaTy (ForAllTy {}) = True
isSigmaTy (FunTy { ft_af = af }) = isInvisibleFunArg af
isSigmaTy _ = False
isRhoTy :: TcType -> Bool -- True of TcRhoTypes; see Note [TcRhoType]
isRhoTy ty | Just ty' <- coreView ty = isRhoTy ty'
isRhoTy (ForAllTy {}) = False
isRhoTy (FunTy { ft_af = af }) = isVisibleFunArg af
isRhoTy _ = True
-- | Like 'isRhoTy', but also says 'True' for 'Infer' types
isRhoExpTy :: ExpType -> Bool
isRhoExpTy (Check ty) = isRhoTy ty
isRhoExpTy (Infer {}) = True
isOverloadedTy :: Type -> Bool
-- Yes for a type of a function that might require evidence-passing
-- Used only by bindLocalMethods
isOverloadedTy ty | Just ty' <- coreView ty = isOverloadedTy ty'
isOverloadedTy (ForAllTy _ ty) = isOverloadedTy ty
isOverloadedTy (FunTy { ft_af = af }) = isInvisibleFunArg af
isOverloadedTy _ = False
isFloatTy, isDoubleTy,
isFloatPrimTy, isDoublePrimTy,
isIntegerTy, isNaturalTy,
isIntTy, isWordTy, isBoolTy,
isUnitTy, isCharTy :: Type -> Bool
isFloatTy = is_tc floatTyConKey
isDoubleTy = is_tc doubleTyConKey
isFloatPrimTy = is_tc floatPrimTyConKey
isDoublePrimTy = is_tc doublePrimTyConKey
isIntegerTy = is_tc integerTyConKey
isNaturalTy = is_tc naturalTyConKey
isIntTy = is_tc intTyConKey
isWordTy = is_tc wordTyConKey
isBoolTy = is_tc boolTyConKey
isUnitTy = is_tc unitTyConKey
isCharTy = is_tc charTyConKey
-- | Check whether the type is of the form @Any :: k@,
-- returning the kind @k@.
anyTy_maybe :: Type -> Maybe Kind
anyTy_maybe ty
| Just (tc, [k]) <- splitTyConApp_maybe ty
, getUnique tc == anyTyConKey
= Just k
| otherwise
= Nothing
-- | Is the type inhabited by machine floating-point numbers?
--
-- Used to check that we don't use floating-point literal patterns
-- in Core.
--
-- See #9238 and Note [Rules for floating-point comparisons]
-- in GHC.Core.Opt.ConstantFold.
isFloatingPrimTy :: Type -> Bool
isFloatingPrimTy ty = isFloatPrimTy ty || isDoublePrimTy ty
-- | Is a type 'String'?
isStringTy :: Type -> Bool
isStringTy ty
= case tcSplitTyConApp_maybe ty of
Just (tc, [arg_ty]) -> tc == listTyCon && isCharTy arg_ty
_ -> False
is_tc :: Unique -> Type -> Bool
-- Newtypes are opaque to this
is_tc uniq ty = case tcSplitTyConApp_maybe ty of
Just (tc, _) -> uniq == getUnique tc
Nothing -> False
isRigidTy :: TcType -> Bool
isRigidTy ty
| Just (tc,_) <- tcSplitTyConApp_maybe ty = isGenerativeTyCon tc Nominal
| Just {} <- tcSplitAppTy_maybe ty = True
| isForAllTy ty = True
| otherwise = False
{-
************************************************************************
* *
Misc
* *
************************************************************************
Note [Visible type application]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC implements a generalisation of the algorithm described in the
"Visible Type Application" paper (available from
http://www.cis.upenn.edu/~sweirich/publications.html). A key part
of that algorithm is to distinguish user-specified variables from inferred
variables. For example, the following should typecheck:
f :: forall a b. a -> b -> b
f = const id
g = const id
x = f @Int @Bool 5 False
y = g 5 @Bool False
The idea is that we wish to allow visible type application when we are
instantiating a specified, fixed variable. In practice, specified, fixed
variables are either written in a type signature (or
annotation), OR are imported from another module. (We could do better here,
for example by doing SCC analysis on parts of a module and considering any
type from outside one's SCC to be fully specified, but this is very confusing to
users. The simple rule above is much more straightforward and predictable.)
So, both of f's quantified variables are specified and may be instantiated.
But g has no type signature, so only id's variable is specified (because id
is imported). We write the type of g as forall {a}. a -> forall b. b -> b.
Note that the a is in braces, meaning it cannot be instantiated with
visible type application.
Tracking specified vs. inferred variables is done conveniently by a field
in PiTyVarBinder.
-}
deNoteType :: Type -> Type
-- Remove all *outermost* type synonyms and other notes
deNoteType ty | Just ty' <- coreView ty = deNoteType ty'
deNoteType ty = ty
{-
Find the free tycons and classes of a type. This is used in the front
end of the compiler.
-}
{-
************************************************************************
* *
External types
* *
************************************************************************
The compiler's foreign function interface supports the passing of a
restricted set of types as arguments and results (the restricting factor
being the )
-}
tcSplitIOType_maybe :: Type -> Maybe (TyCon, Type)
-- (tcSplitIOType_maybe t) returns Just (IO,t',co)
-- if co : t ~ IO t'
-- returns Nothing otherwise
tcSplitIOType_maybe ty
= case tcSplitTyConApp_maybe ty of
Just (io_tycon, [io_res_ty])
| io_tycon `hasKey` ioTyConKey ->
Just (io_tycon, io_res_ty)
_ ->
Nothing
-- | Reason why a type in an FFI signature is invalid
data IllegalForeignTypeReason
= TypeCannotBeMarshaled !Type TypeCannotBeMarshaledReason
| ForeignDynNotPtr
!Type -- ^ Expected type
!Type -- ^ Actual type
| SafeHaskellMustBeInIO
| IOResultExpected
| UnexpectedNestedForall
| LinearTypesNotAllowed
| OneArgExpected
| AtLeastOneArgExpected
deriving Generic
-- | Reason why a type cannot be marshalled through the FFI.
data TypeCannotBeMarshaledReason
= NotADataType
| NewtypeDataConNotInScope !(Maybe TyCon)
| UnliftedFFITypesNeeded
| NotABoxedMarshalableTyCon
| ForeignLabelNotAPtr
| NotSimpleUnliftedType
| NotBoxedKindAny
deriving Generic
isFFIArgumentTy :: DynFlags -> Safety -> Type -> Validity' IllegalForeignTypeReason
-- Checks for valid argument type for a 'foreign import'
isFFIArgumentTy dflags safety ty
= checkRepTyCon (legalOutgoingTyCon dflags safety) ty
isFFIExternalTy :: Type -> Validity' IllegalForeignTypeReason
-- Types that are allowed as arguments of a 'foreign export'
isFFIExternalTy ty = checkRepTyCon legalFEArgTyCon ty
isFFIImportResultTy :: DynFlags -> Type -> Validity' IllegalForeignTypeReason
isFFIImportResultTy dflags ty
= checkRepTyCon (legalFIResultTyCon dflags) ty
isFFIExportResultTy :: Type -> Validity' IllegalForeignTypeReason
isFFIExportResultTy ty = checkRepTyCon legalFEResultTyCon ty
isFFIDynTy :: Type -> Type -> Validity' IllegalForeignTypeReason
-- The type in a foreign import dynamic must be Ptr, FunPtr, or a newtype of
-- either, and the wrapped function type must be equal to the given type.
-- We assume that all types have been run through normaliseFfiType, so we don't
-- need to worry about expanding newtypes here.
isFFIDynTy expected ty
-- Note [Foreign import dynamic]
-- In the example below, expected would be 'CInt -> IO ()', while ty would
-- be 'FunPtr (CDouble -> IO ())'.
| Just (tc, [ty']) <- splitTyConApp_maybe ty
, tyConUnique tc `elem` [ptrTyConKey, funPtrTyConKey]
, eqType ty' expected
= IsValid
| otherwise
= NotValid (ForeignDynNotPtr expected ty)
isFFILabelTy :: Type -> Validity' IllegalForeignTypeReason
-- The type of a foreign label must be Ptr, FunPtr, or a newtype of either.
isFFILabelTy ty = checkRepTyCon ok ty
where
ok tc | tc `hasKey` funPtrTyConKey || tc `hasKey` ptrTyConKey
= IsValid
| otherwise
= NotValid ForeignLabelNotAPtr
-- | Check validity for a type of the form @Any :: k@.
--
-- This function returns:
--
-- - @Just IsValid@ for @Any :: Type@ and @Any :: UnliftedType@,
-- - @Just (NotValid ..)@ for @Any :: k@ if @k@ is not a kind of boxed types,
-- - @Nothing@ if the type is not @Any@.
checkAnyTy :: Type -> Maybe (Validity' IllegalForeignTypeReason)
checkAnyTy ty
| Just ki <- anyTy_maybe ty
= Just $
if isJust $ kindBoxedRepLevity_maybe ki
then IsValid
-- NB: don't allow things like @Any :: TYPE IntRep@, as per #21305.
else NotValid (TypeCannotBeMarshaled ty NotBoxedKindAny)
| otherwise
= Nothing
isFFIPrimArgumentTy :: DynFlags -> Type -> Validity' IllegalForeignTypeReason
-- Checks for valid argument type for a 'foreign import prim'
-- Currently they must all be simple unlifted types, or Any (at kind Type or UnliftedType),
-- which can be used to pass the address to a Haskell object on the heap to
-- the foreign function.
isFFIPrimArgumentTy dflags ty
| Just validity <- checkAnyTy ty
= validity
| otherwise
= checkRepTyCon (legalFIPrimArgTyCon dflags) ty
isFFIPrimResultTy :: DynFlags -> Type -> Validity' IllegalForeignTypeReason
-- Checks for valid result type for a 'foreign import prim' Currently
-- it must be an unlifted type, including unboxed tuples, unboxed
-- sums, or the well-known type Any (at kind Type or UnliftedType).
isFFIPrimResultTy dflags ty
| Just validity <- checkAnyTy ty
= validity
| otherwise
= checkRepTyCon (legalFIPrimResultTyCon dflags) ty
isFunPtrTy :: Type -> Bool
isFunPtrTy ty
| Just (tc, [_]) <- splitTyConApp_maybe ty
= tc `hasKey` funPtrTyConKey
| otherwise
= False
-- normaliseFfiType gets run before checkRepTyCon, so we don't
-- need to worry about looking through newtypes or type functions
-- here; that's already been taken care of.
checkRepTyCon
:: (TyCon -> Validity' TypeCannotBeMarshaledReason)
-> Type
-> Validity' IllegalForeignTypeReason
checkRepTyCon check_tc ty
= fmap (TypeCannotBeMarshaled ty) $ case splitTyConApp_maybe ty of
Just (tc, tys)
| isNewTyCon tc -> NotValid (mk_nt_reason tc tys)
| otherwise -> check_tc tc
Nothing -> NotValid NotADataType
where
mk_nt_reason tc tys
| null tys = NewtypeDataConNotInScope Nothing
| otherwise = NewtypeDataConNotInScope (Just tc)
{-
Note [Foreign import dynamic]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A dynamic stub must be of the form 'FunPtr ft -> ft' where ft is any foreign
type. Similarly, a wrapper stub must be of the form 'ft -> IO (FunPtr ft)'.
We use isFFIDynTy to check whether a signature is well-formed. For example,
given a (illegal) declaration like:
foreign import ccall "dynamic"
foo :: FunPtr (CDouble -> IO ()) -> CInt -> IO ()
isFFIDynTy will compare the 'FunPtr' type 'CDouble -> IO ()' with the curried
result type 'CInt -> IO ()', and return False, as they are not equal.
----------------------------------------------
These chaps do the work; they are not exported
----------------------------------------------
-}
legalFEArgTyCon :: TyCon -> Validity' TypeCannotBeMarshaledReason
legalFEArgTyCon tc
-- It's illegal to make foreign exports that take unboxed
-- arguments. The RTS API currently can't invoke such things. --SDM 7/2000
= boxedMarshalableTyCon tc
legalFIResultTyCon :: DynFlags -> TyCon -> Validity' TypeCannotBeMarshaledReason
legalFIResultTyCon dflags tc
| tc == unitTyCon = IsValid
| otherwise = marshalableTyCon dflags tc
legalFEResultTyCon :: TyCon -> Validity' TypeCannotBeMarshaledReason
legalFEResultTyCon tc
| tc == unitTyCon = IsValid
| otherwise = boxedMarshalableTyCon tc
legalOutgoingTyCon :: DynFlags -> Safety -> TyCon -> Validity' TypeCannotBeMarshaledReason
-- Checks validity of types going from Haskell -> external world
legalOutgoingTyCon dflags _ tc
= marshalableTyCon dflags tc
-- Check for marshalability of a primitive type.
-- We exclude lifted types such as RealWorld and TYPE.
-- They can technically appear in types, e.g.
-- f :: RealWorld -> TYPE LiftedRep -> RealWorld
-- f x _ = x
-- but there are no values of type RealWorld or TYPE LiftedRep,
-- so it doesn't make sense to use them in FFI.
marshalablePrimTyCon :: TyCon -> Bool
marshalablePrimTyCon tc = isPrimTyCon tc && not (isLiftedTypeKind (tyConResKind tc))
marshalableTyCon :: DynFlags -> TyCon -> Validity' TypeCannotBeMarshaledReason
marshalableTyCon dflags tc
| marshalablePrimTyCon tc
, not (null (tyConPrimRep tc)) -- Note [Marshalling void]
= validIfUnliftedFFITypes dflags
| otherwise
= boxedMarshalableTyCon tc
boxedMarshalableTyCon :: TyCon -> Validity' TypeCannotBeMarshaledReason
boxedMarshalableTyCon tc
| getUnique tc `elem` [ intTyConKey, int8TyConKey, int16TyConKey
, int32TyConKey, int64TyConKey
, wordTyConKey, word8TyConKey, word16TyConKey
, word32TyConKey, word64TyConKey
, floatTyConKey, doubleTyConKey
, ptrTyConKey, funPtrTyConKey
, charTyConKey
, stablePtrTyConKey
, boolTyConKey
]
= IsValid
| otherwise = NotValid NotABoxedMarshalableTyCon
legalFIPrimArgTyCon :: DynFlags -> TyCon -> Validity' TypeCannotBeMarshaledReason
-- Check args of 'foreign import prim', only allow simple unlifted types.
legalFIPrimArgTyCon dflags tc
| marshalablePrimTyCon tc
= validIfUnliftedFFITypes dflags
| otherwise
= NotValid NotSimpleUnliftedType
legalFIPrimResultTyCon :: DynFlags -> TyCon -> Validity' TypeCannotBeMarshaledReason
-- Check result type of 'foreign import prim'. Allow simple unlifted
-- types and also unboxed tuple and sum result types.
legalFIPrimResultTyCon dflags tc
| marshalablePrimTyCon tc
, not (null (tyConPrimRep tc)) -- Note [Marshalling void]
= validIfUnliftedFFITypes dflags
| isUnboxedTupleTyCon tc || isUnboxedSumTyCon tc
= validIfUnliftedFFITypes dflags
| otherwise
= NotValid $ NotSimpleUnliftedType
validIfUnliftedFFITypes :: DynFlags -> Validity' TypeCannotBeMarshaledReason
validIfUnliftedFFITypes dflags
| xopt LangExt.UnliftedFFITypes dflags = IsValid
| otherwise = NotValid UnliftedFFITypesNeeded
{-
Note [Marshalling void]
~~~~~~~~~~~~~~~~~~~~~~~
We don't treat State# (whose PrimRep is VoidRep) as marshalable.
In turn that means you can't write
foreign import foo :: Int -> State# RealWorld
Reason: the back end falls over with panic "primRepHint:VoidRep";
and there is no compelling reason to permit it
-}
{-
************************************************************************
* *
Visiblities
* *
************************************************************************
-}
-- | For every arg a tycon can take, the returned list says True if the argument
-- is taken visibly, and False otherwise. Ends with an infinite tail of Trues to
-- allow for oversaturation.
tcTyConVisibilities :: TyCon -> [Bool]
tcTyConVisibilities tc = tc_binder_viss ++ tc_return_kind_viss ++ repeat True
where
tc_binder_viss = map isVisibleTyConBinder (tyConBinders tc)
tc_return_kind_viss = map isVisiblePiTyBinder (fst $ tcSplitPiTys (tyConResKind tc))
-- | If the tycon is applied to the types, is the next argument visible?
isNextTyConArgVisible :: TyCon -> [Type] -> Bool
isNextTyConArgVisible tc tys
= tcTyConVisibilities tc `getNth` length tys
-- | Should this type be applied to a visible argument?
isNextArgVisible :: TcType -> Bool
isNextArgVisible ty
| Just (bndr, _) <- tcSplitPiTy_maybe ty = isVisiblePiTyBinder bndr
| otherwise = True
-- this second case might happen if, say, we have an unzonked TauTv.
-- But TauTvs can't range over types that take invisible arguments
{-
************************************************************************
* *
Paterson sizes
* *
************************************************************************
-}
{- Note [The PatersonSize of a type]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The PatersonSize of type is something we can compare, with `ltPatersonSize`,
to determine if the Paterson conditions are satisfied for an instance
declaration. See Note [Paterson conditions] in GHC.Tc.Validity.
There are some wrinkles
(PS1) Once we get into an implicit parameter or equality we
can't get back to a class constraint, so it's safe
to say "size 0". See #4200.
We do this with isTerminatingClass
Note [Invisible arguments and termination]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When checking the ​Paterson conditions for termination an instance
declaration, we check for the number of "constructors and variables"
in the instance head and constraints. Question: Do we look at
* All the arguments, visible or invisible?
* Just the visible arguments?
I think both will ensure termination, provided we are consistent.
Currently we are /not/ consistent, which is really a bug. It's
described in #15177, which contains a number of examples.
The suspicious bits are the calls to filterOutInvisibleTypes.
See also #11833.
Note [Stuck type families]
~~~~~~~~~~~~~~~~~~~~~~~~~~
A type-family application generally has infinite size (PS_TyFam);
see (PC3) in Note [Paterson conditions] in GHC.Tc.Validity.
But a couple of built-in type families have no axioms, and can never
expand into anything else. They are:
* (TypeError "stuff"). E.g. consider
type family F a where
F Int = Bool
F Bool = Char
F _ = TypeError "Bad"
We don't want to complain about possible non-termination of F, in
GHC.Tc.Validity.checkFamInstRhs. cf indexed-types/should_fail/T13271
* (Any @k).
For now we treat them as being size zero, but (#22696) I think we should
actually treat them as big (like any other ype family) because we don't
want to abstract over them in e.g. validDerivPred.
The type-family termination test, in GHC.Tc.Validity.checkFamInstRhs, already
has a separate call to isStuckTypeFamily, so the `F` above will still be accepted.
-}
-- | Why was the LHS 'PatersonSize' not strictly smaller than the RHS 'PatersonSize'?
--
-- See Note [Paterson conditions] in GHC.Tc.Validity.
data PatersonSizeFailure
-- | Either side contains a type family.
= PSF_TyFam TyCon
-- | The size of the LHS is not strictly less than the size of the RHS.
| PSF_Size
-- | These type variables appear more often in the LHS than in the RHS.
| PSF_TyVar [TyVar] -- ^ no duplicates in this list
--------------------------------------
-- | The Paterson size of a given type, in the sense of
-- Note [Paterson conditions] in GHC.Tc.Validity
--
-- - after expanding synonyms,
-- - ignoring coercions (as they are not user written).
data PatersonSize
-- | The type mentions a type family, so the size could be anything.
= PS_TyFam TyCon
-- | The type does not mention a type family.
| PS_Vanilla { ps_tvs :: [TyVar] -- ^ free tyvars, including repetitions;
, ps_size :: Int -- ^ number of type constructors and variables
}
-- ToDo: ignore invisible arguments? See Note [Invisible arguments and termination]
instance Outputable PatersonSize where
ppr (PS_TyFam tc) = text "PS_TyFam" <+> ppr tc
ppr (PS_Vanilla { ps_tvs = tvs, ps_size = size })
= text "PS_Vanilla" <> braces (sep [ text "ps_tvs =" <+> ppr tvs <> comma
, text "ps_size =" <+> int size ])
pSizeZero, pSizeOne :: PatersonSize
pSizeZero = PS_Vanilla { ps_tvs = [], ps_size = 0 }
pSizeOne = PS_Vanilla { ps_tvs = [], ps_size = 1 }
-- | @ltPatersonSize ps1 ps2@ returns:
--
-- - @Nothing@ iff @ps1@ is definitely strictly smaller than @ps2@,
-- - @Just ps_fail@ otherwise; @ps_fail@ says what went wrong.
ltPatersonSize :: PatersonSize
-> PatersonSize
-> Maybe PatersonSizeFailure
ltPatersonSize (PS_Vanilla { ps_tvs = tvs1, ps_size = s1 })
(PS_Vanilla { ps_tvs = tvs2, ps_size = s2 })
| s1 >= s2 = Just PSF_Size
| bad_tvs@(_:_) <- noMoreTyVars tvs1 tvs2 = Just (PSF_TyVar bad_tvs)
| otherwise = Nothing -- OK!
ltPatersonSize (PS_TyFam tc) _ = Just (PSF_TyFam tc)
ltPatersonSize _ (PS_TyFam tc) = Just (PSF_TyFam tc)
-- NB: this last equation is never taken when checking instances, because
-- type families are disallowed in instance heads.
--
-- However, this function is also used in the logic for solving superclass
-- constraints (see Note [Solving superclass constraints] in GHC.Tc.TyCl.Instance),
-- in which case we might well hit this case (see e.g. T23171).
noMoreTyVars :: [TyVar] -- Free vars (with repetitions) of the constraint C
-> [TyVar] -- Free vars (with repetitions) of the head H
-> [TyVar] -- TyVars that appear more often in C than H;
-- no repetitions in this list
noMoreTyVars tvs head_tvs
= nub (tvs \\ head_tvs) -- The (\\) is list difference; e.g.
-- [a,b,a,a] \\ [a,a] = [b,a]
-- So we are counting repetitions
addPSize :: PatersonSize -> PatersonSize -> PatersonSize
addPSize ps1@(PS_TyFam {}) _ = ps1
addPSize _ ps2@(PS_TyFam {}) = ps2
addPSize (PS_Vanilla { ps_tvs = tvs1, ps_size = s1 })
(PS_Vanilla { ps_tvs = tvs2, ps_size = s2 })
= PS_Vanilla { ps_tvs = tvs1 ++ tvs2, ps_size = s1 + s2 }
-- (++) is not very performant, but the types
-- are user-written and never large
pSizeType :: Type -> PatersonSize
pSizeType = pSizeTypeX emptyVarSet
pSizeTypes :: [Type] -> PatersonSize
pSizeTypes = pSizeTypesX emptyVarSet pSizeZero
-- Paterson size of a type, retaining repetitions, and expanding synonyms
-- This ignores coercions, as coercions aren't user-written
pSizeTypeX :: VarSet -> Type -> PatersonSize
pSizeTypeX bvs ty | Just exp_ty <- coreView ty = pSizeTypeX bvs exp_ty
pSizeTypeX bvs (TyVarTy tv)
| tv `elemVarSet` bvs = pSizeOne
| otherwise = PS_Vanilla { ps_tvs = [tv], ps_size = 1 }
pSizeTypeX _ (LitTy {}) = pSizeOne
pSizeTypeX bvs (TyConApp tc tys) = pSizeTyConAppX bvs tc tys
pSizeTypeX bvs (AppTy fun arg) = pSizeTypeX bvs fun `addPSize` pSizeTypeX bvs arg
pSizeTypeX bvs (FunTy _ w arg res) = pSizeTypeX bvs w `addPSize` pSizeTypeX bvs arg `addPSize`
pSizeTypeX bvs res
pSizeTypeX bvs (ForAllTy (Bndr tv _) ty) = pSizeTypeX bvs (tyVarKind tv) `addPSize`
pSizeTypeX (bvs `extendVarSet` tv) ty
pSizeTypeX bvs (CastTy ty _) = pSizeTypeX bvs ty
pSizeTypeX _ (CoercionTy {}) = pSizeOne
pSizeTypesX :: VarSet -> PatersonSize -> [Type] -> PatersonSize
pSizeTypesX bvs sz tys = foldr (addPSize . pSizeTypeX bvs) sz tys
pSizeTyConApp :: TyCon -> [Type] -> PatersonSize
pSizeTyConApp = pSizeTyConAppX emptyVarSet
pSizeTyConAppX :: VarSet -> TyCon -> [Type] -> PatersonSize
-- Open question: do we count all args, or just the visible ones?
-- See Note [Invisible arguments and termination]
pSizeTyConAppX bvs tc tys
| isTypeFamilyTyCon tc = pSizeTyFamApp tc
| otherwise = pSizeTypesX bvs pSizeOne tys
pSizeTyFamApp :: TyCon -> PatersonSize
-- See Note [Stuck type families]
pSizeTyFamApp tc
| isStuckTypeFamily tc = pSizeZero
| otherwise = PS_TyFam tc
pSizeClassPred :: Class -> [Type] -> PatersonSize
pSizeClassPred = pSizeClassPredX emptyVarSet
pSizeClassPredX :: VarSet -> Class -> [Type] -> PatersonSize
pSizeClassPredX bvs cls tys
| isTerminatingClass cls -- See (PS1) in Note [The PatersonSize of a type]
= pSizeZero
| otherwise
= pSizeTypesX bvs pSizeOne $
filterOutInvisibleTypes (classTyCon cls) tys
-- filterOutInvisibleTypes Yuk! See Note [Invisible arguments and termination]
isStuckTypeFamily :: TyCon -> Bool
-- See Note [Stuck type families]
isStuckTypeFamily tc
= tc `hasKey` errorMessageTypeErrorFamKey
|| tc `hasKey` anyTyConKey
-- | When this says "True", ignore this class constraint during
-- a termination check
-- See (PS1) in Note [The PatersonSize of a type]
isTerminatingClass :: Class -> Bool
isTerminatingClass cls
= isIPClass cls -- Implicit parameter constraints always terminate because
-- there are no instances for them --- they are only solved
-- by "local instances" in expressions
|| isEqPredClass cls
|| cls `hasKey` typeableClassKey
-- Typeable constraints are bigger than they appear due
-- to kind polymorphism, but we can never get instance divergence this way
|| cls `hasKey` coercibleTyConKey
allDistinctTyVars :: TyVarSet -> [KindOrType] -> Bool
-- (allDistinctTyVars tvs tys) returns True if tys are
-- a) all tyvars
-- b) all distinct
-- c) disjoint from tvs
allDistinctTyVars _ [] = True
allDistinctTyVars tkvs (ty : tys)
= case getTyVar_maybe ty of
Nothing -> False
Just tv | tv `elemVarSet` tkvs -> False
| otherwise -> allDistinctTyVars (tkvs `extendVarSet` tv) tys
-----------------------
type TypeSize = IntWithInf
sizeType :: Type -> TypeSize
-- Size of a type: the number of variables and constructors
sizeType ty = toTypeSize (pSizeType ty)
sizeTypes :: [Type] -> TypeSize
sizeTypes tys = toTypeSize (foldr (addPSize . pSizeType) pSizeZero tys)
toTypeSize :: PatersonSize -> TypeSize
toTypeSize (PS_TyFam {}) = infinity
toTypeSize (PS_Vanilla { ps_size = size }) = mkIntWithInf size
|